
Fast Implementations of RSA Cryptography

M. Shand
J. Vuillemin

Digital Equipment Corp.,
Paris Research Laboratory (PRL),

85 Av. Victor Hugo.
92500 Rueil-Malmaison, France.

Abstract

We detail and analyse the critical techniques which
may be combined in the design of fast hardware for
RSA cryptography: chinese remainders, star chains,
Hensel's odd division (a.k.a. Montgomery modular
reduction), carry-save representation, quotient pipe-
lining and asynchronous carry completion adders.

A PAM1 implementation of RSA which combines
all of the techniques presented here is fully operational
at PRL: it delivers an RSA secret decryption rate over
600Kb/s for 512b keys, and 165Kb/s for 1Kb keys.
This is an order of magnitude faster than any previ-
ously reported running implementation.

While our implementation makes full use of the
PAM's recon�gurability, we can nevertheless derive
from our (multiple PAM designs) implementation a
(single) gate-array speci�cation whose size is esti-
mated under 100K gates, and speed over 1Mb/s for
RSA 512b keys.

Each speed-up in the hardware performance of RSA
involves a matching gain in software performance
which we also analyse. In addition to the techniques
enumerated above, our best software implementation
of RSA involves Karatsuba multiplication and spe-
ci�c squaring. Measured on 512b keys, the method
leads to software implementations at 2Kb/s on a VAX
8700, 16Kb/s on a 40MHz DECstation 5000/240, and
56Kb/s on a 150MHz Alpha, which is faster than any
RSA hardware commercially available in 1992.

1 Introduction

In 1977 Rivest, Shamir and Adleman [RSA 78] in-
troduced an important public key crypto-system based

1forProgrammable Active Memory: based on Programmable
Gate Array (PGA) technology, a PAM is a universal con�g-

urable hardware co-processor closely coupled to a standard host
computer. The PAM can speed-up many critical software ap-

plications running on the host, by executing part of the compu-
tations through a speci�c hardware PAM con�guration.

on computing modular exponentials. The security of
RSA cryptography ultimately lies on our inability to
e�ectively factor large integers. As a point in case,
[LLMP 92] used hundreds of computers world-wide for
a number months in order to explicitly factor the 9-th

Fermat number F9 = 22
9

+ 1, a 513 bit integer. Ad-
mittedly this factorization uses special properties of
F9 and fully general techniques for factoring numbers
over 512b are even slower. Nevertheless, RSA imple-
mentations with key lengths of 512b must be prepared
to renew their keys regularly and cannot be used for
reliably transmitting any data which must remain se-
cret for more than a few weeks. Longer keys (768b or
1Kb) appear safe within the current state-of-the-art
on integer factoring.

The complexity of RSA encoding a km bit message
with a k bit key is m times that of computing a k bit
modular exponential, which is sk3 in software2 and
hk2 in hardware3. This paper deals with techniques
to lower the values of the time constants s and h for
both software and hardware implementations of RSA.

During the last �ve years, we have used RSA cryp-
tography as a benchmark for evaluating the computing
power of the PAMs built at PRL (see [BRV 89] and
[BRV 92]). This recon�gurable hardware has allowed
us to implement measure and compare over ten suc-
cessive versions of RSA (see [SBV 91] for details).

Our fastest current hardware implementation of
RSA relies on recon�gurability in many ways: we use
a di�erent PAM design for RSA encryption and de-
cryption; we generate a di�erent hardware modular
multiplier for each (di�erent prime) modulus P (the k
coe�cients in the binary representation of P are hard-
wired into the logic equations).

So, deriving an ASIC from our PAM design is not
an automatic task, and we account for these facts4 in

2although algorithmswith better asympotic bounds exist, at
the bit lengths of interest in RSA, modular multiplication has
complexity k2.

3assuming that the area of the hardware is proportional to
k.

4as well as earlier experimental �gures obtained by H. Touati
and R. Rudell for general PAM to ASIC compiling

1

the performance prediction regarding that technology
given in the abstract.

2 RSA Cryptography

Let us recall the ingredients for RSA cryptography:

� The publicmodulusM = P�Q is a k = l2(M) bit
integer (here l2(M) = dlog2(M+1)e), obtained by
multiplying two suitably generated secret prime
numbers P and Q.

� The public exponent E is a �xed odd number; in
order to speed-up public encryption, it is chosen
to be small: either E = F0 = 3 as in [K 81], or

E = F4 = 216+1 as recommended by the CCITT
standard.

� The secret exponent D is determined by the rela-
tion:

E �D = 1 (mod (P � 1)� (Q� 1)):

� A n = km bits message is divided into m blocks
and each block represents a k bit integer A:

1. The public encryption P(A) of block A is:

P(A) = AE (mod M):

2. The secret decryption S(A) is:

S(A) = AD (mod M):

3. Encrypt and decrypt are respective inverses:

S(P(A)) = P(S(A)) = A;

modulo M and for all 0 � A < M .

Since the public exponent (say E = 216+1) is small,
the complexity of the public encryption procedure is
only 17sk2 in software and 17hk in hardware. On
current fast micro-processors5 , this provides an e�ec-
tive RSA public encoding bandwidth of 150Kb/s for
k = 512 and 90Kb/s for k = 1024.

Since the secret exponent D has typically k =
l2(M) bits, RSA secret decryption is slower than pub-
lic encryption: 32 times slower for k = 512b and
E = F4, and 512 times slower for k = 1Kb and E = 3.

5DECstation 5000/240containinga MIPS R3000A@ 40MHz

3 Chinese Remainders

In order to speed-up the RSA secret decryption AD

(mod M) we take advantage of the secret knowledge
of the prime decomposition M = P �Q [QC 82], and
use chinese remainders (mod P) and (mod Q): 6

Algorithm 1 (RSA decrypt) In order to compute

S(A) = AE (mod M = P �Q):

1. Compute
Ap = A (mod P);
Aq = A (mod Q):

2. Compute
Bp = A

Dp

p (mod P);

Bq = A
Dq

q (mod Q);

with (precomputed) exponents:
Dp = D (mod P � 1);
Dq = D (mod Q� 1):

3. Compute
Sp = Bp � Cp (mod M);
Sq = Bq �Cq (mod M);

with (precomputed chinese) coe�cients:

Cp = QP�1 (mod M);
Cq = PQ�1 (mod M):

4. Compute
S = Sp + Sq ;
S(A) = if S �M then S �M else S:

With chinese remainders, the software complexity
of RSA decryption goes from sk3 down to s

4
k3+4sk2;

a speed-up factor of 4� �(k), with �(k) = 4

k
< 1=100

for k > 400. The factor �(k) accounts for the initial
modulo reductions and �nal chinese recombination.

With a single k bit multiplier, the hardware speed-
up from chinese remainders is only 2 � �0(k), with
�0(k) = 4=k accounting for the initial and �nal over-
head.

A better way to use the same silicon area is to op-

erate two k
2
bit multipliers in parallel, one for each

factor of M as in �g. 1. The exponentiation time be-

comes h
4
k3 for a speed-up near 4, provided that we can

perform the �nal chinese recombination at the same
rate. Taking full advantage of the recon�gurability of
the PAM, we have implemented three solutions to this
problem:

1. Compute the chinese recombination in software:
a 40 MIPS host performs this operation at a rate
of more than 600Kb/s on a pair of 512b primes,
which easily accommodates our hardware expo-
nentiation rate for 1Kb RSA keys.

2. Assist a slower host computer with a fast enough
hardware multiplier, running in parallel with the
two exponentiators [SBV 91].

6The knowledge of P and Q is equivalent to that of D, as we

can e�ciently factor M = P � Q once we know M , E and D.
This justi�es our use of chinese remainders.

3. Design the two k
2
bit modulo P and Q multipliers

so that they can be recon�gurated quickly enough
into one single k bit multiplier modulo M , which
performs the �nal chinese combination.

4 Modular Exponential

4.1 Binary Methods

Considering the binary representation of the ex-
ponent E = [ek�1 � � �e0]2 with ek�1 = 1, there are

two ways to reduce the computation of B = AE

(mod M) to a sequence of squares and modular prod-
ucts. Each is determined by the order in which it
processes exponent E, from low bits to high bits in
algorithm L, and conversely in algorithm H7.

Algorithm 2 (L Modular Exponential) Com-

pute B = AE (mod M) by:

B[0] = 1; P[0] = A;

for i<k-1 do

{ P[i+1] = P[i] * P[i] (mod M);

B[i+1] = if e{i}=1

then P[i] * B[i] (mod M)

else B[i] };

B = P[k-1] * B[k-1] (mod M).

Algorithm 3 (H Modular Exponential) Com-

pute P = AE (mod M) by:

B[0] = A;

for i<k-1 do

{ P[i] = B[i] * B[i] (mod M);

B[i+1] = if e{k-i-2}=1

then P[i] * A (mod M)

else P[i] };

B = B[k-1].

Both algorithms involve k�1 = l2(E)�1 squares and
�2(E) modular products, where �2(E) =

P
i<k ei is

the number of one bits in the binary representation
of the exponent E; clearly, 0 < �2(E) � k and the

average value of �2(E) is
k
2
:

In software, the choice of either L or H makes no
di�erence with regard to the computation time whose
average is 3s

2
k3; here s is the time required per bit of

modular product.
In hardware, algorithm L requires two storage reg-

isters (for B and P) while algorithm H gets away with
only one storage register (for both B and P).

It is natural (see [OK 91]) to implement algorithm
L with two logically distinct k bit modular multipli-
ers; one for squaring B, the other for multiplying B

7the index of all our for loops is initialized to zero, and
stepped by one.

and P as in �g. 28. The number of cycles required
for computing a k bit modular exponential in this
way is sk2, where s is the cycles required per bit of
modular product. In [OK 91] these two multipliers
are time-multiplexed on the same physical multiplier,
even though the multiplication of B and P happens
on average in only half of the cycles allocated to it.
This multiplexed implementation is chosen because
data dependencies in the inner loop of the modular
multiplication algorithm make it impossible to com-
mence the next step on the next cycle.

M
x M

e

A
k

k

k

k

B
1

x

P

Figure 2.

When the underlying modular multiplications can
be implemented free from such pipeline bubbles, it is
natural to implement Algorithm H with only one k
bit modular multiplier as in �g. 3, which is used for
both squaring B and for multiplying B by P . The
number of cycles for computing a k bit modular ex-
ponential in this way is sk(k + �2(k)), where s is the
cycle time per bit of modular product. On the average,
this is only 1:5 times slower than the two multipliers
design based on algorithm L; with only half the hard-
ware. This is actually 1:33 times faster on the average
than an implementation of algorithm L with a single
time-multiplexed hardware multiplier as in [OK 91],
because every cycle is productive.

x M

A

k

k
k

B

e’

A

Figure 3.

4.2 Star Chains

It is well known that the binary methods are not
optimal. The most e�cient known techniques for eval-
uating powers involve addition chains, in which each
multiply takes as input the values of two previous mul-
tiplies, starting from the initial values A and 1 [Y
91]. Both binary methods are special cases of addition
chains. A star chain (see [K 81]) is an addition chain
where one of the operands is the result of the previ-
ous multiply operation. This restriction is desirable in

8In our schemas, two triangles labelled � and M denote a
multiplier moduloM . A square denotes a register, with initial

value indicated inside. A trapezoid represents a multiplexer,
controlled by its vertical input. It is the bit-serial exponent e,

from low to high bits in �g. 2, and e0 from high to low bits in
�g. 3.

hardware structures because it allows the hardwiring
of one of the inputs to the multiplier. Despite this re-
striction, star-chains are known (see [K 81] again) to
be almost as e�cient as general addition chains.

Asymptotically, an optimal star chain requires only
k multiplies, against k+�2(k) for the binary methods.
The sequence of multiplies only depends upon the ex-
ponent E and can thus be computed o�-line. However,
there is no e�cient algorithm known to compute the
optimal star chain sequence.

The modular multiplier in �g. 3 can be modi�ed so
as to exponentiate along any star chain, provided that
input A is able to take one of its operands from a mem-
ory in which intermediate results have been saved. For
k = 512b the required memory is less than 64kB.

An alternative to star chains which requires less
storage and is easier to compute is to use the � � ary
method of exponentiation. We pre-compute a table of
the powers Ak (mod M) for all small k < � ; (� =

2p). The exponential AE is then obtained by a re-
peated sequence of p squarings followed by a multi-
plication by the appropriate power of A. If we allow
the multiply to occur early in the squaring sequence
we only need to store the odd powers of A. This is a
simple generalization of algorithm H to radix �, with

E = [e k
p
�1 � � �e0]� and 0 � ei < � for i < k

p
. The

storage required is kp=2 bits; as the squaring sequence
need not start until the second most signi�cant digit,
the expected number of modular products is (assum-
ing that k is a multiple of p):

�

2
+ k � p+

k

p

� � 1

�
:

In software, for k = 256 (corresponding to a public
modulus of 512b) the optimal choice of p is 5 (� =
32) and the average number of multiplies 1:24k; for
k = 512 the optimal p is 6 and the average number of
multiplies is 1:22k.

With a fast host, the computation of small pow-
ers can be done in software while the hardware com-
pletes the previous exponentiation thus eliminating
the �=2 term corresponding to the number of prod-
ucts required for building the table.

5 Hensel's Odd Division

There are two dual ways to divide a k+p bit integer

N = [nk+p�1 � � �n0]2

by a k bit integer M , so as to compute N (mod M).

1. The euclidian binary division proceeds from high
to low bits in N :

Algorithm 4 (Euclid's division) Starting
from R[0] = [nk+p�1 � � �np+1]2, compute:

for i<=p do

{ S[i] = 2 R[i] + n{p-i};

q{i} = if S[i]<M then 0 else 1;

R[i+1] = S[i] - q{i}M };

R = R[p+1].

Upon termination, we obtain Euclid's relation:

N =MQ+ R; R < M;

with quotient Q = [q0 � � � qp�1]2. The correspond-
ing hardware scheme is:

k
0

x

2

M
x

q

M
R

k+1

S
N

+
−

Figure 4.

2. Hensel introduced the odd division around 1900,
for computing the inverses of odd 2adic numbers.
This implies that the modulus M = 1+2M 0 must
be odd.

Algorithm 5 (Hensel's division) Starting
from R[0] = [nk+p�1 � � �n0]2, compute:

for i<p do

{ q{i} = R[i] mod 2;

R[i+1] = (R[i] + q{i}M) div 2 };

R = R[p].

Upon termination, we obtain Hensel's relation:

N = �MQ+ 2pR; R < 2M;

with quotient Q = [qp�1 � � �q0]2. The correspond-
ing hardware scheme is:

k +0

k

+

0
M

2

k/2

R
k

k+1

N

q

Figure 5.

Hensel's division computes N2�p (mod M) rather
than Euclid's result N (mod M) making it not ap-
propriate for all applications; however, in hardware
terms, Hensel's division has a decisive advantage over
Euclid's: it does not require to implement a quotient
unit. The quotient qi in Hensel's division is simply
the current low bit of the R register. Euclid's division
requires a full k bits comparison between M and the
current value of S[i] in order to compute the corre-
sponding quotient bit qi.

Most previously reported hardware implementa-
tions of RSA deal with modular reduction in Euclid's
way: they avoid carrying out the full-compare quo-
tient by using an approximate quotient computation
which only involves a small number of high bits in
S. The resulting redundant quotient has at least one
more bit than Euclid strictly demands. Examples of
such methods are found in [PV 90] which uses radix 4,

[OK 91]9 which uses radix 32, and [IWSD 92]. An al-
ternative is given by [T 91] which uses base 4 quotient
digits in a redundant 3b per digit quotient system. As
a consequence, the modular multiplier in [T 91] has
an area which is (at least) 1.5 larger than the Hensel
based implementation which follows.

One last advantage of Hensel's division is to allow
for quotient pipelining, as shown in section 8.2. We
are not aware of any similar pipelining technique for
Euclid's division.

6 Modular Product

There are many ways to compute modular products

P = A �B (mod M):

As shown in the previous section, one has to �rst
choose the order in which to process the multiplier.

Hensel's scheme (from low bits to high bits) has
been used in software implementations of RSA, and
[DK 91] present some of the bene�ts. Even [E90]
presents a hardware design for modular exponentia-
tion based on Hensel's scheme. Ours appears to be
the �rst reported working hardware implementation
of RSA to operate in this manner. The following is a
generalization of an original algorithm in [Mo 85]:

Algorithm 6 (Modular Product) Let A;B;M 2

N be three integers, each presented by n radix � = 2p

digits

A = [an�1 � � �a0]�;
B = [bn�1 � � � b0]�;
M = [mn�1 � � �m0]�;

with the modulus M relatively prime to �, that is
gcd(m0; �) = 1: We compute a product P = P [n] such

9[OK 91] present their quotient unit as a parallel exhaustive

search.

that

P =
A �B

�n
(mod M); (1)

by letting P [0] = 0 and evaluating, for t = 0; � � � ; n�1:

P [t+ 1] =
1

�
(A� bt + P [t] + qt �M): (2)

At each step (2) the quotient digit qt 2 [0 � �� � 1] is
chosen so that P [t+ 1] is an integer:

A � bt + P [t] + qt �M = 0 (mod �):

This is achieved by letting

qt = � � (a0 � bt + p0(t)) (mod �); (3)

where number � = �M�1 (mod �) is pre-computed
so that m0 � � + 1 = 0 (mod �), and p0(t) = P [t]
(mod �) denotes the least signi�cant digit of P [t].

It is easily checked, by induction on t, that

�t � P [t] = A� [bt�1 � � � b0]� +M � [qt�1 � � � q0]�

hence (1) follows for t = n. As a numerical example,
let us set

� = 2; n = 5;
A = 26 = [11010]2;
B = 11 = [01011]2;
M = 19 = [10011]2

and use Algorithm 1 to compute

t 0 1 2 3 4
P [t+ 1] 13 29 24 25 22

qt 0 1 1 0 1
;

thus establishing the diophantine equation:

25 � 22 = 26� 11 + 22� 19:

Observe that the values of P [t] remain bounded: in-
deed, a simple induction on t establishes that

0 � P [t] < A+M (4)

is an invariant of Algorithm 1. It follows that n digits
plus one bit are su�cient to represent P [t] < 2�n, for
all t � 0. Equation (4) also shows that, assuming

0 � A < M , we can compute P = A�B
�n

(mod M)

with 0 � P < M with just one conditional subtraction
following Algorithm 1:

P = if P [n] �M then P [n]�M else P [n]:

For modular exponential, we avoid performing this
reduction after each modular product by letting all
intermediate results have two extra bits of precision;

all operands can nevertheless be represented with n
digits since:

if M <
1

4
�n and A;B � 2M then P [n] < 2M:(5)

Indeed, since P [n�1] < A+M by (4) and (5) implies

bn�1 �
�

2
� 1, we have:

P [n] =
1

�
(P [n� 1] + bn�1A+ qn�1M)

<
1

�
(A +M + (

�

2
� 1)A+ (� � 1)M)

<
A

2
+M � 2M:

6.1 Radix Choice

Algorithm 6 requires to choose the radix � = 2p in

which to decompose the n = k
p
digits multiplicand

B = [bn�1 � � �b0]�:

Let us analyse the impact of the choice of radix � on
a k bits keys RSA implementation.

� = 2k In [SBV 91], we compute modular products
through a long integer hardware multiplier, which
is forcing the largest base � = 2k upon us. The
modular product is realized by a sequence of three
full-length k � k 7! 2k integer products:

1. Compute the 2k bit product C = A�B; let
C0 = C (mod 2k) and C1 = C�2k, so that

C = C0 + 2kC1.

2. Compute the 2k bit product Q = C0��M
�,

where M� is the precomputed inverse of
M (mod 2k). Keep the k low order bits

as hensel quotient q = Q (mod 2k).

3. Compute the 2k bit product D = q � M ,
and add: P = C+D; number P is such that
P = A�B

2k
(mod M) with P � 2M .

The resulting complexity is high: 6hk2, and we
see that using large radixes is not e�cient.

� = 232 Let M(p) represent the cost of a p � p !
2p bit multiply. In step 2 of algorithm 6, the

products A�bt and qt�M each cost k
p
M(p), and

the computation of qt costs M(p). The multiply
cost of Algorithm 6 is thus:

2k2
M(p)

p2
+ k

M(p)

p
(6)

In software at the moderate bit lengths of RSA,
the cost of multiplication grows quadratically
with the length of the operands. Thus the �rst
term of (6) is constant while the second term
grows with p. So, software should choose as small
a radix � as possible: typically one machine word.

� = 22 In a dedicated hardware, equation (6) shows
that p should also be small. The choice � = 22

allows for a trivial calculation of qt, and permits
to use Booth recoded multiplication: this doubles
the multiplier's performance compared to � = 2,
at a modest increase (about 1.5) in hardware area.
Higher radixes which o�er better multiply perfor-
mance had to be dismissed, since they involve too
much hardware and the computation of the quo-
tient digits is no longer trivial.

7 Software Implementations

7.1 Karatsuba Multiplication

In software the choice of radix � is determined by
the most e�cient multiply primitive available, which
is not always the machine word size. On most cur-
rent microprocessors, integer multiplication is rela-
tively slow, compared to adds which get executed in
one clock cycle.

On the MIPS R3000A our most e�cient multiply
primitive is a 64 � 64 ! 128 bits10. This is imple-
mented in 51 cycles using three integer multiplications
32� 32! 64 bit and the Karatsuba algorithm [K 81].
The multiply primitive on a MIPS takes 16 cycles, and
all other operations are overlapped. Careful coding
can hide all but three cycles of the Karatsuba over-
head into the (otherwise wasted) cycles during which
the integer multiply unit is busy. Trying to contruct
larger multiplies by applying Karatsuba's algorithm
recursively does not result in a performance improve-
ment: there are not enough registers to hold inter-
mediate results, and all of the idle cycles are already
absorbed by the �rst level of Karatsuba.

The argument following equation (6) suggests that
we should choose a radix equal to the word size. How-
ever, with Karatsuba, the optimal radix choice in-
creases. For example, on a MIPS R3000A the conjunc-
tion of radix 264 and Karatsuba multiplication brings
a speed-up of 1:22.

On some computers, it is faster to forget about inte-
ger multiplies and Karatsuba altogether, and use
oat-
ing point multiplications11 . However the lower result
precision of
oating point implies a smaller digit size
(typically 24 bits); moving digits between the
oating
point and the integer unit also introduces signi�cant
overheads.

7.2 Optimized Squaring

A further optimization is to treat squaring specially.
By rearranging the order of operations in Algorithm 6
we can perform A � B before the modular reduction.

10likewise on the Alpha AXP we use 128� 128! 256 bits as
our multiply primitive

11even more so on vector supercomputers [BW 89].

With the use of star chains, or the precomputation
of small powers in over 75% of the modular product
operations A = B. For k = 512 and p = 64 (us-
ing Karatsuba's algorithm), squaring may be imple-
mented 1:77 times more e�ciently than general mul-
tiplication. This yields an overall speed-up of 1:29.

In hardware this would require extra storage for the
length 2k intermediate result, but in software memory
is cheap.

8 Hardware Implementations

8.1 Asynchronous Carry Completion

In our hardware implementation of RSA we repre-
sent the partial sums P [t] in carry-save form. Upon
completion of each modular product, the result P [n]
must be converted back to non-redundant binary form,
so as to be used as input to the next modular product.

Takagi [T 91] avoids this problem by keeping all
the operands in carry-save form; the size of the re-
sulting multiplier is nearly double that of a radix 4
non-redundant multiplier.

Instead we observe that although in the worst the
carry must propagate through all k bits of the result,
on average it will only need to propagate through l2(k)
bits before all carries have disappeared. Thus we have
implemented an asynchronous carry completion detec-
tion circuit and clock the �nal result for as many cycles
as needed to fully propagate all carries. This circuit
is a very wide OR-gate that collects together all the
non-zero carries. This OR-gate need not run at full
circuit speed since the carry propagation circuit that
the OR-gate monitors is idempotent once all the car-
ries have been eliminated and may be safely clocked
for extra cycles without changing the result. The OR-
gate provides an asynchronous input to the controller
indicating that the datapath is ready to commence the
next modular product. Measurements from the im-
plemented hardware show that the average number of
carry propagation cycles is indeed very close to l2(k),
as predicted in [K 81]. This technique provides a valu-
able saving in multiplier area, for small increase in the
average numbers of cycles per full modular product.

8.2 Quotient Pipelining

Recall the basic steps of Algorithm 6:

P [t+ 1] =
1

�
(A� bt + P [t] + qt �M); (7)

qt = �� (a0 � bt + p0(t)) (mod �): (8)

The direct implementation of this recurrence su�ers
from the dependency between qt and the current value
of P [t]: this resulting combinatorial path directly af-
fects the minimum cycle time of the data-path.

In order to speed-up the clock cycle through
pipelining, let us de�ne rt and Rt by:

rt = P [t] + A� bt (mod �)

Rt = P [t] + A� bt � rt

Equation (7) becomes:

P [t+ 1] =
Rt

�
+

(rt + qt �M)

�
:

We introduce d levels of pipeline by choosing a quo-
tient digit q0t such that:

rt + q0t �M = 0 (mod �d+1);

with 0 � q0t < �d+1: We obtain the modi�ed recur-
rence:

P 0[t+ 1] =
Rt

�
+
(rt�d + q0t�d �M)

�d+1

This value is related to the old recurrence by:

P [t+ 1] � P 0[t+ 1] +
rt

�
+ � � �+

rt�d+1

�d
(mod �n)

Now,

P [n] =
A� B

�n
(mod �n):

Letting the datapath run for d more iterations
gives:

P [n+ d] = P 0[n+ d] +
rn+d�1

�
+ � � �

+
rn

�d
(mod �n)

=
A� B

�n+d
(mod �n):

Multiplying this result by �d, which is equivalent to
shifting left by d bits, we obtain:

P [n+ d]� �d = P 0[n+ d]� �d + rn+d�1 � �d�1

+ � � �+ rn (mod �n)

=
A� B

�n
(mod �n)

The rt's produced after the nth iteration are appended
to the result in P 0[n+ d] in order to produce the �nal
modular product.

In this pipelined version, the data-path requires d
extra bits of precision, and the iteration has n + d
cycles, which is d cycles (plus a few additional cycles
to realign the �nal result) longer than the initial one.
This cost is more than compensated for by the faster
cycle time which pipelining now allows.

The choice of d is technology dependent. Making
it unnecessarily large consumes cycles and area12, but
it should be su�ciently large that each step in the
distribution of qt's through the datapath is no greater
than other critical paths of the datapath. In our imple-
mentation on the PAM the pipelined data-path can be
clocked at 25ns. In a non-pipelined version the com-
binatorial distribution of qt takes over 100ns. Thus in
this particular technology quotient pipelining gives a
speed-up of 4.

9 Summary of Speedups

In the following table we recall the various tech-
niques applied to implementing RSA and quantify the
speedup achieved for 1Kb keys.

TECHNIQUE Software Hardware
Chinese remainders 4� � 4
Precompute small powers 1.2 1:25
Hensel's odd division 1.05 1:5
Karatsuba multiplication 1:22 |
Squaring optimization 1:29 |
Carry completion adder | 2� l2(k)=k
Quotient pipelining | 4

10 Bibliography

[Br 89] Ernest F. Brickell A Survey of Hardware Im-
plementations of RSA, in Gilles Brassard, editor,
Advances in Cryptology { Crypto '89 , pp 368-370,
Springer-Verlag, 1990.

[BRV 89] P. Bertin, D. Roncin , J. Vuillemin Intro-
duction to Programmable Active Memories, in
Systolic Array Processors edited by J. McCanny, J.
McWhirter and E. Swartzlander , Prentice Hall,
pp 301-309, 1989. Also available as PRL re-
port 3 , Digital Equipment Corp., Paris Research
Laboratory, 85, Av. Victor Hugo. 92563 Rueil-
Malmaison Cedex, France.

[BRV 92] P. Bertin, D. Roncin, J. Vuillemin: Pro-
grammable Active Memories: a Performance As-
sessment, report in preparation, Digital Equip-
ment Corp., Paris Research Laboratory, 85, Av.
Victor Hugo. 92563 Rueil-Malmaison Cedex,
France, 1992.

[BW 89] D. A. Buell, R. L. Ward, AMultiprecise In-
teger Arithmetic Package, The journal of Super-
computing 3, pp 89-107; Kluwer Academic Pub-
lishers, Boston 1989.

[DK 91] S. R. Duss�e, B. S. Kaliski Jr.: A Cryp-
tographic Library for the Motorola DSP 56000,
Proceedings of EUROCRYPT '90, Springer LNCS
473, 1991.

12due to the larger intermediate results.

[E90] S. Even: Systolic Modular Multiplication,
Proceedings of Crypto '90 pp 619-624, Springer-
Verlag, 1990.

[IWSD 92] P. A. Ivey, S. N. Walker, J. M. Stern
and S. Davidson: An ultra-high speed public
key encryption processor, Proceedings of the
IEEE 1992 custom integrated circuits conference,
Boston, Massachusetts, paper 19.6, 1992.

[K 81] D. E. Knuth, The Art of Computer Program-
ming, vol. 2, Seminumerical Algorithms, Addison
Wesley, 1981.

[LLMP 92] A. K. Lenstra, H. W. Lenstra, M. S.
Manasse, J. Pollard: The factorization of the
ninth Fermat number, Mathematics of Computa-
tion to appear, 1992.

[Mo 85] P. L. Montgomery Modular multiplication
without trial division, Mathematics of Computa-
tion 44(170):519-521, 1985.

[PV 90] J. Vuillemin, F.P. Preparata Practical Cel-
lular Dividers, IEEE Trans. on Computers,
39(5):605-614, 1990.

[OK 91] H. Orup, P. Kornerup: A High-Radix
Hardware Algorithm for Calculating the Exponen-
tial ME Modulo N , 10-th IEEE symposium on
COMPUTER ARITHMETIC, pp 51-57, 1991.

[QC 82] J-J. Quisquater, C. Couvreur Fast Deci-
pherment Algorithm for RSA Public-key Cryp-
tosystem, Electronics Letters,
18(21):905-907, 1982.

[RSA 78] R. L. Rivest, A. Shamir, L. Adleman Pub-
lic key cryptography, CACM 21, 120-126, 1978.

[SBV 91] M. Shand, P. Bertin and J. Vuillemin:
Hardware Speedups in Long Integer Multiplica-
tion, Computer Architecture News, 19(1):106-
114, 1991.

[T 91] N. Takagi A Radix-4 Modular Multiplication
Hardware Algorithm E�cient for Iterative Mod-
ular Multiplications, 10-th IEEE symposium on
COMPUTER ARITHMETIC, pp 35-42, 1991.

[X] Xilinx The Programmable Gate Array Data
Book, Product Briefs, Xilinx, Inc., 1987-1992.

[Y 91] Y. Yacobi Exponentiating Faster with Addi-
tion Chains, Proceedings of EUROCRYPT '90,
Springer LNCS 473, 1991.

11 Acknowledgments

P.Bertin, F.Morain, R. Razdan and the anonymous
referee.

