Reconfigurable Systems
Past and Next 10 Years

Jean Vuillemin!

FEecole Normale Supérieure, 45 rue d’Ulm, 75230 Paris cedex 05, France.
This research was partly done at Hewlett Packard Laboratories, Bristol U.K.

Abstract. A driving factor in Digital System DS architecture is the
feature size of the silicon implementation process. We present Moore’s
laws and focus on the shrink laws, which relate chip performance to
feature size. The theory is backed with experimental measures from [14],
relating performance to feature size, for various memory, processor and
FPGA chips from the past decade. Conceptually shrinking back existing
chips to a common feature size leads to common architectural measures,
which we call normalized: area, clock frequency, memory and operations
per cycle. We measure and compare the normalized compute density of
various chips, architectures and silicon technologies.

A Reconfigurable System RS is a standard processor tightly coupled to a
Programmable Active Memory PAM, through a high bandwidth digital
link. The PAM is a FPGA and SRAM based coprocessor. Through soft-
ware configuration, it may emulate any specific custom hardware, within
size and speed limits. RS combine the flexibility of software programming
to the performance level of application specific integrated circuits ASIC.
We analyze the performance achieved by P1, a first generation RS [13].
It still holds some significant absolute speed records: RSA cryptography,
applications from high-energy physics, and solving the Heat Equation.
We observe how the software versions for these applications have gained
performance, through better microprocessors. We compare with the per-
formance gain which can be achieved, through implementation in P2, a
second-generation RS [16].

Recent experimental systems, such as the Dynamically Programmable
Arithmetic Array in [19] and others in [14], present advantages over cur-
rent FPGA, both in storage and compute density. RS based on such chips
are tailored for video processing, and similar compute, memory and IO
bandwidth intensive. We characterize some of the architectural features
that a RS must posses in order to be fit to shrink: automatically enjoy
the optimal gain in performance through future shrinks. The key to scale,
for any general purpose system, is to embed memory, computation and
communication at a much deaper level than presently done.

1 Moore’s Laws

Our modern world relies on an ever increasing number of Digital Systems DS:
from home to office, through car, boat, plane and elsewhere. As a point in case,

the shear economic magnitude of the Millenium Bug [21], shows how futile it
would be to try and list all the functions which DS serve in our brave new
digital world.

7 . Gbop/s x2.1ly
10" "
1012 |
e Gtransly x1,8ly
10° |
10° -
10° | G$ly x1.2ly
~
1 T T T (g T T x\' T T (b‘ T T T Xn 77$/Gb XO 7/y
N\ o))) Q- ‘
N N N N P

Fig. 1. Estimated number and world wide growth rate: G = 10° transistors fabricated
per year; G bit operations computed each second; Billion $ revenues from silicon sold
world wide; $ cost per G = 2°0 bits of storage.

Through recent decades, earth’s combined raw compute power has more than
doubled each year. Somehow, the market remains elastic enough to find appli-
cations, and people to pay, for having twice as many bits automatically switch
state than twelve months ago. At least, many people did so, each year, for over
thirty years - fig. 1.

An ever improving silicon manufacturing technology meets this ever increas-
ing demand for computations: more transistors per unit area, bigger and faster
chips. On the average over 30 years, the cost per bit stored in memory goes down
by 30% each year. Despite this drop in price, selling 80% more transistors each
year increases revenue for the semi-conductor industry by 20% - fig. 1.

The number of transistors per mm? grows about 40% each year, and chip
size increases by 15%, so:

The number of transistors per chip doubles in about 18 months.

That is how G. Moore, one of the founders of Intel, famously stated the laws
embodied in fig. 1. That was in the late sixties, known since as Moore’s Laws.
More recently, G. Moore [18] points out that we will soon fabricate more
transistors per year than there are living ants on earth: an estimated 10'7.
Yet, people buy computations, not transistors. How much computation do
they buy? Operating all of this year’s transistors at 60 MHz amounts to an

aggregate compute power worth 10%* bop/s - bit operation per second. That
would be on the order of 10 million bop/s per ant!

This estimate of the world’s compute power could well be off by some order
of magnitude. What matters is that computing power at large has more than
doubled each year for three decades, and it should do so for some years to come.

1.1 Shrink Laws

100 -
~um = mmé/chip =
L]
L]
~__ .
10 \ n -
\ 1]
'\. .
n T
-] \,\
l+—r——7—7—7 7 \\\Q\ —
R I T T J et
SRS S - S . 2N
'\‘
0,1

Fig. 2. Shrink of the feature size with time: minimum transistor width, in gm = 10~ %m.

Crowth of chip area - in mm?2.

The economic factors at work in fig. 1 are separated from their technological
consequences in fig 2. The feature size of silicon chips shrinks: over the past
two decades, the average shrink rate was near 85% per year. During the same
time, chip size has increased: at a yearly rate near 10% for DRAM, and 20% for
processors.

The effect on performance of scaling down all dimensions and the voltage of
a silicon structure by 1/2: the area reduces by 1/4, the clock delay reduces to
1/2 and the power dissipated per operation by 1/8.

Equivalently, the clock frequency doubles, the transistor density per unit area
quadruples, and the number of operations per unit energy is multiplied by 8, see
fig. 2. This shrink model was presented by [2] in 1980, and intended to cover
feature sizes down to 0.3 pm - see fig. 3.

Fig. 4 compares the shrink model from fig. 3 with experimental data gathered
in [14], for various DRAM chips, published between in the last decade. The last
entry - from [15] - accounts for synchronous SDRAM, where access latency is
traded for throughput. Overall, we find a rather nice fit to the model. In fig. 7,
we also find agreement between the theoretical fig. 3 and experimental data for
microprocessors and FPGA, although some architectural trends appear.

A recent update of the shrink model by Mead [9] covers features down to
0.03 pm. The optimists conclusion, from [9]:

107 op/nd

100 | - trans/mn’?

108 |

— GHz
10 b /

Fig. 3. Theoretical chip performance, as the minimum transistor width (feature size)
shrinks from 8 to 0.03 micron pm: transistors per square millimeter; fastest possible
chip wide synchronous clock frequency, in giga hertz; number of operations computed,
per nano joule.

We can safely count on at least one more order of magnitude of
scaling.

The pessimist will observe that it takes 2 pages in [2] to state and justify the
linear shrink rules; it takes 15 pages in [9], and the rules are no longer linear.
Indeed, thin oxide is already nearly 20 atoms thick, at current feature size 0.2
pm. A linear shrink would have it be less than one atom thick, around 0.01 pm.
Other fundamental limits (quantum mechanical effects, thermal noise, light’s
wavelength, ...) become dominant as well, near the same limit. Although C.
Mead [9] does not explicitly cover finer sizes, the implicit conclusion is:

We cannot count on two more orders of magnitude of scaling.

Moore’s law will thus eventually either run out of fuel - demands for bop/s will
some year be under twice that of the previous - or it will be out of an engine
- shrink laws no longer apply below 0.01 pm. One likely possibility is some
combination of both: feature size will shrink ever more slowly, from some future
time on.

On the other hand, there is no fundamental reason why the size of chips
cannot keep on increasing, even if the shrink stops. Likewise, we can expect new
architecture to improve the currently understood technology path. No matter
what happens, how to best use the available silicon will long remain an im-
portant question. Another good bet: the amount of storage, computation and
communication, available in each system will grow, ever larger.

2 Performance Measures for Digital Systems

Communication, processing and storage are the three building blocks of DS.
They are intimately combined at all levels. At micron scale, wires, transistors

% bistf
107 | a4
1 _h * b/chip *
105 | - >$|>s X | [XY p
_ ® 0%
103 i ® ®
. 900 OO am - mrnz :
0 et e T . MHz
© v ~» A 3 " »
NN Q Q 7 oY

Feature size: um.

Fig. 4. : Actual DRAM performance as feature size shrinks from 0.8 to 0.075 um: clock
frequency in Mega hertz; square millimeters per chip; bits per chip; power is expressed
in bit per second per square micron.

and capacitors implement the required functions. At human scale, the combi-
nation of a modem, microprocessor and memory in a PC box does the trick.
At planet scale, communication happens through more exotic media - waves in
the electromagnetic ether, or optic fiber - at either end of which one finds more
memory, and more processing units.

2.1 Theoretical performance measures

Shannon’s Mathematical Theory of Communication [1] shows that physical mea-
sures of information (bits b) and communication (bits per second b/s) are related
to the abstract mathematical measure ot statistical entropy H, a positive real
number H > 0. Shannon’s theory does not account for the cost of any compu-
tation. Indeed, the global function of a communication or storage device is the
identity X =Y.

On the other hand, source coding for MPEG video is among the most de-
manding computational tasks. Similarly, random channel coding (and decod-
ing), which gets near the optimal for the communication purposes of Shannon
as coding blocks become bigger, has a computational complexity which increases
exponentially with block size.

The basic question in Complexity Theory is to determine how many opera-
tions C(f), are necessary and sufficient for computing a digital function f. All
operations in the computation of f are accounted for, down to the bit level, re-
gardless of when, where, or how the operation is performed. The unit of measure
for C'(f) is one Boolean operation bop. Tt is applicable to all forms of compu-

tations - sequential, parallel, general and special purpose. Some relevant results
(see [5] for proofs):

1. The complexity of n bit binary addition is 57 — 3 bop. The complexity of
computing one bit of sum is 1 add = 5 bop (full adder: 3 in, 2 out).

2. The complexity of n bit binary multiplication can be reduced, from 6n2
bop for the naive method (and 4n? bop through Booth Encoding), down to
c(e)n'™e, for any real number € > 0. As ¢(€) — oo when € — 0, the practical
complexity of binary multiplication is only improved for n large.

3. Most Boolean functions f, with n bits of input and one output, have a bop
complexity C(f) such that 2n/n < C(f) < 2n/n(2 + ¢), for all € > 0 and n
large enough. To build one, just choose at random! No explicitly described
Boolean function has yet been proved to posses more than linear complexity
(including multiplication). An efficient way to compute a random Boolean
function is through a Lookup Table LUT, implemented with a RAM or a
ROM.

Computation is free in Shannon’s model, while communication and memory are
free within Complexity Theory. The Theory of VLSI Complezity aims at mea-
suring, for all physical realizations of digital function f, the combined complexity
of communication, memory, and computation. The VLSI complexity of function
f is defined with respect to all possible chips for computing f. Implementations
are all within the same silicon process, defined by some feature size, speed and
design rules. Each design computes f within some area A, clock frequency F' and
T clock periods per 10 sample. The silicon area A is used for storage, commu-
nication and computation, through transistors and wires. Optimal designs are
selected, based on some performance measure. For our purposes: minimize the
area A for computing function f, subject to the real time requirement F/T < F;,.
In theory, one has to optimize among all designs for computing f. In practice,
the search is reduced to structural decompositions into well known standard
components: adders, multipliers, shifters, memories, ...

2.2 Trading size for speed

VLSI design allows trading area for speed. Consider, for example, the family of
adders: their function is to repeatedly compute the binary sum S = A+ B of two
n bits numbers A, B. Fig. 5 shows four adders, each with a different structure,
performance, and mapping of the operands through time and IO ports. Let us
analyze the VLSI performance of these adders, under simplifying assumptions:
@jq = 2a, for the area (based on transistor counts), and dyo = d, for the
combinatorial delays of fadd and reg (setup and hold delay).

1. Bit serial (base 2) adder sA2. The bits of the binary sum appear through
the unique output port as a time sequence sg, s1, ..., Sn, -.. one bit per clock
cycle, from least to most significant. It takes T' = n + 1 cycles per sum S.
The area is A = 3a,: it is the smallest of all adders. The chip operates at
clock frequencies up to F' = 1/2d,: the highest possible.

SA2 sA4 sAl4 2sA2
J o2 W
jc[z] bl %< T
p! a7 I
b[1] —— +
il (
1

o

. a

c r a " s | a |
b ° Vv 0 4
- s of1] Kcm L]

+ ~ b[0) ’ b{0] —— A\ S b
a + |—b-sio) + |—-sl0] b o
al a[0] - ’ a[0] - . s
}c[m }clm 2

Fig. 5. Four serial adders: sA2 - base 2, sA4 - base 4, sAI4 - base 4 interleaved, and
28A2 - two independent sA2. An oval represents the full adder fadd; a square denotes
the register reg (one bit synchronous flip-flop; the clock is implicit in the schematics).

2. Serial two bits wide (base 4) adder sA4. The bits of the binary sum appear
as two time sequences Sg, S2, ..., Son, ... and §1, S3, ... two bits per cycle,
through two output ports. Assuming n to be odd, we have T' = (n + 1)/2
cycles per sum. The area is A = 5a,. and the operating frequency F' = 1/3d,..

3. Serial interleaved base 4 adder sAI4. The bits of the binary sum S appear

* 89, ¥ ..., Sop, ¥, ... and *, sq, *, s3, ... one bit

per clock cycle, even cycles through one output port, odd through the other.

The alternate cycles (the *) are used to compute an independent sum 5’

whose 10 bits (and carries) are interleaved with those for sum S. Although

it still takes n+ 1 cycles in order to compute each sum S and S’, we get both
sums in so many cycles, at the rate of T = (n+ 1)/2 cycles per sum. The
area is A = 6a, and the maximum operating frequency F' = 1/2d,..

as two time sequences Sg,

4. Two independent bit serial adders 2sA2. This circuit achieves the same per-
formance as the previous: 7= (n + 1)/2 cycles per sum, area A = 6a, and
frequency F' = 1/2d,.

The transformation that unfolds the base 2 adder sA2 into the base 4 adder sA4
is a special instance of a general procedure. Consider a circuit C which computes
some function f in 7T cycles, within gate complexity G bop and memory M bits.
The procedure from [11] unfolds C' into a circuit C' for computing f: it trades
cycles T' = T/2 for gates G' = 2G, at constant storage M’ = M.

In the case of serial adders, the area relation is A" = 5A4/3 < 24, so that
A'T" < AT. On the other hand, since F' = 1/3d and F' = 1/2d, we find that
A'T'/F' > AT/F. An equivalent way to measure this, is to consider the density
of full adders fadd per unit area ay, = 2a,, for both designs C' and C': as
2/A =0.66 < 4/A" = 0.8, the unfolded design has a better fadd density than
the original. Yet, since I = 1.5F, the compute density - in fadd per unit area
and time dy, = d, - is lower for circuit C': F//A=0.16 > 2/A'F' = 0.13. When
we unfold from base 2 all the way to base 2n, the carry register may be simplified
away: it is always 0. The fadd densities of this n-bit wide carry propagate adder

is 1 per unit area, which is optimal; yet, as clock frequency is F' = 1/n, the
compute density is low: 1/n.

Circuits sAI4 and 2s A2 present two ways of optimally trading time for area,
at constant operator and compute density. Both are instances of general meth-
ods, applicable to any function f, besides binary addition. From any circuit C'
for computing f within area A, time T" and frequency F', we can derive circuits
C' which optimally trades area A’ = 2A for time T’ = T/2, at constant clock
frequency F’ = F'. The trivial unfolding constructs C’ = 2C' from two indepen-
dent copies of C, which operate on separate I0. So does the interleaved adder
sAI4, in a different manner. Generalizing the interleaved unfolding to arbitrary
functions does not always lead to an optimal circuit: the extra wiring required
may force the area to be more than A’ > 2A4. Also note that while these optimal
unfolding double the throughput (T' = n/2 cycles per add), the latency for each
individual addition is not reduced from the original one (T' = n cycles per addi-
tion). We may constrain the unfolded circuit to produce the 10 samples in the
standard order, by adding reformatting circuitry on each side of the 10: a buffer
of size n-bit, and a few gates for each input and output suffice. As we account
for the extra area (for corner turning), we see that the unfolded circuit is no
longer optimal: A’ > 2A. For a complex function where a large area is required,
the loss in corner turning area can be marginal. For simpler functions, it is not.

In the case of addition, area may be optimally traded for time, for all integer
data bit width D = n/T, as long as D < /n. Fast wide D = n parallel adders
have area A = nlog(n), and are structured as binary trees. The area is dominated
by the wires connecting the tree nodes, their drivers (the longer the wire, the
bigger the driver), and by pipelining registers, whose function is to reduce all
combinatorial delays in the circuit below the clock period 1/F of the system.

Transitive functions permute their inputs in a rich manner (see [4]): any input
bit may be mapped - through an appropriate choice of the external controls -
into any output bit position, among N possible per IO sample. It is shown in [4]
that computing a transitive function at 10 rate D = NF/T, requires an area A
such that:

A > amN + aioD + ayD?, (1)

where a,,, a;, and a,, are proportional to the area per bit respectively required
for memory, 10 and communication wires. Note that the gate complexity of a
transitive function is zero: input bit values are simply permuted on the output.
The above bound merely accounts for the area - 10 ports, wires and registers -
which is required to acquire, transport and buffer the data at the required rate.
Bound (1) applies to shifters, and thus also to multipliers. Consider a multiplier
that computes 2n-bit products on each cycle, at frequency F. The wire area of
any such multiplier is proportional to n2, as 7' = 1 in (1). For high bandwidth
multipliers, the area required for wires and pipelining registers is bigger than
that for arithmetic operations.

The bit serial multiplier (see [11]) has a minimal area A = n, high operating
frequency F', and it requires T' = 2n cycles per product. A parallel nave multiplier
has area A" = n? and 7 = 1 cycle per product. In order to maintain high

frequency F' = F, one has to introduce on the order of n? pipelining registers,
so (perhaps) A’ = 2n? for the fully pipelined multiplier. These are two extreme
points in a range of optimal multipliers: according to bound (1), and within a
constant factor. Both are based on nave multiplication, and compute n? mul per
product. High frequency is achieved through deep pipelining, and the latency
per multiplication remains proportional to n. In theory, latency can be reduced
to T, by using reduced complexity n'*¢ shallow multipliers (see [3]); yet, shallow
multipliers have so far proved bigger than nave ones, for practical values such
as n < 256.

2.3 Experimental performance measures

Consider a VLSI design with area A and clock frequency F', which computes
function f in T cycles per N-bit sample. In theory, there is another design for f
which optimally trades area A’ = 2A for cycles T' = T'/2, at constant frequency
F’ = F. The frequency F' and the AT product remain invariant in such an
optimal tradeoff. Also invariant:

— The gate density (in bop/mm?), given by D,, = c(f)/A = C(f)/AT. Here
¢(f) is the bop complexity of f per cycle, while C'(f) is the bop complexity
per sample.

— The compute density (in bop/smm?) is ¢(f)F/A = FD,y,.

Note that trading area for time at constant gate and compute density is equiv-
alent to keeping I’ and AT invariant.

Let us examine how various architectures trade size for performance, in prac-
tice. The data from [14] tabulates the area, frequency, and feature size, for
a representative collection of chips from the previous decade: sSRAM, DRAM,
mPROC, FPGA, MUL.

The normalized area A/\? provides a performance measure that is indepen-
dent of the specific feature size \. It leads [14] to a quantitative assessment, of
the gate density for the various chips, fig. 6 and 7.

Unlike [14], we also normalize clock frequency: the product by the operation
density is the normalized compute power. To define the normalized the system
clock frequency ¢, we follow [9] and use ¢ = 1/1007()\), where 7()\) is the minimal
inverter delay corresponding to feature size .

— The non linear formula used for 7((I) = ¢I° is taken from [9]: the exponent
e = 1—¢(1) decreases from 1 to 0.9 as [shrinks from 0.3 to 0.03 zm. The non
linear effect is not yet apparent in the reported data. It will become more
significant with finer feature sizes, and clock frequency will cease to increase
some time before the shrink itself stops.

— The factor 100 leads to normalized clock frequencies whose average value is

0.2 for DRAM, 0.9 for SRAM, 2 for processors and 2 for FPGA.

In the absence of architectural improvement, the normalized gate and compute
density of the same function on two different feature size silicon implementations
should be the same, and this indicates an optimal shrink.

s Hzff s bIMIZ u p/MY2

=
SRAM dRAM 5
< > < » O
n
10000, AN Y
.... L) °
LY N * . e See
1000]38 st e T
00 aa % . L .
% A) A))
N o o? N A N

Feature size: um.

Fig. 6. Performance of various SRAM and DRAM chips, within to a common feature
size technology: normalized clock frequency Hz/¢; bit density per normalized area
10°)\?; binary gate operations per normalized area per normalized clock period 1/¢.

— The normalized performance figures for SRAM chips in fig. 6 are all within
range: from one half to twice the average value.

— The normalized bit density for DRAM chips in the data set is 4.5 times
that of SRAM. Observe in fig. 6 that it has increased over the past decade,
as the result of improvements in the architecture of the memory cell (trench
capacitors). The average normalized speed of DRAM is 4.5 times slower than
SRAM. As a consequence the average normalized compute density of SRAM
equals that of DRAM. The situation is different with SDRAM (last entry in
fig. 6): with the storage density of DRAM and nearly the speed of SRAM, the
normalized compute density of SDRAM is 4 times that of either: a genuine
improvement in memory architecture.

A Field Programmable Gate Array FPGA is a mesh made of programmable
gates and interconnect [17]. The specific function - Boolean or register - of each
gate in the mesh, and the interconnection between the gates, is coded in some
binary bitstream, specific to function f, which must first be downloaded into
the configuration memory of the device. At the end of configuration, the FPGA
switches to user mode: it then computes function f, by operating just as any
regular ASIC would.

The comparative normalized performance figures for various recent micro-
processors and FPGA is found in fig. 7.

— Microprocessors in the survey appear to have maintained their normalized
compute density, by trading lower normalized operation density, for a higher

* b/MmIZ Hz/f x bop /Mt

100 a mumI2 = bop/MI s mulmt2
| L}
° * ° * *
¢ o
107 b * -~ * x x+ 1
L] a o i L] * é X
> A m @
1 2 I LI g 8 @
- § % a & =) a g 8 &
hY = a X a
01, 1, . .
N o w . .

° Q?) Q<? Q’\b‘b um v v Q«b e

microprocessors FPGA

Fig. 7. Performance of various microprocessor and FPGA chips from [14], within a
common feature size technology: normalized clock frequency Hz/¢; normalized bit
density; normalized gate and compute density: for Boolean operations, additions and
multiplication’s.

normalized clock frequency, as feature size has shrunk. Only the micropro-
cessors with a built-in multiplier have kept the normalized compute density
constant. If we exclude multipliers, the normalized compute density of mi-
croprocessors has actually decreased through the sample data.

— FPGA have stayed much closer to the model, and normalized performances
do not appear to have changed significantly over the survey (rightmost entry
excluded).

3 Reconfigurable Systems

A Reconfigurable System RS is a standard sequential processor (the host) tightly
coupled to a Programmable Active Memory PAM, through a high bandwidth link.
The PAM is a reconfigurable processor, based on FPGA and SRAM. Through
software configuration, the PAM emulate any specific custom hardware, within
size and speed limits. The host can write into, and read data from the PAM, as
with any memory. Unlike conventional RAM, the PAM processes data between
write and read cycles: it an active memory. The specific processing is determined
by the contents of its configuration memory. The content of configuration mem-
ory can be updated by the host, in a matter of milliseconds: it is programmable.

RS combine the flexibility of software programming to the performance level
of application specific integrated circuits ASIC. As a point in case, consider the
system P1 described in [13]. From the abstract of that paper:

We exhibit a dozen applications where PAM technology proves supe-
rior, both in performance and cost, to every other existing technology,
including supercomputers, massively parallel machines, and conventional
custom hardware.

The fields covered include computer arithmetics, cryptography, error
correction, image analysis, stereo vision, video compression, sound syn-
thesis, neural networks, high-energy physics, thermodynamics, biology
and astronomy.

At comparable cost, the computing power virtually available in a
PAM exceeds that of conventional processors by a factor 10 to 1000,
depending on the specific application, in 1992.

RS P1 is built from chips available in 92 - SRAM, FPGA and processor. Six long
technology years later, it still holds at least 4 significant absolute speed records.
In theory, it is a straightforward matter to port these applications on a state
of the art RS, and enjoy the performance gain from the shrink. In the practical
state of our CAD tools, porting the highly optimized P1 designs on oher systems
would require time and skills. On the other hand, it is straightforward to estimate
the performance without doing the actual hardware implementation. We use the
Reconfigurable System P2 [16] - built in 97 - to conceptually implement, the
same applications as P1, and compare. The P2 system has 1/4 the physical size
and chip count of P1. Both have roughly the same logical size (4k CLB), so the
applications can be transferred without any redesign. The clock frequency is 66
MHz on P2, and 25MHz on P1 (and 33MHz for RSA). So, the applications will
run at least twice faster on P2 than on P1. Of course, if we compare equal size
and cost systems, we have to match P1 against 4P2, and the compute power has
been multiplied by at least 8. This is expected by the theory, as the feature size
of chips in P1 is twice that of chips in P2.

What has been done [20] is to port and run on recent fast processors, the
software version for some of the original P1 applications. That provides us with
a technology update on the respective compute power of RS and processors.

3.1 3D Heat Equation

The fastest reported software for to solving the Heat Equation on a supercom-
puter, is presented in [6]. It is based on the finite differences method. The Heat
Equation can be solved more efficiently on specific hardware structures [7]:

— Start from an initial state - at time fAf - of the discrete temperatures in a
discrete 3D domain, all stored in RAM.

— Move to the next state - at time (t + 1)At - by traversing the RAM three
times, along the x, y and z axis.

— On each traversal, the data from the RAM feeds a pipeline of averaging
operators, and the output of the pipeline is stored back in RAM.

Each averaging operator computes the average value (a;+a;y1)/2 of two consec-
utive samples a; and a;41. In order to be able to reduce the precision of internal

h3x[3] /\ y[3]

.
y[2]
-
y[1]
+
hx[0] h2x[0] y[0]
G <; | |
(-] w w
' [+ h2x 190 [+ hax[190 |+
<D §D

lr[O] lr[l] LF[Z] lr[3]

yl-]
y'l

-l

M
R

+
u

Fig. 8. Schematics of a hardware pipeline for solving the Heat equation. It is drawn
with a pipeline depth of 4, and bit width of 4, plus 2 bits for randomized round off.
The actual 1 pipeline is 256 deep, and 16+2 wide. Pipelining registers, which allow the
network to operate at maximum clock frequency, are not indicated here. Neither is the

random bit generator.

temperatures down to 16 bits, it is necessary, when division by two is odd, to
distribute that low-order bit randomly between the sample and its neighbor. All
deterministic round-off schemes lead to parasitic effects that can significantly
perturb the result. The pseudo-randomness is generated by a 64-bit linear feed-
back shift-register LFSR. The resulting pipeline is shown in fig. 8. Instead of
being shifted, the least significant sum bit is either delayed or not, based on a
random choice in the LFSR.

P1 standing design can accurately simulate the evolution of temperature
over time in a 3D volume, mapped on 5122 discrete points, with arbitrary power
source distributions on the boundaries. In order to reproduce that computation
in real time, it takes a 40,000 MIPS equivalent processing power: 40 G instruc-
tions per second, on 32b data. This is out of the reach of microprocessors, at
least until 2001.

3.2 High Energy Physics

The Transition Radiation Tracker TRT is part in a suite of benchmarks proposed
by CERN [12]. The goal is to measure the performance of various computer archi-
tectures in order to build the electronics required for the Large Hadron Collider
LHC, soon after the turn of the millennium. Both benchmarks are challenging,
and well documented for a wide variety of processing technologies, including
some of the fastest current computers, DSP-based multiprocessors, systolic ar-
rays, massively parallel arrays, Reconfigurable Systems, and full custom ASIC
based solutions.

The TRT problem is to find straight lines (particle trajectories) in a noisy
digital black and white image. The rate of images is at 100 kHz; the implied 10
rate close to 200 MB/s, and the low latency requirement (2 images) preclude
any implementation solution other specialized hardware, as shown by [12].

The P1 implementation of the TRT is based on the Fast Hough Transform
[10], an algorithm whose hardware implementation trades computation for wiring
complexity. To reproduce the P1 performance reported in [12], a 64-bit sequential
processor needs to run at over 1.2 GHz. That is about the amount of compu-
tation one gets, in 1998, with a dual processor, 64-bit machine, at 600 MHz.
The required external bandwidth (up to 300 MB/s) is what still keeps such
application out of current microprocessor reach.

3.3 RSA cryptography

The P1 design for RSA cryptography combines a number of algorithm tech-
niques, presented in [8]. For 512-bit keys, it delivers a decryption rate in excess
of 300 kb/s, although it uses only half the logical resources available in P1.
The implementation takes advantage of hardware reconfiguration in many
ways: a rather different design is used for RSA encryption and decryption; a
different hardware modular multiplier is generated for each different prime mod-
ulus: the coeflicients of the binary representation of each modulus is hardwired

into the logical equations of the design. None of these techniques is readily appli-
cable to ASIC implementations, where the same chip must do both encryption
and decryption, for all keys.

As of printing time, this design still holds the acknowledged shortest time
per block of RSA, all digital species included. It is surprising that it has held
five years against other RSA hardware. According to [20], the record will go
to a (soon to be announced) Alpha processor (one 64b multiply per cycle, at
750MHz) running (a modified version of) the original software version in [8]. We
expect the record to be claimed back in the future by a P2 RSA design; yet,
the speedup between P1 was 10x reported in 92, and we estimate that it should
be only be 6x on 2P2, in 97. The reason: the fully pipelined multiplier, found
in recent processors, is fully utilized by RSA software. A normalized measure of
the impact of multiplier on theoretical performance can be observed in fig. 7.

For the Heat Equation, the actual performance ratio between P1 and the
fastest processor (64b, 250MHz) was 100x in 92; with 4P2 against the 64b,
750MHz processor, the ratio should be over 200x in 98. Indeed, the computation
in fig. 8 combines 16 b add and shift, with Boolean operations on three low order
bits: software is not efficient, and the multiplier is not used.

4 What will Digital Systems shrink to?

Consider a DS whose function and real time frequency remain fixed, once and
for all. Examples: digital watch, 56%kb/s modem and GPS.

How does such DS shrink with feature size?

To answer, start from the first chip (feature size 1) which computes function
f: area A, time T, and clock frequency F. Move in time, and shrink feature
size to 1/2. The design now has area A’ = A/4, and the clock frequency doubles
F' = 2F (F' = (2—¢) F with non-linear shrink). The number of cycles per sample
remains the same: 77 = T'. The new design has twice (or 2 — €) the required real
time bandwidth: we can (in theory) further fold space in time: produce a design
C" for computing f within area A” = A'/2 = A/8 and T" = 2T cycles, still
at frequency F'' = F’ = 2F. The size of any fixed real time DS shrinks very
fast with technology, indeed. At the end of that road, after so many hardware
shrinks, the DS gets implemented in software.

On the other hand, microprocessors, memories and FPGA actually grow in
area, as feature size shrinks. So far, such commodity products have each aimed
at delivering ever more compute power, on one single chip. Indeed, if you look
inside some recent digital device, chances are that you will see mostly three
types of chips: RAM, processor and FPGA. While a specific DS shrinks with
feature size, a general purpose DS gains performance through the shrink, ideally
at constant normalized density.

4.1 System on a chip

There are compelling reasons for wanting a Digital System to fit on a single chip.
Cost per system is one. Performance is another:

— Off-chip communication is expensive, in area, latency and power. The band-
width available across some on-chip boundary is orders of magnitude that
across the corresponding off-chip boundary.

— If one quadruples the area of a square, the perimeter just doubles. As a
consequence, when feature size shrinks by 1/x, the internal communication
bandwidth grows faster than the external I0 bandwidth: 3~ ¢ against z2~°.
This is true as long as silicon technology remains planar: transistors within
a chip, and chips within a printed circuit board, must all layed out side by
side (not on top of each other).

4.2 Ready to Shrink Architecture

So far, normalized performance density has been maintained, through the suc-
cessive generations of chip architecture.

Can this be sustained in future shrinks?

A dominant consideration is to keep up the system clock frequency F'. The
formula for the normalized clock frequency 1/¢ = 1007()\) implies that each
combinatorial sub-circuit within the chip must have delay less than 100x that of
a minimal size inverter. The depth of combinatorial gates that may be traversed
along any path between two registers is limited. The length of combinatorial
paths is limited by wire delays. It follows that only finitely many combinatorial
structures can operate at normalized clock frequency ¢. There is a limit to the
number NV of IO bits to any combinatorial structure which can operate at such a
high frequency. In particular, this applies to combinatorial adders (say N < 256),
multipliers (say N < 64) and memories.

4.3 Reconfigurable Memory

The use of fast SRAM with small block size is common in microprocessors:
for registers, data and instruction caches. Large and fast current memories are
made of many small monolithic blocks. A recent SDRAM is described in [15]:
1GD stored as 32 combinatorial blocks of 32Mb each. A 1.6 G B/s bandwidth is
obtained: data is 64b wide at 200MHz.

By the argument from the preceding section, a large N bit memory must
be broken into N/B combinatorial blocks of size B, in order to operate at nor-
malized clock frequency F' = ¢. A N bit memory with minimum latency may
be constructed, through recursive decomposition into 4 quad memories, each of
size N/4 - layed out within one quarter of the chip. The decomposition stops
for N = B, when a block of combinatorial RAM is used. The access latency is
proportional to the depth log(N/B) of the hierarchical decomposition.

A Reconfigurable Memory RM is an array of high speed dense combinatorial
memory blocks. The blocks are connected through a reconfigurable pipelined

wiring structure. As with FPGA, the RM has a configuration mode, during
which the configuration part of the RM is loaded. In user mode, the RM is some
group of memories, whose specific interconnect and block decomposition is coded
by the configuration. One can trade data width for address depth, from 1 x NV
to N/B x B in the extreme cases.

A natural way to design a RM is to imbed blocks of SRAM within a FPGA
structure. In CHESS [19], the atomic SRAM block has size 8 x 256. The SRAM
blocks form a regular pitch matrix within the logic, and it occupies about 30%
of the area. As a consequence, the storage density of CHESS is over 1/3 that
of a monolithic SRAM. This is comparable to the storage density of current
microprocessors; it is much higher than the storage density of FPGA, which rely
(so far) on off-chip memories.

After configuration, the FPGA is a large array of small SRAM: each is used
as LUT - typically LUT4. Yet, most of the configuration memory itself is not ac-
cessible as a computational resource by the application. In most current FPGA,
the process of downloading the configuration is serial, and it writes the entire
configuration memory. In a 0.5x shrink, the download time doubles: 4x bits at
(2-e)x the frequency. As a consequence, the download takes about 20 ms on P1,
and 40 ms on P2.

A more efficient alternative is found in the X6k [17] and CHESS: in config-
uration mode, configuration memory is viewed as a single SRAM by the host
system. This allows for faster complete download. An important feature is the
ability to randomly access the elements of the configuration memory. For the
RSA design, this allows for very fast partial reconfigurations: as we change the
value of the 512b key which is hardwired into the logical equations, only few of
the configuration bits have to updated. Configuration memory can also be used
as a general-purpose communication channel between the host and the applica-
tion.

4.4 Reconfigurable Arithmetic Array

The normalized gate density of current FPGA is over 10x that of processors,
both for Boolean operations and additions - fig. 7. This is no longer true for
the multiply density, where common FPGA barely meets the multiply density
of processors which recently integrate one (or more) pipelined floating point
multiplier.

The arithmetical density of RS can be raised: MATRIX [DeHon], which is
an array of 8b ALU, with Reconfigurable Interconnect, does better than FPGA.
CHESS is based on 4b ALU, which are packed as the white squares in a chess-
board. Tt follows that CHESS has an arithmetic density which is near 1/3 that of
custom multipliers. The synchronous registers in CHESS are 4b wide, and they
are found both within ALU and routing network, to as to facilitate high speed
systematic pipelining.

Another feature of CHESS [19], is that each black square in the chessboard
may be used either as a switchbox, or as a memory, based on a local configuration
bit. As a switchbox, it operates on 4b nibbles, which are all routed together. In

memory mode, it may implement various specialized memories, such as a depth
8 shift register, in place of eight 4b wide synchronous registers. In memory mode,
it can also be used as a 4b in, 4b out 4LUT'4. This feature provides CHESS with
a LUT4 density which is as high as for any FPGA.

4.5 Hardware or Software?

In order to implement digital function Y = f(X), start from a specification by a
program in some high level language. Some work is usually required to have the
code match the digital specification, bit per bit - high level languages provide
little support for funny bit formats and operations beneath the word size.

Once done, compile and unwind this code so as to obtain the run-code Cf. It
is the sequence of machine instructions, which a sequential processor executes,
in order to compute output sample Y; from input sample X;. This computation
is to be repeated indefinitely, for consecutive samples: {=0, 1, For the sake of
simplicity, assume the run-code to be straight-line: each instruction is executed
once in sequence, regardless of individual data values; there is no conditional
branch. In theory, the run-code should be one of minimal length, among all pos-
sible for function f, within some given instruction set. Operations are performed
in sequence through the Arithmetic and Logic Unit ALU of the processor. Inter-
nal memory is used to feed the ALU, and provide (memory-mapped) external
10. For W the data width of the processor, the complexity of so computing f
is W|C¥| bop per sample. It is greater than the gate complexity G(f). Equality
|Cs| = G(f)/W only happens in ideal cases. In practice, the ratio between the
two can be kept close to one, at least for straight-line code.

The execution of run-code Cf on a processor chip at frequency F' computes
function f at the rate of F)/C samples per second, with C = |C|. The feasibility
of a software implementation of the DS on that processor depends on the real
time requirement Fj, - in samples per second.

1. If F/C > Fj,, the DS can be implemented on the sequential processor at
hand, through straightforward software.
2. If F/C < Fj,, one needs a more parallel implementation of the digital system.

In case 1, the full computing power - WF in bop/s - of the processor is only used
when F/C = F;,. When that is not the case, say F/C > 2F;,, one can attempt
to trade time for area, by reducing the data width to W/2, while increasing
the code length to 2C': each operation on W bits is replaced by two operations
on W/2 bits, performed in sequence. The invariant is the product CW, which
gives the complexity of f in bop per sample. One can thus find the smallest
processor on which some sequential code for f can be executed within the real
time specification. The end of that road is reached for W = 1: a single bit wide
sequential processor, whose run-code has length proportionnal to G(f).

In case 2, and when one is not far away from meeting the real time require-
ment - say F//C < 8F, - it is advised to check if code C' could be further reduced,
or moved to a wider and faster processor (either existing or soon to come when

the feature size shrinks again). Failing that software solution, one has to find a
hardware one. A common case mandating a hardware implementation, is when
F =~ Fj,: the real time external 10 frequency Fj, is near the internal clock
frequency F' of the chip.

4.6 Dynamic Reconfiguration

We have seen how to fold time in space: from a small design into a larger one,
with more performance. The inverse operation, which folds space in time, is not
always possible: how to fold any bit serial circuit (such as the adder from fig 5)
into a half-size and half-rate structure is not obvious. Known solutions involve
dynamic reconfiguration.

Suppose that function f may be computed on some RS of size 24, at twice
the real-time frequency F' = 2F;,. We need to compute f on a RS of size A at
frequency Fj, per sample. One technique, which is commonly used in [13], works
when Y = f(X) = g(h(X)), and both g and h fit within size A.

1. Change the RS configuration to design h.

2. Process N input samples X; store each output sample Z = h(X) in an
external buffer.

3. Change the RS configuration to design g.

4. Process the N samples Z from the buffer, and produce the final output
Y =g(Z).

5. Go to 1, and process the next batch of N samples.

Reconfiguration takes time R/F’, and the time to process N samples is 2(/N +
R)/F = (N + R)/Fj,. The frequency per sample Fj,/(1 + R/N) gets close to
real-time Fj,, as N gets large. Buffer size and latency are also proportional to N,
and this form of dynamic reconfiguration may only happen at a low frequency.

The opposite situation is found in the ALU of a sequential processor: the op-
eration may change on every cycle. The same holds in dynamically programmable
systems, such as arrays of processors and DPGA [14]. With such a system, one
can reduce by half the number of processors for computing f, by having each
execute twice more code. Note that this is a more efficient way to fold space
in time than previously: no external memory is required, and the latency is not
significantly affected.

The ALU in CHESS is also dynamically programmable. Although no special-
ized memory is provided for storing instructions (unlike DPGA), it is possible
to build specialized dynamically programmed sequential processors, within the
otherwise statically configured CHESS array. Through this feature, one can mod-
ulate the amount of parallelism in the implementation of a function f, in the
range between serial hardware and sequential software, which is not accessible
without dynamic reconfiguration.

5 Conclusion

We expect it to be possible to build Reconfigurable Systems of arbitrary size,
which are fit to shrink: they can exploit all the available silicon, with a high

normalized density for storage, arithmetic and Boolean operations, and operate
at high normalized clock frequency.

For how long will the market demands for operations keep-up with the supply
which such RS promise?

Can the productivity in mapping applications to massively parallel custom
hardware be raised at the pace set by technology?

Let us take the conclusion from Carver Mead [9]:

There is far more potential in a square centimeter of silicon than we
have developed the paradigms to use.

References

1. C. E. Shannon, W. Weaver, The Mathematical Theory of Communication, Univer-
sity of Illinois Press, Urbana, 1949.

2. C. Mead, L. Conway Introduction to VLSI systems, Addison Wesley, 1980.

3. F.P. Preparata and J. Vuillemin. Area-time optimal VLSI networks for computing
integer multiplication and Discrete Fourier Transform, Proceedings of .C.A.L.P
(Springer-Verlag), Haifa, Israel, Jul. 1981.

4. J. Vuillemin, A combinatorial limit to the computing power of VLSI circuits, IEEE
Transactions on Computers, C-32:3:294-300, 1983.

5. 1. Wegener The Complexity of Boolean Functions, John Wiley & sons, 1987.

6. O. A. McBryan, P. O. Frederickson, J. Linden, A. Schiiller, K. Solchenbach, K.
Stiiben, C-A. Thole and U. Trottenberg, “Multigrid methods on parallel computers—
a survey of recent developments”, Impact of Computing in Science and Engineering,
vol. 3(1), pp. 1-75, Academic Press, 1991.

7. J. Vuillemin. Contribution a la résolution numérique des équations de Laplace et
de la chaleur, Mathematical Modelling and Numerical Analysis, AFCET, Gauthier-
Villars, RAIRO, 27:5:591-611, 1993.

8. M. Shand and J. Vuillemin. Fast implementation of RSA cryptography, 11-th IEEE
Symposium on Computer Arithmetic, Windsor, Ontario, Canada, 1993.

9. C. Mead, Scaling of MOS Technology to Submicrometre Feature Sizes, Journal of
VLSI Signal Processing, V 8, N 1, pp. 9-26, 1994.

10. J.Vuillemin. Fast linear Hough transform, The International Conference on
Application-Specific Array Processors, IEEE press, 1-9, 1994.

11. J. Vuillemin. On circuits and numbers, IEEE Trans. on Computers, 43:8:868-79,
1994.

12. L. Moll, J. Vuillemin, P. Boucard and L. Lundheim, Real-time High-Energy Physics
Applications on DECPeRLe-1 Programmable Active Memory, Journal of VLSI Signal
Processing, Vol 12, pp. 21-33, 1996.

13. J. Vuillemin, P. Bertin , D. Roncin, M. Shand, H. Touati, P. Boucard Programmable
Active Memories: the Coming of Age, IEEE Trans. on VLSI, Vol. 4, NO. 1, pp. 56-69,
1996.

14. A. DeHon Reconfigurable Architectures for General-Purpose Computing, MI'T, Ar-
tificial Intelligence Laboratory, Al Technical Report No. 1586, 1996.

15. N. Sakashita & al., A 1.6-GB/s Data-Rate 1-Gb Synchronous DRAM with Hi-
erarchical Square-Shaped Memory Block and Distributed Bank Architecture, IEEE
Journal of Solid-state Circuits, vol. 31, No 11, pp 1645-54, 1996.

16. M. Shand, Pamette, a Reconfigurable System for the PCI Bus, 1998.
http://www.research.digital.com/SRC/pamette/

17. Xilinx, Inc., The Programmable Gate Array Data Book, Xilinx, 2100 Logic Drive,
San Jose, CA 95124 USA, 1998.

18. G. Moore. An Update on Moore’s Law, 1998,
http://www.intel.com/pressroom/archive/speeches/gem93097.htm

19. Alan Marshall, Tony Stansfield, Jean Vuillemin CHESS: a Dynamically Pro-
grammable Arithmetic Array for Multimedia Processing, Hewlett Packard Labora-
tories, Bristol, 1998.

20. M. Shand. An Update on RSA software performance, private communication, 1998.

21. The millenium bug: how much did it really cost?, your newspaper, 2001.

