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Abstract. A digital function maps sequences of binary inputs, into se-
quences of binary outputs. It is causal when the output at cycle ~ is a
boolean function of the input, from cycles 0 through .

A causal digital function f is characterized by its truth table, an infinite
sequence of bits (Fy) which gathers all outputs for all inputs. It is iden-
tified to the power series Y . Fn2", with coefficients in the two elements
field F.

Theorem 1. A digital function can be computed by a finite digital syn-
chronous circuit, if and only if it is causal, and its truth table is an
algebraic number over Fs[z], the field of polynomial fractions (mod 2).

A data structure, recursive sampling, is introduced to provide a canoni-
cal representation, for each finite causal function f. It can be mapped,
through finite algorithms, into a circuit SDD( f), an automaton SBA(f),
and a polynomial poly(f); each is characteristic of f. One can thus auto-
matically synthesize a canonical circuit, or software code, for computing
any finite causal function f, presented in some effective form. Through
recursive sampling, one can verify, in finite time, the validity of any hard-
ware circuit or software program for computing f.

1 Physical Deterministic Digital System

Consider a discrete time digital system: at cach integer cycle ~t, the system
receives input bits zy € B = {0, 1}, and emits output bits y € B. The function
f of this system, is to map infinite sequences of input bits * = (zy), into
infinite scquences of output bits y = f(x) = (yn). Call digital such a function
f €D — D, where D = N — B is the set of infinite binary scquences. Our
aim is to characterize which functions can be computed by deterministic digital
physical systems, such as electronic circuits, and which cannot.

To simplify, we exclude analog [1], and asynchronous systems. As long as the
function of such ezotic systems remains deterministic, and digital, an equivalent
system may be implemented through a digital synchronous clectronic chip. The

! Throughout this text, reserve the letter n to range over the natural numbers: n € N.



concept of Digital Synchronous Circuit DSC, provides a mathematical model
for the form and function of this class of physical systems.

Established techniques exist to map finite DSC descriptions, into silicon
chips [2]. With reconfigurable systems [3], the process can be fully automated:
from a finite DSC representation for mathematically computing f, compile a
binary configuration, and download into somec programmable device, in order
to physically compute f. Without further argument, admit here that the class
of functions defined by finite DSC captures the proper mathematical concept,
from the motivation question. No regard is given to size limitations, arising from
technology, economics, or else.

— Physical circuits are constrained by time causality: output y(t) at time £ may
only depend upon inputs z(t'), from the past t' < t.
— From their physical nature, clectronic circuits must be finite.

Causality and finiteness are thus necessary conditions, for digital functions
to be computable by deterministic physical devices. We show that they are suf-
ficient, and characterize finite causal functions, in a constructive way.

1.1 Infinite SDD Procedure

A first answer to the motivating question is provided in [4], through an infinite
coustruction, the Synchronous Decision Diagrams SDD.

Theorem 2 (Vuillemin [4]).

1. To any causal function f, one can associate a canonical circuit SDD(f) € DSC for
computing f.

2. Circuit SDD(f) is finite, if and only if function f is computable by some
finite system.

Yet, the infinite SDD construction, relies on the ability to test for equality g = b
between digital functions g, h. This operation is not computable in general, even
when ¢ and h are both computable. Also, the definition of “finiteness” is not
made explicit in Theorem 2, and the input to the "procedure” is ill-specified.

Such limitations are partly removed, by Berry [5] and Winkeliman [6]: both
basc implementations of the SDD procedure, on representing digital functions
by a Finite State Machines FSM.

2 Binary Algebra

Infinite binary sequences D = N — B have a rich mathematical structure. A
digital sequence a € D codes, in a unique way: the set {a} = {~ : any = 1} of
integers; the formal power series a(z) = 3 anz™; the 2-adic "integer” a(2) =
YoanzN: D = p(N) = Fa(z) = Zy. We identify all representations, and write
(sce [4]), for example:

(01) = {1 +2n} = % =2/(1+2%).



Binary Algebra imports all underlying operations, into a single structure:
<D,“,U,Q,Z,Z_,EB,®,+,—, xaTal> .

(D, —,U,N} is a Boolean Algebra, isomorphic to sets p(IN) of integers;
(D, z,®,®) is a ring, isomorphic to the formal power serics Fao(2);

(D,0,1,4, —, x) is a ring, isomorphic to the 2-adic integers Zs.

The up-sampling operator is noted T 2 = 2(2?) = r ® 2. The down-sampling
operator is noted | # =| (xn) = (x2n). Sce the related Noble identities, in the
appendix.

In addition to the axiomatic relations implied by each of the three structures
in D, hybrid relations exist between the operators in Binary Algebra. Some
are listed in the appendix. There are more: indeed, each arithmetical circuit
implements some hybrid relation [4]. For example, base -2 coding, is defined by

Z 2k = Z yr(=2)F  (mod 2M). (1)

k<N k<N

1.
2.
3.

Tt is also known as Booth coding y = booth(x), Polish code (in [7]), and may be
computed by the hybrid formula:

booth(z) = (01) @ (x + (01)).
The infinite Binary Algebra D = Zs, contains noteworthy sub-structures:
FoCBYCNCZCP2CPCAyCZyCZo.

Here: BY arc the finite sequences, P the ultimately periodic scquences, P2 those
of period length 2N, A5 the 2-algebraic (definition 6), and Zo the computable 2-
adic integers. The appendix lists the closure properties of these sets, with respect
to Binary Algebra opcerations.

3 Causal Function

Let ||z]] € Q denote the 2-adic norm of € D: ||0]| = 0, |1 + zz|| = 1, and
llzx]| = ||z||/2. The distance ||a — b||, between digital sequences a,b € D, is
ultra-metric: ||a + b|| < max{||a||, |b]|}. Note that: ||a —b|| = ||a ® b||.

Definition 1. A digital function is causal, when the following (equivalent state-
ments) hold:
1. Ya,beD: ||f(a) = f(b)]] < |a—Db].
9. Each output bit is a Boolean function fn € BN s B, which exclusively
depends on the first m + 1 bits of input:

Un = [u(ToT1 - Tno178) = (7)),

y=(yn) = f(z) = (Inl()) = 22 fu(m) 2™,

The operators =,N, U, ®, 2,8,@,T,+, —, X,/ are causal. The antiflop z= (de-
fined by yn = Tn+1), and down-sampling | are not causal. We simply say causal
f, when f is a causal digital function, with a single input z, and a single output
y = f(x); otherwise, we explicitly state the number of inputs, and outputs.



3.1 Truth Table

Definition 2. The truth table of a causal function f(z) = (fn(x)), combines
the tables for each Boolean function fn € BNT' — B, into a unique digital
sequence truth(f) = F = (Fy) € D, defined by

FN - fm(bO bl T 'bmfl bm);
here: m = |loga(n+2)| — 1, and 37, b2k = n 42— 271,

Proposition 1. The truth table F' = truth(f) € D is a onc-to-onc digital code,
for each causal function f = truth” (F) € D — D.

truth(—f) = —~truth(f),

)
L. truth( f = truth(f) U truth(g),
Proposition 2. For causal f and g: f’r'm‘hE g _ tmf,hg gﬂ frm‘hggg
)= f)-

truth(zf) = 14 2 T z truth(f

DC

3.2 Automatic Sequence

Although it is traditionally associated to a finite causal f, which is explicitly
presented by a finite state automaton, the definition of an automatic sequence
[9], may be extended to all causal functions, finite and infinite.

Definition 3. The automatic sequence auto(f) = (an) € D, is associated to
the causal function f, by:

an = fm(bO bl T bm—l bm);
where m =0 if n =0, else m = [loga(n) |, and =737, b2k,

In general, the value y = (yn) = f(z) of causal f, at * = (zy), cannot be
reconstructed, from its automatic sequence auto(f). Indeed, consider the causal:
firstbit(x) = xN1, and zerotest(r) = =2~ (—r@a). Both have the same automatic
number: auto(firstbit) = auto(zerotest) = 1(0). While truth(firstbit) = 1, we
have T = truth(zerotest) = 101000100000001000000000000000100 - - - # 1.

Proposition 3. Let f be causal. The derived causal functions, g(x) = f(—z—x)
and h(z) = zf(z~x), are such that:

auto(f) = truth(g),
truth(f) = 2~ 2auto(h).

3.3 Time Reversal

Definition 4. The time reversed function f, is defined by

=l m0)2",

where the causal function f is given (definition 1) by:

=Y fulzo--an)2



The reversed truth table truth(f) = (F5), is related to truth(f) = (Fy) through:

N=(0124356108127119131422---).

Let prefix(f) = {7 °f(a + 2°z) : a,b € N,a < 2°}, and suffix(f) = prefix(f).

Proposition 4. The class of causal functions is closed under composition, pre-
fix, suffiz, and time reversal operations.

Fig. 1. Sequential Decision Tree, for the truth table (F).

4 Universal Causal Machines

4.1 Sequential Decision Tree

Definition 5. The Scquential Decision Tree sdt(f), for computing causal f, is
a complete infinite binary tree - fig. 1. A digital input x € D, specifies a unique
path through the tree: start at the root, for cycle 0; at cycle w, move down, to the
left if x5y = 0, Tight otherwise. Arcs in the tree are labeled, in hierarchical order,
by bits from the time reversed truth(f). Output y = f(x), is the digital sequence
of arc labels, along the path specified by input x.

4.2 Sequential Multiplexer

A Digital Synchronous circuit DSC is obtained, by composing primitive com-
ponents: the register reg, and Boolean (combinational, memoryless) operators.
There is a restriction on composition: all combinational paths, through a chain
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Fig. 2. Sequential multiplexer, for the truth table (Fi).

of Boolean operators, must be finite. This implics that cach feedback loop must
contain, at least onc memory clement reg (positive feedback).

The opcerators (regg, reg;, mux) scrve as a base, for the SDD procedure: reg-
isters regy () = reg(x) = zx = 2z, reg,(r) = —z—x = 1 + 2z, and multiplexer
mux(c,b,a) = (¢cNb)+ (-cNa)=cN(b®a)da

The sequential multiplezer SM(f), from [4], is shown in fig. 2. The registers
in SM(f), are labeled, 0 for reg, and 1 for reg;, by truth(f), in direct order.

4.3 Share Common Expressions

The next step, in the infinite SDD construction [4], is to share all common
sub-expressions, which appear in the process: the result is the Sequential Deci-
sion Diagram SDD(f), for SM - see fig. 4. Similarly, for SDT, we obtain the
Sequential Binary Automaton SBA(f) - sce fig. 3.

5 Finite Causal Function

The causal functions mentioned so far may all be realized by finite circuits, and
finite state machines FSM, except for x, /, ®, @ and T, which arc infinite [4].

Definition 6. Digital sequence b is 2-algebraic, when b(z) = > by2™ is alge-
braic over Fo(z). Let Ay denote the set of 2-algebraic sequences.



T(z) = truth(zerotest) is 2-algebraic, as root of: 1 +T + 22T? =0  (mod 2).
Proposition 5. Causal f is finite, if and only if the following equivalents hold:

a f is computed by a finite circuit DSC;

b f is computed by a finite state machine FSM;
c prefir(f) is finite;

d suffix(f) is finite;

e truth(f) is 2-algebraic.

Proof: The cquivalence between (a) and (b) is well-known. The equivalence
between (b)), (¢) and (d) follows from classical automata theory [7].

The cquivalence between (d) and (e) is established, through a result in the
theory of automatic sequences. Call 2-automatic, a scquence a € D, such that
a = auto(f), for some FSM f.

Theorem 3 (Christol, Kamae, Mendés France, Rauzy [11]).
A digital sequence is 2-automatic, if and only if it is 2-algebraic.

Combine Theorem 3 with Proposition 3, to complete the proof of Proposition 5,
hence that of Theorem 1. [ ]

Proposition 6. Finite causal functions, are closed, under composition, prefiz,
suffiz, and time reversal.

Theorem 4. The class Ay, of 2-algebraic sequences, is closed under:

1. Boolean operations —,U,N, and shifts z,2";

2. carry-free polynomial operations @, R, Q;

3. up-sampling, down-sampling, and time reversal;

4. application of any finite causal function, hence 4+, —.

Proof: Boolean closure follows from Proposition 2. Polynomial manipulations
show the closure under carry-free operations: @, ®, T, and shifts. Item 3 follows
from Theorem 6. A novel construction is given, for proving item 4. It implies,
in particular, that A is closed under ordinary addition, and subtraction, with
carrics. We conjecture that As is also closed under multiplication x, and division

/- .

5.1 Transcendental Numbers

If one interprets a digital sequence = = 2(z) = x(2) in basce %, rather than 2
or z, onc gets a real number: x(1/2) € R. To cach causal f, associate the real

number real(f) = truth(f)(1/2) € R.

Theorem 5 (Loxton, van der Poorten [12]). If a(z) € Ay is 2-algebraic,
then, either a,(%) € Q is rational, or it is transcendental, in the usual sense over

Q.



As a conscquence, real(zerotest) = 1.2656860360875726 - - - is transcendental,
over Q. Similarly, for real(booth) = 0.6010761186771489 - - -.

Up-sampling y =1 x is causal, and yy = fn (70 - - - 2 ) 18 the middle bit: yon =
0, and yont+1 = #n. The middle bit sequence is the truth table M = truth(7):
M = 010000001100110000000000000000000011110000111100 - - -. No finite cir-
cuit exists, to implement up-sampling [4]. It follows, from Theorem 1, that the
middle bit series M (z) is transcendental over Fa[z]. Similarly for truth(®), and
truth(x). It is not known, if real(T) = 0.5062255860470657 - - - is transcendental
over Q, or not; similarly for real(®) and real(x).

6 Finite SDD Procedure

For f causal and finite, define size(f) as the number of states, in the minimal
FSM (sce [7]), for computing f. For F' € D, define S = sample(F), as

S={FtU(z= | SHU(z~ | 279),
where the least fixed point S € (D), is a sct of digital sequences.

Theorem 6. Each of the following (equivalent statements), provides a canoni-
cal representation for f finite causal, with size(f) =n, and F = truth(f).

1. sample(F) is finite, of size n.

2. SBA(f) is the minimal FSM for computing f, with n states.

3. SDD(f) is a finite DSC circuit, with n multiplezers, and at most 2n regis-
ters, reg, or reg.

4. F = truth(f) is the unique 2-algebraic solution, to the system quadra(f),
made of n binary quadratic equations.

This is established through an effective algorithm - recursive sampling - and data
structure. In this extented abstract, we simply present the (computer generated)
output from the procedure, for one example: Booth coding, as defined by (1),
and where size(booth) = 4.

6.1 Recursive Sampling
For f1 = truth(booth), compute sample(f1) = {f1, f2, f5, f11}:

f1=010011001111000000001111111100000000111111111111 - - -
f2=010110000111100001111111100000000000000001111111 - - -
f5=100110011110000000011111111000000001111111111111 - - -
f11 =101100001111000011111111000000000000000011111111 - - -
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Fig. 3. The automaton SBA(booth), where booth(x) = (01) @ (x + (01)).

6.2 SBA Procedure
6.3 Characteristic Circuit Polynomial

A binary quadratic equation has the form: f = a + bz + 2%¢g% + 23h%  (mod 2),
for a,b € Fg, and [, g,h € D. Truth tables in sample(booth) = {f1, f2, 5, f11}
arc rclated by the following system of binary quadratic equations:

fl=z+22(1+2)f2%

f2 =24 22f1% + 2 f5°,

5 =1+ 222 + 23 f112,
f11 =14 214 2)f5%

Through quadratic elimination, derive quad(F):

quad(booth) =a +bF +¢1? F+d1* F (mod 2),
Q=2+ 22 425 4254216 4 228 4 52
b=1+z+42%+25,
c=22 142422+ 22+ 242,
d=28014 2422+ 22+ 244

Through algebraic simplifications, obtain the irreducible characteristic polyno-
mial poly(booth), of which F' = truth(booth) = f1 is the only root:

F=z242" 42421+ 2422+ 29F (mod 2).

A decimal cxpression for poly(booth): F = 50 + 240 12 F.
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Fig. 4. The circuit SDD(booth).

6.4 SDD procedure

The circuit synthesized by the SDD procedure involves the time reversed do-
main. To keep the correspondence with Theorem 6.3, we show the circuit SDD(bE)\ogh),
in fig. 4. This circuit computes the function b();t/,h, defined through time reversal

in equation (1). For SDD(booth) = SBA(bE}BEh), one finds 15 states.

7 Feed-forward Circuit

Proposition 7 (Feed-forward circuit). The following are characteristic equiv-
alents, for finite causal f to be free of feed-back:

1. SDD(f) is acyclic;
2. F= lfzfuth(f) € P2 is ultimately periodic, with period length 2°, for b € N;
3. poly(f) =a+ (22b —1)F, for a € N.

Proposition 8 (Combinational circuit). The following are characteristic
equivalents, for finite causal f, with i inputs, to be memoryless:

1. SDD(f) contains no register;
2. size(f) = 1;
3 F = truth(f) € P2 is periodic, i.e. —1 < F(2) < 0, with period length 21"
for some integer z/’ <1 3
4. poly(f) =a+ (z2i — 1)F, for some integer a < 22" .
For Boolean functions, the SDD procedure is the same as the Binary Decision
Diagrams BDD procedure, from [13].

8 Appendix
We use 14 operators, from Binary Algebra: 5 unary operatiouns {—,z,27,1, |},

and 9 binary operations {U,®,N, ®,®,+, —, X, /}. The binary operators are
listed here in order of increasing syntactic precedence, so as to save parentheses.



— (D, (0),(1),~,U,N) is a Boolcan algcbra,
(D, (0),(1),®,N) is a Boolean ring: a =aNa, 0 =a® a (see [8]).
a ==z za,
2z a=aN—2,
—zZzTa=2z —a,
— —za =14 z—a,
27 (a®b) =2"a®z7b, for ® € {U,N, B},
2(a®b) = za ® zb, for ® € {U,N, D, +, —},
2a®@b)=2a@b=a®zb, for © € {x,®},

— (D,0,1,®,®,®) is an Integral Domain, i.e. a commutative ring without
divisor of 0. An clement a € D has a (polynomial) inverse 1 @ a, such that
a® (1@a)=a,if and only if a is odd (1 =a(0)): 1@ (1 + zb) = P (zb)N.

— (D,0,1,4, —, x) is an Integral Domaiu.

—a=—a—1,
a+b=(aUb)+ (anNb)
=(a®b)+ z(anb),
a+b=alUb=a®biffanb=0,
1/(1—20) = 3320~ = [(1 + (25)").

Ta=a(z*)=a®a,
a=1Ta,
a=Tla+zT] 2 a,
- la=]|—a,
— = Ta=(01)U 7T —a,
| 22a=2]a,
Tza=2>1a,
l(@a®@b)=1la® b for ®c {Un o},
T{(a®b)=TaO1h, for ©® € {U,nNd,R 0}

We list the known closure properties, for operators and sub-structures, in Binary
Algebra.

— FoN is closed, under {—,U,®,N, 2,1,®,@,+, —, X, /}.

— N is closed, under {U,®,N,z,27,71,|,Q, +, X}

— Z is closed, under {—,U,®,N, z, 27, |, +, —, x}.

— P2 is closed, under {—,U, ®,MN, 2,27, 1, |,Q,+, —, x}.

— Asisclosed under {—, U, @®,N, 2,27, 1, |,®, @, +, —}. The closure under carry-
free product is shown in [14]. It is shown in [15] that Ag is not closed under
multiplication X with carrics.

— P, 75 and Zs are closed, under all 14 operations.
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