
Programmable Active Memories:
a Performance Assessment

Patrice Bertin, Didier Roncin

and Jean Vuillemin

Digital Equipment Corporation

Paris Research Laboratory

85, avenue Victor-Hugo

92563 Rueil Malmaison Cedex, France

Abstract

We present some quantitative performance measurements for the comput-

ing power of Programmable Active Memories (PAM), as introduced by [2].

Based on Field Programmable Gate Array (FPGA) technology, the PAM is

a universal hardware co-processor closely coupled to a standard host com-

puter. The PAM can speed up many critical software applications running

on the host, by executing part of the computations through a speci�c hard-

ware design. The performance measurements presented are based on two

PAM architectures and ten speci�c applications, drawn from arithmetics,

algebra, geometry, physics, biology, audio and video. Each of these PAM

designs proves as fast as any reported hardware or super-computer for the

corresponding application. In cases where we could bring some genuine al-

gorithmic innovation into the design process, the PAM has proved an order

of magnitude faster than any previously existing system (see [19] and [18]).

1 PAM concept

Like any RAM memory module, a PAM is attached to the system bus of

a host computer. The processor can write into, and read from the PAM.

Being an active hardware co-processor however, the PAM processes data

between write and read instructions. The speci�c processing is determined

by the content of its con�guration memory. The host can change the PAM

con�guration by downloading a new design into it, within a few milliseconds.

We speed up a speci�c software application running on the host, by exe-

cuting its critical inner-loop through an appropriate hardware design down-

loaded into the PAM. Ten examples of such designs and applications are

presented below.

In selecting them, we have attempted to cover as many application areas

as we could. In each, we picked basic and frequent problems, where a large

inner-loop speedup through a speci�c PAM design results in a signi�cant

speedup of the application system, software and hardware combined.

For the sake of debugging, the functionality of each hardware design is

matched, bit-wise at the I/O level, by a software implementation. Through

successive re�nements, both hardware and software implementations have

been optimized for speed, while retaining the I/O behavior. This is our

experimental data in this assessment of PAM computing power.

The traditional measurement unit here is the Mips1, or its multiple the

Gips (1G = 109) which is more appropriate to the levels of performance

reported here. As explained in [9], quantitative performance comparisons

between di�erent computer architectures is a challenging art. For one, our

Mips were measured in di�erent units: for the 32b MIPS R3000 or the

64b Alpha AXP instruction sets? for which clock speed? cache size? bus

bandwidth? For second, in a number of cases we had external data for both

VLSI and super-computer implementations of systems close enough to some

of ours that we could envision to make reliable speed comparisons.

To make quantitative comparisons signi�cant across such a wide spec-

trum of feasible implementation technologies, we introduce a common unit

for measuring all forms of computing power, the Gbops (billion of binary

operations per second) where each useful boolean operation with up to 4

inputs, be it clocked or not, counts for one. For example the computing

power of a 32b adder at 100 Mhz is 6.4 Gbops, accounting for both carries

and sums. That of a n bits multiplier at 1 GHz is 2n2 Gbops. Any speci�c

computer operation can be similarly decomposed at the bit level, so we can

evaluate the corresponding power in Gbops.

2 Two PAM architectures

Our assessment is based on two PAM architectures realized at DEC's Paris

Research Lab., DECPeRLe-0 (see [2]) and DECPeRLe-1 (see [3]) which we

respectively refer to as P0 and P1 in the following.

Each PAM is built around a large array of bit-level con�gurable logic

cells (hereafter called Programmable Active Bits or PABs) in which the

application-speci�c hardware operator is programmed. This array is sur-

rounded with local RAM banks used as a cache (wide and fast enough to

match the PAM's external bandwidth), a programmable clock generator,

and some additional non-con�gurable logic to manage the host bus interface

and the download process.

1
Million of instructions per second

RAM RAM

RAM

RAM

Ext I/O Ext I/O

DATA

ADR

CNTR

VME-Bus

Dwld/Rdb

Cntr

The above �gure sketches the architecture of P0 (1988). The central com-

putational array is made of a 5� 5 matrix of Xilinx XC3020 Programmable

Gate Arrays [23]; it has two 32-bit wide RAM banks on the south and east

sides, a VME bus interface on the west side and general-purpose interface

connectors on the north side. The control and bootstrap logic is imple-

mented in two extra XC3020 (non user-programmable). Finally, additional

bus switching resources are provided for global data routing (represented

here with diamond-shape boxes).

The architecture of P1 was designed after two years of P0 usage and is

described in details in [3]. It features a 4-times-bigger central computational

matrix with accordingly wider RAM, a faster host interface, and a much

more
exible global interconnection network for data routing and switching.

For the purpose of evaluating Xilinx-based designs such as ours, it is con-

venient to de�ne the Programmable Active Bit as in [2]: a PAB consists of a

universal 4 inputs combinatorial gate and a synchronous
ip-
op. Using this

measurement unit, our two PAM architectures P0 and P1 have the following

vital statistics:

PAM part nb PABs Fmax Power RAM Host bus

(MHz) (Gbops) (MB) (MB/s)

P0 XC3020 25 3.2K 25 80 0.5 8

P1 XC3090 23 14K 40 588 4 100

This chart exhibits the three most important architectural parameters con-

ditioning which application bene�ts most from a PAM speed-up:

� The number of PABs (3.2K for P0 and 14K for P1), together with the

application-dependent maximal clock frequency (25 MHz and 40 MHz)

at which we can reliably operate. The product of these two numbers

is the maximum theoretical computing power of the PAM, expressed

in Gbops (80 Gbops for P0 and 588 Gbops for P1).

� The host bus bandwidth: 8 MB/s for P0 through a VME bus, and 100

MB/s for P1 through a TURBOchannel interface [6].

� The size of the local (fast) RAM: 0.5 MB for P0 and 4 MB for P1.

3 PAM programming

Programming an algorithm on the PAM is similar to casting it in conven-

tional hardware (gate-array or VLSI), with two very important di�erences

however: �rst the target hardware provides a completely clean implemen-

tation of the synchronous logic model, so there is no need to worry about

low-level electrical details; second the whole design process is purely software

with a fast (5 to 30 mn) turnaround, so it can be approached with the same

methodology of piecewise testing and successive re�nements as a software

design. For a given application, it involves:

1. identifying the critical computations which are best implemented in

hardware; this is usually done by successive re�nement, under con-

straints of communication bandwidth and load balancing between the

software and hardware;

2. implementing the hardware part on the PAM and gradually optimizing

it;

3. implementing the software part on the host processor and gradually

optimizing it.

Step 3 above is done with conventional techniques. Step 2 consists in de-

scribing the logic design to implement in the PAM down to the individual

bit level, as well as its geometric layout, much as is done for a conventional

VLSI design.

For this, we have developed a tool suite in which the hardware design

is described by the writing of a program in a conventional programming

language (we use Lisp, C++ [21] and Esterel [1]) using a specialized library.

This program will describe the various logic modules by their bit-level logic

equations, or by using standard library modules (adders, registers, standard

interfaces. . .). It will also contain layout (geometric) information to the

level of details the designer wishes to specify: this usually starts with global

oorplanning and detailed layout of the important datapath components

only, to be enriched with more precise descriptions along the optimization

process.

Executing this program produces a partially placed, hierarchical netlist

which can either be simulated, or compiled to the �nal PAM con�guration in

a fully automatic way, through tools developed in-house (board-level rout-

ing, logic optimization) and standard Xilinx back-end software (chip-level

placement and routing, bitstream generation).

The design can then be downloaded into the PAM for debugging and test-

ing under real conditions; its maximum running speed can be characterized,

and its critical paths identi�ed (we have developed specialized interactive

tools to help visualize the latter). The designer can then gradually optimize

it, for example by adding extra levels of pipeline to increase the clock speed,

or optimizing the geometric layout, or adding new functionalities to further

unload the software. The most important point there is that, as compiling

and trying a new version costs no money and only a few minutes to an hour

of time, it is possible to incrementally design, test and optimize the algo-

rithms and implementations involved, as is usually done with software, as

opposed to having to have them correct and optimal on the �rst try.

4 Ten PAM applications

The following applications were chosen to span a wide range of current lead-

ing edge computational challenges. In each case, we provide a brief de-

scription of the design, the names of the implementors, and a performance

comparison with similar reported work. In each case, the following simple

paradigm has been applied:

compile the inner loop in PAM hardware, and let software handle

the rest!

In what follows, we let (a�b) represent the quotient and (a �j� b) the remainder

in the integer division.

4.1 Long multiplication

As/pReg

Bs/pReg

Ss/pReg

Ps/pReg
32 32

2

2

2

2512 / 2K
x

Mul.
Slice

Mul. CntrHost Adr.

Host Data

A Reg

We have programmed both PAMs into long multipliers (n = 512 bits for

P0, and n = 2K bits for P1) computing P = A � B + S, with A a n-bits

multiplier, and B; S arbitrary size multiplicands and summands (see [10], [2]

and [19]). These multipliers are interfaced with an arbitrary-precision arith-

metic package BigNum (see [16]) so that any program based on that software

takes advantage of the PAM without modi�cation, by simply relinking with

a modi�ed BigNum library. This respectively speeds up raw multiplication

by a factor up to 24 (P0) and 30 (P1) for long operands, as compared to

optimized assembly code running on the host workstation. For example, P0
equipped with this design computes RSA encryption/decryption at 1500 bits

per second for arbitrary 512-bit keys (see [14]); this is about 10 times faster

than our best software version on the same host.

The P1 implementation produces product bits at 66 Mbits/s, which

makes it faster than any known machine for which we could obtain bench-

mark measures. It is at least 16 times faster than the best �gures for a

Cray II or a Cyber 170/750 reported by [5]. This multiplier can be used to

compute a 50 coe�cients (16-bits) polynomial convolution (FIR �lter) at 16

times audio real time (2� 24 bits samples at 48 kHz).

4.2 RSA cryptography

To further investigate the tradeo�s which are possible in our hybrid hard-

ware/software system we focused on the RSA cryptosystem (see [14]), which

can be cast entirely in terms of long multiplications. Starting from the

above general-purpose multiplier, M. Shand from DEC-PRL implemented

a series of hardware/software systems spanning two orders of magnitude in

performance. The latest version is based on an original hardware design for

computing modular products at the rate of two bits per cycle [20].

The system originally used three di�erently programmed P0 boards, all

operating in parallel with the host (see [19]). At 200 kbit/s decoding speed,

it was faster than any currently existing 512 bits RSA implementation, in

any technology, as of February 1990. A survey by [4] grants the previous

speed record for 512 bits keys RSA decryption to a VLSI from AT&T, at 19

kbits/sec.

+
X

X

S

B2

B1
M

Data In

Data Out

32

32 256

2

2

M. Shand recently ported this RSA system to a single P1 board; at 40

MHz, this design provides either two independent 600 Kb/s RSA encryption

channels for 480b keys, or one 175 Kb/s RSA encryption channel for 970b

keys.

4.3 Data compression

M. Skubiszewski from DEC-PRL has implemented a P0 design to speed

up the algorithm of [24], which is well known to achieve an average data

compression ratio varying from 2 for English (or French, or Polish. . .) plain

text to 3 for C (or Lisp, or Pascal. . .) source code.

Best Match

F1 2 15 Past
Buffer

14Kb

8

16

The design is a massively parallel method which computes 64 byte com-

parisons on each (70 ns) cycle; it matches the next 16 bytes in the �le to

be compressed against the last 4k bytes seen (stored in the local RAM),

in order to detect the longest substring previously seen. While this design

performs a respectable 1 Gops (8 bits integer comparison), it ends up in

a disappointing factor two speed-up, when compared to optimized software

such as Unix compress. Indeed, such optimized software avoids most of the

comparisons performed in the hardware, by detecting early that they are

irrelevant to the �nal output. A more elaborate hardware design is needed

to genuinely speed up this particular algorithm.

4.4 String matching

Given an alphabet A = (a1; . . . ; an), a probability (Sij)i;j=1...n of substitu-

tion of ai by aj , and a probability (Ii)i=1...n (resp. (Di)i=1...n) of insertion

(resp. deletion) of ai, one can use a classical dynamic programming algo-

rithm to compute a probability of transformation of w1 into w2; this de�nes

a distance between any two words w1 and w2 over A.

P1 P2 P3 P4 P5

30K Words Dictionary

Coefficients

D. Lavenier from IRISA (Rennes, France) has implemented this algo-

rithm with a P0 design which computes the distance between an input word

and all 30K words in a dictionary; it reports the k words found in the dictio-

nary which are closest to the input. The system processes 200K words/sec:

this is faster than a solution previously implemented at CNET using 12

Transputers; it has only half of the performance obtained by a system previ-

ously developed at IRISA, based on 28 custom VLSI chips and 2 PC boards.

Applications of this algorithm include automated mail sorting using

OCR scanners, on-the-
y keyboard spelling corrections, and DNA sequence

matching (see [11]).

4.5 Heat and Laplace equations

[22] shows how to adapt the classical �nite di�erence method (see [7]) to

compute solutions of the heat and Laplace equations in n dimensions with

help from special purpose hardware. An implementation of the method on

P1 operates with a pipe-line depth of 128 operators:

+ +
. . .

+ +

R
A
M

R
A
M

Each operator computes:

O(v0; v1) =
(
v0; when v0 �j� 2 = 1;

2(v0 � 4 + v1 � 4 + (v0 �j� 4)� 2); otherwise,
(1)

all with 24b �xed-point data format. At 20 MHz, this amounts to 5 Gops

(24b adds, tests and shifts); it is easy to show (see [22]) that �xed-point gives

the same results as
oating-point operations for this speci�c problems; the

achieved performance thus exceeds those reported in [12] and [13] for solving

the same problem with super-computers. A sequential computer needs to

execute 25 billion instructions per second (25 Gips), to reproduce the same

computation.

The heat and Laplace equations have many applications in mechanics,

circuit technology,
uid dynamics, electrostatics, optics, �nance. . .

4.6 Newton's mechanics

J. Vuillemin has speci�ed a P1 design for computing the evolution of a n-body

system, using Newton's equations. The design computes the gravitational

�eld acting on body k by summing the individual �elds induced at k by each

other body in the system. This amounts to the following 18 operations:

(xi � xk)) dx

(yi � yk)) dy

(zi � zk)) dz

(dx� dx)) dx2

(dy � dy)) dy2

(dz � dz)) dz2

(dx2 + dz2)) dxz

(dxz + dy2)) d2p
d2) d

d� d2) d3
1

d3
) fd

fd�mi) fm

fm� dx) fdx

fm� dy) fdy

fm� dz) fdz

fx+ fdx) fx

fy + fdy) fy

fz + fdz) fz

Positions and forces are represented as 20 bits
oating-point numbers. As-

suming a 40 ns internal cycle (achievable through deep pipe-line) the ex-

pected throughput exceeds 2.5 GFlops (this design has not been tested by

printing time).

x

y

z

x i

F y

F z

y i

z i

F x
d y

d z

d x

1/x

M

X

+

+

+

-

-

-

+X

X

X
X

X

X

X

4.7 Binary 2D convolution

B. Chen and J. Vuillemin have implemented a 7 � 7 binary 2D convolver

on P0, for performing erosion, dilation and matching on black and white

images, as de�ned in [15].

RAM

S
I

S
O

R R

32 32

1

Adress Generation

The convolver runs at 25 MHz, generating one pixel each 40 ns; it com-

pletes a single convolution pass over one 512� 512 image in 10 milliseconds;

this allows for up to 4 successive operations (erosion, dilation, or matching)

at video rate. Reproducing this performance through optimized software

would require a 200 Mips computer.

4.8 Boltzmann machine

M. Skubiszewski has implemented two successive versions of a hardware

emulator for binary neural networks, based on the Boltzmann machinemodel

(see [17] and [18]).

The Boltzmann Machine is a probabilistic algorithm which minimizes

quadratic forms over binary variables, i.e. expressions of the form

E(~N) =
n�1X
i=0

iX
j=0

wi;jNiNj (2)

where ~N = (N0; . . . ; Nn�1) is a vector of binary variables and (wi;j)0�i;j<n is

a �xed matrix of weights. It is typically used to �nd approximate solutions

to NP-hard problems, such as graph partitioning or circuit placement.

Proc
#1

Proc
#2

Proc
#32

Weight Ram

Data
Ram

Inputs

Host Data I/O

The latest realization, on P1, can solve problems with up to 1400 vari-

ables, using 16-bit weights, for a total computing power of 500 megasynapses

per second (the megasynapse is the traditional unit used in this �eld, it

amounts to one million additions and multiplications, or one million terms

of (2)).

4.9 3D Geometry

H. Touati from DEC-PRL has implemented a 3-D graphic accelerator for P1,

which supports translation, rotation, clipping and perspective projection, to

directly compute the screen image of a cloud of points in 3-D space.

Pixel
x,y
Outy

1/m

+

+

+

Translate

Translate

Translate

Rot 3D

Rot 3D

Rot 3D

Norm.

Norm.

Norm.

x

z

*
*

S
H
I
F
T

C
L
I
P
P
I
N
G

ClipOut

x

y

m

x

y

z

x

y

At 25MHz, it has a peak performance of 1.56 million points per second,

using 16 bit �xed point coordinates for the input and output, and up to 32

bits for the intermediate results. One needs a 300 Mips processor to achieve

the same throughput in software.

4.10 Discrete cosine transform

This design (by J. Vuillemin and D. Martineau on P1) compresses a video

stream in real time through multi-dimensional fast discrete cosine transform.

The fDCT implements the following network:

c4

s4

c2

s2

c4

s4

c1

s1

c5

s5

S
0

S
7

S
4

S
3

S
2

S
5

S
1

S
6

S
0

S
7

S
4

S
3

S
2

S
5

S
1

6

F 0

F
2

F
4

F
6

F
1

F
3

F
5

F
7

S
−

x −

−
x

+

x

−
x −

−
x

+

x

−

+

x

+

+

−

+

x

+

+

s4

−

+

x

−

+

x
c4

−

+

x

−

+

x

−

−

−

−

−

The overall design computes 48 �xed-point (32 bits outputs) operations

(add, subtract, multiply and shift) on each 40 ns cycle, for a total of 1.4

Gops. To match this performance through software would require a 15 Gips

processor.

5 Conclusion

The following chart summarizes the practical PAM performance achieved by

each of our ten designs:

Design PABs MHz Gbops Gops Gips PAM

Multiplier 8k 33 264 0.8 2.6 P1
RSA 8k 32 256 0.5 4 P1
DCT 10k 25 250 1.4 15 P1

Newton 10k 25 250 2.5 y 5 P1
Laplace 10k 20 200 7.5 20 P1

Boltzmann 8k 25 200 1 1.5 P1
3D Geometry 3k 25 75 0.5 0.7 P1
Ziv-Lempel 3k 15 45 1 2 P0

String 3k 10 30 0.15 0.3 P0
2D convolution 1k 25 25 1 P0

yThese are G
ops, with 20 bit
oating-point numbers.

The applications are ranked according to the most reliable performance mea-

sure, namely the Gbops. As a comparative measure of resource utilisation

in such systems, the following table charts the maximum theoretical per-

formance of generic PAM hardware (in Gbops) obtained by multiplying the

maximal clock frequency (in MHz) by the area (in PABs):

PAM Area 1 MHz 20 MHz 50 MHz

XC3020 128 0.1 2.5 6.4

XC3090 640 0.6 12.8 32

P0 3.2K 3.2 64

P1 14K 14 280 700

Three years of PAM design lead us to believe the following:

1. For each of the chosen application, we have shown that the level of

performance achieved with the PAM is comparable to the best �gures

reported using super-computers or custom silicon circuits.

Our applications have been carefully selected for having a clearly iden-

ti�ed (PAM implementable) inner-loop, which accounts for a vast per-

centage of the software run-time. For such low level processing, the

PAM proves more cost e�ective than any super-computer.

Due to their software complexity, many current super-computers appli-

cations still remain outside the possibilities of current PAM technology.

2. Each mentioned PAM design was implemented and tested within one

or two months, starting from the delivery of the speci�cation software.

This is roughly equivalent to the time it takes to implement a highly

optimized software version of the same system with a super-computer;

both are technically challenging, yet remain an order of magnitude

faster than the time it takes to cast a system into silicon.

3. The cost of P1 is comparable to that of a high-end workstation. This

is orders of magnitude lower than the cost of a super-computer. Based

on �gures from [12], we �nd that the price (in $ per operation per

second) of solving the heat and Laplace equations is 100 times higher

with super-computers than with the PAM.

4. Another �eld of applications, not covered by any existing super-

computer, is open to PAM technology: high-bandwidth interfaces to

the external world, with fully programmable real-time capabilities. The

P1 PAM has a 256b wide connector, capable to deliver up to 6.4 Gb/s

of external bandwidth. It is a \simple matter of hardware program-

ming" to interface directly with any electrically-compatible external

device, by programming its communication protocol into the PAM it-

self. Applications for this capability are numerous, including interfaces

to high-bandwidth networks, audio and video input or output devices,

on-the-
y data acquisition and �ltering, etc. . .

References

[1] G�erard Berry. A Hardware Implementation of Pure Esterel. PRL Report

15, Digital Equipment Corp., Paris Research Lab., 85 av. Victor Hugo,

92563 Rueil Malmaison, France, 1991.

[2] Patrice Bertin, Didier Roncin and Jean Vuillemin. Introduction to pro-

grammable active memories. Systolic Array Processors, J. McCanny,

J.McWhirther, E. Swartslander Jr. editors, Prentice Hall, 300{309,

1989. Also available as PRL report 3, Digital Equipment Corp., Paris

Research Lab., 85, Av Victor Hugo. 92563 Rueil Malmaison Cedex,

France, 1989.

[3] Patrice Bertin, Didier Roncin and Jean Vuillemin. Programmable Ac-

tive memories: the Coming of Age. PRL report in preparation, Digital

Equipment Corp., Paris Research Lab., 85, Av. Victor Hugo. 92563

Rueil-Malmaison Cedex, France, 1992.

[4] E.F. Brickell. A Survey of Hardware Implementations of RSA. Proceed-

ings of Crypto'89, Lecture Notes in Computer Science, Springer Verlag,

1990.

[5] D.A. Buell and R.L. Ward. A multiprecise integer arithmetic package.

The Journal of Supercomputing, Kluwer Academic Publishers, Boston,

3:89{107, 1989,

[6] Digital Equipment Corporation. TURBOchannel hardware speci�ca-

tion. DEC document EK-369AA-OD-007A, Digital Equipment Corp.,

1991.

[7] R.P. Feynman, R.B. Leighton and M. Sands. The Feynman lectures on

PHYSICS. Addison-Wesley, 1963.

[8] J.P. Gray and T. Kean. Con�gurable hardware: two case studies

of micro-grain computation. Systolic Array Processors, J. McCanny,

J.McWhirther, E. Swartslander Jr. editors, Prentice Hall, 310{319,

1989.

[9] J.L. Hennessy and D.A. Patterson. Computer architecture: a quantita-

tive approach. Morgan Kaufmann Publishers, Inc, 1990.

[10] R.F. Lyon. Two's complement pipeline multipliers. IEEE Trans.

Comm., COM-24:418{425, 1976.

[11] D.P. Lopresti. P-NAC: A systolic array for comparing nucleic acid

sequences. Computer Magazine, 20(7):98{99, 1987.

[12] O.A. McBryan. Connection machine application performance. In Scien-

ti�c Applications of the Connection Machine, World Scienti�c, 94{114,

1989.

[13] O.A. McBryan, P.O. Frederickson, J. Linden, A. Sh�uller, K. Solchen-

bach, K. St�uben, C.A Thole and U. Trottenberg. Multigrid Methods

on Parallel Computers - A survey of recent developments. Impact of

Computing in Science Engineering, Academic Press, 3(1):1{75, 1991.

[14] R.L. Rivest, A. Shamir and L. Adleman. Public key cryptography.

CACM 21, 120{126, 1979.

[15] J.P. Serrat. Image Analysis and Mathematical Morphology. Academic

Press, N.Y., 1982.

[16] B. Serpette, J. Vuillemin and J.-C. Herv�e. BigNum: a portable e�-

cient package for arbitrary-precision arithmetic. PRL Report 2, Digital

Equipment Corp., Paris Research Lab., 85, av. Victor Hugo. 92563 Rueil

Malmaison Cedex, France, 1989.

[17] Marcin Skubiszewski. A hardware emulator for binary neural net-

works. Proceedings of the International Neural Network Conference,

Paris, 2:555{558, 1990.

[18] Marcin Skubiszewski. An exact hardware implementation of the Boltz-

mann Machine. PRL Report in preparation, Digital Equipment Corp.,

Paris Research Lab., 85, av. Victor Hugo. 92563 Rueil Malmaison

Cedex, France, 1992.

[19] Mark Shand, Patrice Bertin and Jean Vuillemin. Hardware speedups

in long integer multiplication. Computer Architecture News, 19(1):106{

114. 1991.

[20] Mark Shand and Jean Vuillemin. A hardware implementation for fast

RSA Cryptography. To appear, 1993.

[21] Herv�e Touati. Perle1DC: a C++ Library for the Simulation and Genera-

tion of DECPeRLe-1 Designs. PRL Technical Note 4, Digital Equipment

Corp., Paris Research Lab., 85 av. Victor Hugo, 92563 Rueil Malmaison,

France, 1992.

[22] Jean E. Vuillemin. Contribution �a la r�esolution num�erique des �equa-

tions de Laplace et de la chaleur. PRL Report 16, Digital Equipment

Corp., Paris Research Lab., 85 av. Victor Hugo, 92563 Rueil Malmaison,

France, 1992.

[23] Xilinx, Inc. The Programmable Gate Array Data Book. Product Briefs,

Xilinx, Inc., 1987.

[24] J. Ziv and A. Lempel. A Universal algorithm for sequential data com-

pression. IEEE Trans. on Information Theory, IT-23(3):337-343, 1977.

