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1. INTRODUCTION
The high computational workloads in multimedia applications
have motivated a number of styles of acceleration. These include
intense kernel codes, specialised extended instructions, specific
multimedia processors, custom hardware add-ons and
reconfigurable computing. Such accelerators are implemented
either as independent processors, co-processors or IP components
in ASICs.

Experimental work on reconfigurable computing has focussed on
FPGAs as the only available implementation technology. While
many successful systems have been built from single-bit output
FPGA logic cells, there appear to be limits to this approach when
compared to ASICs: low arithmetic density, reduced clock speed
and low internal RAM density and bandwidth, as well as
increasingly higher reconfiguration times.

In light of this experience, HP Labs has been developing a
reconfigurable arithmetic array (RAA), termed CHESS and
aimed as a component of an ASIC or processor datapath. It is
intended to provide high computational density, wide internal data
bandwidth and sufficient distributed register and memory resource
for important multimedia algorithm cores.  CHESS also offers
software flexibility, strong scalability and advanced features for
dynamic reconfiguration.

This paper describes the goals of this work, outlines the
architecture, presents examples of use and discusses results.
Software development toolchains and system contexts for such an
architecture are not discussed in this paper.

2. RECONFIGURABLE LOGIC
SHORTCOMINGS FOR ARITHMETIC
Reconfigurable computing has been an active research area for
nearly 10 years.  Most previous work has been based on
commercially available FPGAs [16].  This has demonstrated that
reconfigurable computing can be effective for high-end systems
[2], with experiments migrating from multiple FPGA solutions to
the use of a single large FPGA. But so far the technology has not
been adopted for mass-market products. Discussion with system
designers indicates that such technologies are too expensive in
terms of used silicon area when supporting arithmetic for
application cores of importance.

For arithmetic data flow applications, bit-level FPGA
implementations duplicate many resources to support high-level
operations, such as wide arithmetic operations or routing multi-bit
buses. In many cases the bulk of the active silicon is engaged in
such emulation of a ‘wider’ machine.  A number of commercial
architectures [12, 14, 16] cluster functional blocks, allowing them
to support fast carry structures for arithmetic.  But these
architectures do not exploit the clustering to reduce the
configuration memory overhead, presumably because doing so
would compromise their ability to support general-purpose logic.
A number of academic architectures (discussed in Section 7) have
recognised this issue and concentrate on denser support for
arithmetic applications even at the expense of generality.  These
architectures are based on one or both of two major techniques:
the sharing of configuration bits between multiple bits of word
width [3, 4, 5, 6, 7, 8, 11], and the use of function blocks tuned for
arithmetic applications [3, 4, 7, 8, 11].

Another shortcoming is the low memory density of current
FPGAs: only small on-chip memories are practical, so external
SRAM must be used for many multimedia applications with
consequent impact on available memory bandwidth.  Long
reconfiguration times, measured in tens of ms, also limit the value
of reconfigurability in situations such as video processing.

3. ARCHITECTURAL CHOICES FOR
CHESS
Our principal goals for CHESS were to increase both arithmetic
computational density and the bandwidth and capacity of internal
memories significantly beyond the capabilities of current FPGAs,
whilst enhancing flexibility.  Dense implementation of bit-level
logic was not a principal goal for us.  The choices we made were:



4-bit ALUs
The fundamental computational unit is a 4-bit ALU, with a
primary set of 16 instructions. This provides efficient arithmetic
capabilities, suitable for cascading to useful media widths, or for
supporting nibble-serial implementation styles.  ALU instructions
can be either constant or dynamic.  Constant instructions are
stored as a part of the configuration.  Dynamic instructions are
generated via user circuitry that is connected to the instruction
input of the ALU.

4-bit bus wiring
The entire user-visible routing structure is based on 4-bit buses,
supporting efficient transmission of user data or ALU instructions.

Switchboxes
Each ALU is paired with an adjacent switchbox that can operate
in two modes.  In its default mode the switchbox serves as a
crosspoint switch with 64 connections, used to connect horizontal
and vertical buses that physically pass over the switchbox.  In the
second mode the 64 bits of configuration memory that configure
the crosspoint switches are reclaimed and used to implement a
16W*4b RAM.

Chessboard layout
The ALUs and routing switchboxes are laid out in a two-
dimensional symmetric chessboard. This supports strong local
connectivity between ALUs and gives an effective routing
network using only 50% of the array area, much less than is
typical for FPGAs.

Embedded block RAMs
The CHESS architecture allows block RAMs to be inserted
throughout the basic array of ALUs and switchboxes.  Our
baseline design provides one 256W*8b RAM per 16 ALUs.

Speed and hierarchical line lengths
Clock speed factors directly into computational density, and so it
is important to prevent long connections from limiting the clock
speed severely.  To address this issue, CHESS provides two
register/buffers per switchbox (in addition to the register in each
ALU) to allow heavy pipelining of long connections.  Buses are
provided at power-of-two lengths, with the longer buses having
only five connections, directly to the retiming registers/buffers.
This allows long connections to be made without limiting clock
speed.

Small configuration memories
Our choices of 4-bit wiring and 4-bit ALUs allow CHESS to have
about 100 configuration bits for each ALU and its associated
wiring.  The small number of configuration bits is a major
contributor to the density of CHESS, and also allows rapid
reconfiguration.  A 512 ALU CHESS array could be completely
reconfigured in 40ìs over a standard 32bit 20ns burst-mode
DRAM interface for example, and partially reconfigured in
proportionally less time.

No run-time reconfiguration
As CHESS has rapid off-line reconfiguration, and also the ability
to feed instructions into the ALUs for cycle-by-cycle changes in
functionality at run time, we saw no need to allow part of CHESS
to be reconfigured while another part is operating.  This decision
simplified many design issues and avoided the significant circuit
and CAD tool overheads of avoiding transient drive fights.

4. APPLICATION BENEFITS OF CHESS

Computational density
The computational density of CHESS allows many of our target
applications to be mapped to one configuration of an array that is
small enough to be integrated into a single chip system.  It is
important to reach this threshold for several reasons:

• It brings the benefits of delayed design commitment and in-
system reconfiguration without the cost and pin restrictions
of separately packaged reconfigurable logic.

• It allows multiple wide interfaces to other on-chip circuitry.
In particular, many applications can benefit from multiple
large on-chip RAMs with wide interfaces to the datapaths.

• Fitting an application into one CHESS configuration reduces
the use made of run-time reconfiguration, cutting the
associated overheads of reconfiguration time and use of
memory bandwidth.

Memory bandwidth
Many of our image processing applications require memory of
modest size but high bandwidth for line buffers and translation
tables.  Distributed on-chip memories can significantly reduce off-
chip memory traffic, which would otherwise limit system
performance in many cases.

Flexibility
By providing the ability to convert switchboxes into 16W*4b
RAMs where needed by an application, CHESS allows RAM to
be traded for computation in a flexible way.  This approach gives
higher memory density than converting the few ALU
configuration bits into memory (the conventional technique).
Being able to build small memories as needed within the array
helps keep memory references to frequently used small data
structures on-chip, close to their use, and permits multiple parallel
accesses in each clock cycle.  These 16W*4b memories can also
be used as 4-input, 4-output LUTs for operations that do not map
well onto ALU instructions.  This feature can also be used to
make arbitrary interconnections at the bit level, which are not
supported by CHESS’ 4-bit wiring.

Flexibility in another dimension comes from the dynamic ALU
instructions, which allow specialised processors to be built within
CHESS.  By allowing complex functions to be cast into programs
for these processors, this technique greatly increases the range of
applications that can be supported within CHESS.

Rapid reconfiguration
One of the main benefits of rapid reconfiguration is in allowing
multiple processing phases to be applied to a stream of data with
minimal buffering.  If processing needs to be halted during
reconfiguration, then the amount of buffering needed on the data



stream is directly related to the reconfiguration time.  So for
example, a 512 ALU CHESS could handle three successive
processing steps on each frame of a 50fps video stream, being
completely reconfigured for each phase every 1/16th of a frame,
for a 10% configuration time overhead.  This would require
buffering for just 1/16th of a frame.  If the changes between
processing steps can be achieved with partial reconfiguration or
with the use of dynamic ALU instructions, then the overheads
would be still lower and the reconfiguration rate might be
increased.

5. THE CHESS ARCHITECTURE IN
DETAIL
Our major choice was in the granularity of the data unit.  We
chose 4-bit nibbles. This size is just large enough to support a
useful 'instruction' set for an ALU, whilst providing efficient
arithmetic for the 8/12/16bit data sizes prevalent in multimedia.
8-bit solutions such as MATRIX [7] are also feasible, but we
believe that they would tend to have more complex function units
than CHESS to balance the use of transistors and metal tracks.

CHESS’ functional units are 4-bit ALUs, and the connections are
4-bit buses.  This reduces the number of bits of configuration
memory by nearly a factor of four compared to a conventional
FPGA, allowing increased density.  The smaller configuration
memory also allows faster reconfiguration.

CHESS’ chessboard style (see Figure 1) contrasts strongly with
most of the other arithmetic-oriented reconfigurable architectures
using a one-dimensional bus-centred approach.  Each ALU is
adjacent to four switchboxes, and each switchbox is adjacent to
four ALUs.  This allows very powerful local connectivity, with
each ALU having input and output buses on all four sides, and
being able to send data to or receive data from any of the eight
surrounding ALUs as shown in Figure 1 by the grey arrows.  In
regular datapath applications, good placement allows these local
connections to be exploited heavily.

At run time, any switchbox in a CHESS array can be used as a
16W*4b memory.  In this mode all of the switches in the
switchbox are disconnected, although buses running over the
switchbox can still be used.  However, if large numbers of
switchboxes are used as RAMs the routing capability of the array
will be reduced.

To avoid this problem, and to provide higher RAM density than
the switchbox memories, the array design also supports embedded
block RAMs.  These memories are distributed through the array
as shown in Figure 2, are attached to user plane wiring buses, and
typically are controlled by surrounding ALUs which generate the
address and R/W control.  In the design shown above the block
RAMs are 256W*8b, single ported internally but with separate
read and write ports on the interface.  Each block RAM takes
about the same area as 4 ALUs and switchboxes.  The design
above provides one block RAM per 16 ALUs, using about 25%
more area than the basic array without block RAMs.  The block
RAMs are appropriate as translation tables and data buffers in
media processing algorithms.

Data will be moved on and off the array by connecting to buses on
the array edge.  Connecting one 4-bit bus on alternate rows of
ALUs gives a 64-bit interface on an edge of a 512 ALU array, as
shown in Figure 2.

CHESS provides the option of feeding the instruction to an ALU
from the output of another ALU, instead of setting the instruction
from configuration data.  This allows instructions to be changed
on a cycle-by-cycle basis, to support predicated execution, to
execute sequential ‘engines’, to implement specialised processors
within CHESS, or to give the effect of fine-grain reconfiguration.

We chose a design centre of 512 ALUs in c. 30mm2 of 0.35ìm
4LM CMOS to support our applications. This size was expected
to be able to implement the core of a JPEG decoding pipeline.

5.1 ALU logical design
The simplest view of CHESS is as an array of ALUs, and
switchboxes that connect them.  Each ALU has two 4-bit inputs
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Figure 1  CHESS layout and nearest neighbour wiring
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Figure 2  A 512 ALU CHESS array with embedded RAMs



(A and B), and a single bit carry input (Cin).  The ALU can
perform addition, subtraction or logical operations, generating a 4-
bit output (F) and a single bit carry output (Cout).  The instruction
is normally held in configuration memory provided for each ALU.
Figure 3 shows the logical structure of each bitslice in the ALU.

Table 1 shows the ALU instruction set.  All logic operations
between A and B are bitwise.  Both F and Cout can be registered
on the ALU output.  A variety of carry conditioning options are
available.

The carry inputs/outputs carry either data signals (when
performing arithmetic for example) or control signals (when
performing tests or comparisons on incoming data).  For example,
the EQUAL instruction tests to see if A==B and drives the result
onto Cout.  The Cin input of the ALU can be used to gang multiple

EQUAL instructions together when comparing more than 4 bits.

The TEST_BITS_AT_0/1 instructions can be used to extract a
given bit from one operand, by setting the other operand to a
suitable mask value.  More generally, they test if any of the bits
specified in the mask are 0/1.  ALUs performing these instructions
can also be chained using the carry connections to perform wider
tests.  The Cin input at the LS end should be set to 0.  If the test
fails in any ALU its Cout is driven to 1, which is then propagated
through the carry chain to the Cout output of the last ALU.

Carry outputs can be used to control ALUs used as multiplexers,
or to drive local resets and clock enables.  For example, the result
of an EQUAL instruction can directly control whether a register is
clocked, or reset.  Carry signals can be routed through the general
routing fabric but also have dedicated, high-speed, local routing
paths to their north and east neighbours.

5.2 Switchbox
In fact, CHESS is more complex than described above.  As shown
in Figure 4, a switchbox contains two 4-bit registers in addition to
the wiring switches.  These registers are provided to support
heavily pipelined designs, needed to maintain clock speed given
the delays inherent in reconfigurable wiring.  The registers can be
clocked always, never, or according to the value of a control
signal used as a clock enable.  Alternatively, the control signal can
be used to set or reset the register.  The register can also be made
transparent, to be used as a buffer for the long buses.  Registers
that are never clocked are used to hold constants needed in a
computation.

A
input

B
input

Function
Unit

Reg
Generate

Sum

Generate
Carry

F
output

Cin

Cout

Figure 3  Logical structure of an ALU bitslice

TEST_BITS_AT_0
Cout = Cin iff AorB=1111
else Cout = 1

ADD
F, Cout = A + B + Cin

TEST_BITS_AT_1
Cout = Cin iff AandB=0000
else Cout = 1

SUB
F, Cout = A - B - Cin

EQUAL
Cout = Cin iff A == B
else Cout = 1

XOR
F = A xor B

INVMUX
F = notA / notB
(according to Cin)

XNOR
F = A xnor B

MUX
F = A/B
(according to Cin)

NOR
F = A nor B

AND
F = A and B

OR
F = A or B

A_AND_NOT_B
F = A and notB

B_AND_NOT_A
F = B and notA

A_OR_NOT_B
F = A or notB

B_OR_NOT_A
F = B or notA

Table 1  CHESS ALU instruction set
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The inputs to the registers are each selected among two buses that
cross the switchbox, and an additional signal as shown in Figure
4.  Selection is done in two stages, which allows the instruction
input to the ALU to be derived from an intermediate stage.

The I input to the ALU is an optional instruction input, which
shares input connections with the register control input.  The ALU
instruction is mostly encoded into just 4 bits, so that the
instruction can be generated elsewhere and fed into the I input
over the normal 4-bit wiring network.  By driving the I input to
the appropriate ALU op-code, the ALU instruction can be
changed on a cycle by cycle basis.  This supports many forms of
data-dependent execution.

Some aspects of the ALU operation, such as the conditioning of
the carry input, are determined by static configuration bits and
cannot be dynamically reconfigured.

5.3 The ALU as a memory interface
Instead of being used for computation, each ALU can be
combined with an adjacent switchbox to provide a 16W*4b
memory (see Figure 4).  In this mode the memory address is fed
into the ALU A input, write data is fed into the B input, and read
data is taken from the F output.  Cin controls W/notR.  The ALU
and its output register act as both memory column drivers and
sense amplifiers, which reduces the area overhead of providing
such small memories.

During reconfiguration these memory blocks and other
configuration bits become the bottom levels of the configuration
memory, with the second level address decoding (not shown)
being done against a hard-wired value related to the ALU
location.  This second level address decoder is also accessible
from user plane wiring, allowing multiple switchbox RAMs to be

combined into a larger logical RAM.  Yet more ties onto the user
plane buses (not shown) are used to tie the memory blocks
together into a single memory during configuration.

5.4 Routing Structure
CHESS has a segmented routing structure, using a range of bus
lengths.  The routing scheme uses only 50% of the array area,
much less than in most FPGAs.  We believe that the chessboard
style layout is a major factor in achieving good routability in spite
of the relatively low proportion of the area used for routing.   The
following issues drove the routing scheme, shown in Figures 5
and 6:

• With a chessboard style layout the switchbox must be about
the same size as the ALU.  Thus balances in the IC
technology will limit the number of buses supportable. In our
case the switchbox holds an 8*8 array of configurable
connections and 16 4-bit buses both horizontally and
vertically. Each connection contains a memory bit, which
programs one connection among the two horizontal and two
vertical buses that pass by.  Heavily and lightly connected
buses are interleaved to reduce contention for these
connection points.  The connection pattern makes it simple
for the lightly connected long buses to be moved to higher
layers of metal as these become available in future processes,
giving plenty of flexibility in reaching a balanced layout.

• The distribution of lengths of buses is important to the
routability and hence the applicability of the array.  We have
both local and 'long' distributions of buses.  Figure 6 shows
how the 16 bus pitches across each ALU are used, showing
the number and alignment of the buses in increasing order of
length.

• Powerful local connectivity is vital to allow most
connections in a regular application to be made cheaply.
Two bus pitches are used to give each ALU an input and an
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output port on each of its four sides, providing 8-way
nearest-neighbour connectivity via single switches as shown
by the grey arrows in Figure 1.

• Two more bus pitches are used to provide centrally placed
‘feeder’ buses  (hregn, hregs, vregw and vrege in Figure 5)
for the switchbox register/buffers, which then connect to the
long array buses via switches in the sides of the ALUs.  Thus
switchbox registers can be used for pipelining or buffering
long nets to maximise system clock speed.  ‘Feeder’ buses
not used for register/buffer access can be used for local
connections.

• Two bus pitches are used for L1 buses (crossing one ALU
and half a switchbox on either side) which run between
feeder buses in adjacent switchboxes.  These allow registers
to be pipelined cheaply.  These L1 buses are connected in the
corners of the ALUs, providing linkage between diagonally
adjacent switchboxes.

• L2 and longer buses are laid out in staggered pairs (h2n and
h2s in Figure 6 for example), so that one bus in the pair is
centred on the endpoints of the other bus.  This avoids having
regions of weak connectivity that would result if all bus ends
were aligned.

• Long connections could limit the operating speed of the
whole device.  To control this, ‘long’ buses of length 4 and
higher powers of 2 support long connections with few
intermediate switches.  Buses of length 2n cross 2n ALUs,
and half a switchbox at each end.  Each of these has only 5
equally spaced switches to limit capacitive loading.  Long
buses connect only to the ends of the feeder buses.

• The number of long buses needed per row or column is
inversely related to bus length1. Over each switchbox (both
horizontally and vertically) we have dedicated 4 pitches to
L2 buses, and 2 pitches to each of L4, L8 and L16 buses.
This is more L8 and L16 buses than needed for a 512 ALU
array, but gives headroom for the architecture to scale to
larger arrays.

5.5 Physical design
The ALU bitslice uses N-channel pass transistors extensively.
The delay through an ALU is around 2.5ns in a 0.35ì 4LM
process, equalling the delay through four cascaded L4 buses.

The wiring network uses only N-channel pass transistors for
density, and so all logic inputs need level-restoring input buffers.

Metal 2 and 3 are densely packed with vertical and horizontal
wiring, with all buses being laid out as simple straight lines for
high density.  Metal 1 is used for local connections, and metal 4 is
used for VDD and GND.

CHESS has been designed to be appropriate for future process
generations.  The embedded RAMs will become increasingly
important for many applications as transistor counts outstrip off-
chip bandwidth.  A generous supply of long buses, and the ability
to add more with little impact on the architecture, will support
larger CHESS arrays in future.  Generous register provision and

                                                            
1 This empirical observation is known as Rent’s rule.

lightly connected long buses combine to minimise propagation
delays across an array.

Although the chessboard layout of CHESS has the apparent
disadvantage of constraining the ALU and switchbox to be about
the same size, in practice we have found that there are a number
of options for meeting this constraint that do not affect the logical
architecture of the device.  For example, several blocks of
circuitry can easily be moved between the ALU and switchbox to
help balance the layout.  The long buses, which connect only to
the ends of the register buses, could easily be moved to higher
layers of metal if these were available.

6. USING CHESS
6.1 Building Datapaths
The ALUs in CHESS were designed to support datapaths in either
word-parallel or digit-serial style.  In word-parallel style, enough
ALUs are used for each operation to cover the full width of the
datapath.  Where used, the carries are connected in a ripple carry
chain.  We expect carry propagation to limit clock speed for
datapaths wider than 16 bits.

In digit-serial style [9], each operand appears on a digit-wide bus,
a digit per clock cycle.  In CHESS we will usually choose a digit
to be a 4-bit nibble.  For most arithmetic operations the operands
should appear with the least significant digit first, to allow carries
to be propagated to the more significant digits.  CHESS provides a
switchbox register that can register the carry bit and feed it back
to the ALU as needed for nibble-serial operation. The overhead of
arranging the data flow in this way can be significant, but once
this has been done nibble-serial operation has two major benefits
for us:

• Only one ALU is needed to build e.g. an adder for any width
of data2.  Therefore the nibble-serial style can accommodate
more complex designs in a given size of array than the word-
parallel style.

• Carries pass through only one ALU per clock cycle, and so
are fast.

As an example of the compact designs that can be created in the
nibble-serial style, Figure 7 shows the layout of a nibble-serial
implementation of an 8 point 1D IDCT as used in JPEG decoding
[13], on less than ¼ of a 512 ALU CHESS array.  The design
includes 5 digit-serial multipliers, each multiplying by a 12-bit
constant.  For 12-bit data this circuit computes an 8 point 1D
IDCT every 8 clock cycles3.  This layout was automatically
placed and routed, and does not need any buses longer than L2.

                                                            
2 The one ALU is used for multiple cycles for data wider than 4

bits of course, with carries being fed from the output back into
the input after each nibble addition.

3 12-bit data multiplied by 12-bit constants gives 24 bits, needing
6 cycles.  We use 8 to ease data rearrangement.



6.2 Control FSMs
Whilst CHESS is primarily optimised for data paths, control
circuits also need on-chip support to provide low control latency.
Three main techniques can be used:

• Build state transition and output logic from the 4-input, 4-
output switchbox RAMs or the 8-input, 8-output embedded
block RAMs.  This technique is useful for small FSMs, but
requires the logic to be partitioned between multiple
communicating RAMs to avoid exponential growth with the
number of states.

• Implement FSMs as adders with feedback loops, giving
counters by default.  Add multiplexers in the feedback path to
allow conditional branching to states.  This technique is useful
for cyclic state machines with few inputs, often found in digit-
serial designs.  However, it scales badly as the number of
control inputs increases.

• Small CPUs can be constructed if appropriate, using sequence
tables of instructions feeding functional units.  Such CPUs can
implement very complex operations, but will often have a
response latency of many clock cycles.

The key to implementing efficient state machines in CHESS will
be to distribute small controllers to the places they are needed,
rather than building large centralised controllers.

6.3 Using on-chip memory
Applications can often be restructured to reduce external memory
traffic by using CHESS’ on-chip RAM.  For example, applying a
5*5 convolution to a large image scanned in raster order requires
4 lines of intermediate results to be held before a given block of
the convolution can be completed.  For large images memory
traffic of these intermediate values to and from external DRAM is
likely to limit system performance.

However, techniques of problem subdivision (e.g. convolving in
256*256 pixel sub pictures and recombining) can be effective if
moderate line-length buffers are available on chip.  CHESS' block
RAMs are suitable for such sizes.

7. PREVIOUS WORK
As we report on performance, we contrast with previous work on
reconfigurable architectures for computation.  This can be
categorised into two broad camps:

• Architectures that provide traditional FPGA-style routing,
allowing connections between arbitrary locations in the array.
Within this constraint, the functional blocks and routing
structure are optimised for datapath applications.

• Architectures designed to support general-purpose computing
models with virtual hardware.  This involves paging circuit
modules in and out of a limited physical device as needed,
preferably while the rest of the device is still computing.
Efficient hardware virtualisation requires run-time
reconfiguration (RTR) to avoid repeated stalling of the
application, and also requires that the configuration data be
small so that it can be changed quickly.  Architectures
intended to support RTR use processors or arithmetic-oriented
function units to reduce the amount of configuration data used
to specify the function, and often use a linear organisation to
reduce the amount of configuration data used in the routing
structure.  In particular, a generic FPGA-style routing
structure seems to require too much configuration data to
allow efficient hardware virtualisation.

7.1 Architectures with FPGA-style routing
Like CHESS, DP-FPGA [5, 6] shared configuration bits between
4 bit-slices, reducing the configuration overhead for both wiring
switches and the function blocks.  A dedicated carry chain within
each 4-bit logic block supported arithmetic applications.  In other
respects DP-FPGA differed from CHESS:

• DP-FPGA used LUTs to implement function blocks.  These
are more general than the ALUs used in CHESS, but need
more configuration bits to control them.  Because of this it
would be hard to provide dynamic instruction inputs to a DP-
FPGA logic block in the way that CHESS does.

• The routing structure of DP-FPGA was not described in full,
but was biased to support horizontal data and separate vertical
control connections.  In contrast, the wiring structure of
CHESS has been made as uniform as possible, with equal
densities of horizontal and vertical buses.  This is intended to
support the routing of datapaths that are much more complex
than simple pipelines.

• DP-FPGA provided separate routing structures for data and
control.  In contrast, CHESS shares one routing structure
between data and carry/control connections4.  This means that
CHESS uses only 1 wire in a 4-bit bus used for a carry/control
connection, but we prefer that to incurring the overhead of a
separate control network.

                                                            
4 Fast carry paths are an exception, as they are used only for

carry/control.

Figure 7  Layout of nibble serial DCT on CHESS



• DP-FPGA included dedicated shift blocks to compensate for
the 4-bit granularity of the routing structure.  CHESS has no
direct equivalent, but relies on ALU instructions and 4-input,
4-output switchbox RAMs to implement shifts where needed.

7.2 Architectures to support virtual hardware
The major issue in supporting virtual hardware efficiently is how
to provide a stream of configuration data to specify the changes in
function at run time.

Several architectures source configuration data from external
memory. PipeRench [4] uses incremental RTR to make the best
use of external memory bandwidth, and is based on homogeneous
stripes of ALUs with only global and nearest-neighbour
interconnect.  The restricted interconnect limits the amount of
configuration data needed to specify the connection pattern.

Colt [3] is a 2D coarse-grained array, including a system of
wormhole RTR that provides linear RTR within a 2D array.  As in
PipeRench, incremental reconfiguration is used to make the best
use of the external memory bandwidth.

Other architectures address the constraints on reconfiguration
bandwidth by providing multiple local configurations in local
RAMs, and distributing control signals to activate the appropriate
local configurations during the computation.  However, the cost of
storing the local configurations still constrains these architectures
to use minimal amounts of configuration data.  RaPiD [8] and
REMARC [11] are examples of this style of architecture.

RaPiD is a linear array of arithmetic-oriented units, including
ALUs, multipliers, registers and RAMs.  The restriction to linear
pipelines allows RaPiD to distribute the configuration control in a
control pipeline in parallel with the data pipeline.

REMARC is a 2D array of processors, each with a local nano-
instruction RAM.  The nano instructions are addressed by a global
program counter, and control the processor operation and the
routing of data, giving an effect similar to RTR in an FPGA.  The
‘reconfiguration’ (changing the value of the global program
counter) takes place across the whole array at once, but is limited
to the current contents of the nano instruction RAMs.  The routing
on REMARC is more limited than on an FPGA, being limited to
nearest neighbour connections, and global row and column buses.

MATRIX [7] provides a 2D array of coarse grain processors, and
introduced the powerful concept of generating dynamic
instructions as data from within the array to reconfigurable
computing.  This allows MATRIX to source some configuration
data statically, and source other configuration data over the
routing structure from ALUs or RAMs within the array. This
approach enables the limited amounts of configuration storage and
bandwidth available to be targeted to the needs of the application.

Apart from MATRIX, all of these architectures have much less
flexible routing structures than general purpose FPGAs to allow
them to support hardware virtualisation.  MATRIX sidesteps the
constraints of limited configuration storage and bandwidth to
some extent by allowing configuration data to be sourced
internally on a selective basis.  As a result, MATRIX is the only
architecture in this group that offers an interconnect structure that
approaches that of an FPGA.

Of the architectures in this group, MATRIX is the closest to
CHESS.  Like MATRIX, CHESS aims to retain most of the
routing flexibility of a general purpose FPGA.  To allow this,
CHESS reduces the need for hardware virtualisation in two ways:

• By being dense enough to support useful applications in one
configuration of a small array.

• By providing dynamic instruction inputs to the ALUs as
MATRIX does, allowing cycle-by-cycle function changes
without reconfiguration.

However, CHESS does not allow the routing to be dynamically
reconfigured as MATRIX does.  As a result, CHESS needs only a
4-bit instruction input to an ALU, making dynamic instruction
inputs much cheaper than in MATRIX.  Although CHESS’
routing cannot be dynamically reconfigured, its modest number of
configuration bits allows it to be partially or globally reconfigured
off-line with modest downtime.

8. PERFORMANCE
As we set out with the main goal of achieving high computational
density in the design, let us quantify the computational density
achieved by CHESS, and compare it with other FPGAs.  The area
of the basic cell (ALU plus switchbox) is 0.045 mm2 in a process
with 0.35µ feature size (D).  Simulation results predict an
operating speed of 200MHz for tight pipelines (one ALU plus 4
buses, or two ALUs with direct connections, between two clocked
registers).

For the purpose of comparing these figures with existing FPGAs
(regardless of feature size), we use the techniques developed in
[7].  Area measures are normalised by expressing them in units of
ë2, where ë is half of the feature size.  This gives the relative areas
as if all chips were built in the same process.

Normalising the speed is more complex.  The delay of a
minimally loaded inverter has scaled almost as the inverse of
feature size for processes from 1.2µ to 0.35µ. [10].  However,
delays due to interconnect have not been reducing in proportion to
feature size due to increasing RC delays [1], and this effect is
significant for FPGAs.  This makes it hard to quantify the clock
speeds that might be expected for the other FPGAs if they had
been built in a 0.35µ process.

For this reason we show comparative performance figures in
terms of operations per Më2 per cycle, implicitly assuming that all
architectures could be clocked at the same speed if built in the
same process.  We believe that in practice typical designs in
CHESS could be clocked faster than their equivalents in the other
architectures, and that in reality CHESS has an additional
performance advantage beyond that shown in the table.  Using
data from [7] as a basis for the size and speed of other FPGAs, we
find the following normalised areas, where the figures for CHESS
refer to a pure array of ALUs and switchboxes with no embedded
RAMs:

X3K
(CLB)

X4K
(CLB)

X6K
(CELL)

CHESS
(ALU + Sbox)

Process (µ) 1.2 1.2 0.6 0.35

λ (µ) 0.6 0.6 0.3 0.18
Area (mm2) 0.47 0.45 0.020 0.043



Area/M λ2 1.30 1.25 0,22 1.41
ops/cell/cycle:
  bit ops 2 32 1 68
  lut4 ops 2 2 0.17 4
  alu ops 1 2 0.33 4
  mul ops 0.67 0.67 0.25 4

ops/M λ2/cycle:
  bit ops 1.5 25 4.6 48
  lut4 ops 1.5 1.6 0.8 2.8
  alu ops 0.8 1.6 1.5 2.8
  mul ops 0.5 0.5 1.1 2.8

In this chart, four measures of computational density are derived
from the cell area:

1. bit ops, the number of storage bits in the cell.

2. lut4 ops, the number of 4-input, one output LUT operations
that the cell can perform.

3. alu ops, the number of one bit additions that the cell can
perform.

4. mul ops, the number of 1-bit x 1-bit multiply operations that
the cell can perform.

CHESS has a substantial performance advantage over all of the
other FPGAs quoted on all of these measures, even excluding the
benefits of the higher clock speeds that we believe will be made
possible by using CHESS’ switchbox registers to pipeline long
connections.  We plan to characterise the clock speeds that
CHESS can achieve in more detail by mapping realistic
applications to the architecture.

9. CONCLUSIONS
CHESS achieves high computational density primarily through
the use of 4-bit buses for routing, and the adoption of a
chessboard style layout.  Together, these allow the area devoted to
configuration bits and routing switches to be about 50% of the
area of a basic CHESS array, leaving the rest available for user-
visible functional units.

Raw performance is only useful if the applications of interest can
be mapped to the array efficiently.  CHESS’ flexibility in
application mapping is largely due to the ability to feed ALUs
with instruction streams generated within the array, generous
provision of embedded block RAMs, and the ability to trade
routing switches for small memories.

By focussing on requirements for high arithmetic performance at
low cost in media processing applications, CHESS makes trade-
offs quite different from those applicable to general purpose
FPGAs.  The result is a new class of device, the Reconfigurable
Arithmetic Array (RAA), with higher computational density than
FPGAs on several measures, and some unusual forms of
flexibility.
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