
Fast Linear Hough Transform

Jean E. Vuillemin
Digital Equipment Corporation, Paris Research Laboratory

85 Av. Victor Hugo, 92563 Rueil Malmaison, Cedex France.

Abstract

The Hough Transform is the choice technique for identifying straight lines through digital images,
with applications to high energy physics and computer vision.

Classical methods for implementing the Hough transform of a N � N binary image require to
compute N3 additions over n = log2(N) bits integers, hence nN3 bit operations per transform.

We introduce a new algorithm for computing the fast Hough transform FHT which only requires
log2(N)�N2 additions, for a total of n2N2 bit operations per transform. The method is based on a
recursive algorithm for raster-scan line drawing, which is different from Bresenham’s iterative one
[1].

The FHT has a divide and conquer recursive structure similar to that of the classical fast Fourier
transform FFT algorithm, with simpler atomic operations - additions over n bits numbers - and a
more complex interconnect. The FHT algorithm can readily be implemented in software. It maps
into hardware as well, and we detail the structure of a bit-serial circuit for computing the FHT.

1: Motivation

The Hough transform has proved useful in a variety of domains. Typical applications are found
in computer vision, see [8], [5] or [6]. This work is motivated by one use of the Hough transform,
in current high energy physics.

The transition radiation detector TRD is a problem in a series of benchmarks put forward by
CERN1 in [2]. The goal is to measure the performance of various computer architectures, in order
to build the electronics required by the Large Hadron Collider LHC, before the turn of this century.

The function of the TRD is to identify the slope and intercept (entry point) of the most likely
straight line particle trajectory through the digitized rectangular region of interest RoI. The RoI is
a W � H boolean matrix, with W=96, H=32 for the TRD. Collisions within the LHC occur at the
rate of 100KHz, namely each 10�sec.

We may assume that line trajectories of interest enter the RoI through a specific face - west - and
that their slopes are all less than 45 degrees, in absolute value. This is achieved through a linear
time pre-processing of the input, based on plane symmetries - after which particles traverse the RoI
from left to right.

Thanks to the design of the analog to digital initial AD converters for the LHC, the TRD
trajectories enter the RoI from the west face, and exit through the east. In a 96� 32 grid, this
further limits the slopes to 30 degrees, at most. By re-sampling the TRD input, horizontally within
a 3 to 1 ratio, we reduce the rectangular problem 96� 32 to a square 32� 32 one, with trajectories
under 45 degrees; input pixels now have two bits integer values. Without loss of generality, we thus

1Centre pour l’Etude des Réactions Nucléaires, in Geneva, Switzerland

restrict our attention to a square N � N RoI, with input pixels coded by m � 1 bits and N = 2n a
power of two.

Previously reported implementations of the Hough transform all require to sum N numbers of
m + n bits, for each of the (2N � 1)N lines through the RoI. The total complexity is 2(n + m)N3

bit operations per transform. In section 2, we review such naive implementations; we summarize
in section 3 the properties of the Hough transform, and in section 4 those of digital lines, which are
relevant here.

We introduce in section 5, an algorithm for the fast Hough transform FHT, which reduces the
complexity to 2n(n+m)N2 bit operations. The FHT speeds up software implementations of the TRD
by a factor N=n; alternatively, the FHT reduces the amount of hardware required for implementing
the FHT in real time - 100KHz for the TRD - by the same factor - over four times less gates and
wires for the TRD, than with the naive method.

2: Linear Radon and Hough transforms

The (discrete) Hough transform is the limiting case of the (continuous) linear Radon transform,
for zero width pixels [7], [4], [6].

In order to define the Radon transform, consider a two dimensional continuous image P, defined
by some density distribution P(x; y) 2 R � 0, at each point (x; y) 2 R2 within the Euclidean plane.

y = −x + 3/4

y = x/3 + 1/4

x

y

We use the above input RoI as a recurrent working example: domain P is composed of the two
Dirac lines y = �x + 3

4 and y = x
3 + 1

4 .
In order to define the Hough transform, consider a two dimensional discrete image Pn, defined

for each integer pixel (x; y) 2 [0::N � 1]2 within the square of side N = 2n, by some m bit natural
number P(x; y) 2 N. One discrete RoI, corresponding to our working example, is:

P2 =

2
664

1 0 0 0
0 1 1 1
1 1 1 0
0 0 0 1

3
775

Let D(s; i) represent the continuous straight line with slope s and intercept i, given by the equation

y = sx + i:

Let Dn(s; i) represent the digital line segment formed by pixels joining the grid point (0; i) to
(N � 1; i + h), with N = 2n. One possible formula, defining Dn(s; i) for integer 0 � x < N and
0 � s � 1, is the equation

y = bsx + i +
1
2
c:

Here, brc 2 Z is the floor of real r 2 R: brc � r < 1 + brc. It follows that br + 1=2c is the nearest
integer to the real r.

The Radon transform R = R(P) is the integral of all the points in P located on each continuous
line D:

R(s; i) =

Z
+1

�1

dx P(x; sx + i): (1)

The Radon transform R(s; i) = R(P), in our working example, is:

1 for s = �1; i 6= 3
4 and s = 1

3 ; i 6= 1;

2 for s 6= �1 and s 6= 1
3;

1 for s = �1; i = 3
4 and s = 1

3 ; i = 1
4 .

i

s

s = −1 s = 1/3

.

. i = 1/4

i = 3/4

The Hough transform H = H(P) is the sum of all the points in P located on each discrete line
D:

H(s; i) =
X

0�x<N

P(x; bsx + i +
1
2
c): (2)

The Hough transform of a square domain Pn 2 N2 is a rectangular (2N � 1) � N array Hn(s; i),
defined for integer slopes�N < s < N and intercepts 0 � i < N.

H2 =

2
664

4 3 3 1 1 1 1
1 3 2 3 1 0 0
1 1 3 3 4 3 2
0 0 0 1 1 3 2

3
775

Definition (2) directly leads to an algorithm which computes the Hough transform, with 2N(N2�
1) additions. For each slope jsj < N and intercept 0 � i < N in the transform domain, the naive
method simply sums the N terms of (2), using n + m bits of precision for the results.

3: Properties of the Hough transform

General properties of the Hough transform can be found in [6]. Let us summarize the ones which
are relevant, both in the continuous and discrete cases.

We let �(x) denote Dirac’s point distribution, with its usual properties: �(x) = 0 for x 6= 0,
�(0) = 1 and

R
+1

�1
dx �(x) = 1. We let @b

a denote Kronecker’s symbol: @a
a = 1 and @b

a = 0 for
a 6= b.

(L) Both transforms are linear:
R(P + Q) = R(P) +R(Q) and H(P + Q) = H(P) +H(Q).

(P) The Radon transform of the Dirac point �(jx� wj+ jy� hj) is a line such that:

R(s,i)=1 when h = sw + i,

R(s,i)=0 otherwise.

The Hough transform of a digital point @x
w@

y
h is a digital line such that:

H(s,i)=1 for h = bsw + i + 1
2c,

H(s,i)=0 otherwise.

(L) The Radon transform of a Dirac line �(y� s0x� i0) is:

R(s,i)=0 for lines which are parallel to y = s0x + i0, i.e. s = s0 and i 6= i0.

R(s,i)=1 for lines which intersect y = s0x + i0, i.e. s 6= s0.

R(s,i)=1 for the line y = s0x + i0, i.e. s = s0 and i = i0.

The Hough transform of a digital line @y
s0x+i0 is:

H(s,i)=0 for digital lines which are parallel to @
y
s0x+i0 , i.e. s = s0 and i 6= i0.

1�H(s,i)� N/2 for digital lines which intersect @y
s0x+i0 , i.e. s 6= s0.

H(s,i)=N for the digital line @y
s0x+i0 , i.e. s = s0 and i = i0.

From (1), we see that the Radon transform of a finite set ofk 2 N lines is infinite at the corresponding
k points in the transform space, and finite (� k) elsewhere. Accordingly, the Hough transform of
k digital lines has a maximum value N at the k images of such lines, and value < N elsewhere. It
follows that the Hough transform reliably identifies multiple lines, even in the presence of noise,
provided that k � N. As a point in case, we see that the Hough transform correctly identifies - as
local maxima H(s; i) = 4 - the two lines y = �x + 3=4 and y = 1 + x=3, in our working example.

4: Digital Lines

Without loss of generality, assume that the width and height of our input domain is a power
of two: N = 2n. We restrict our attention to the 2N � 1 slopes of the form s = h=(N � 1), for
h an integer in the range �N < h < N. The following table presents the four digital lines with
0 � h < 4:

h=0 h=1 h=2 h=3
There are many ways to define the digital line Dn(s; i).

1. The iterative algorithm of Bresenham [1] defines Dn(s; i) = In(h; 0; i), where In can be
expressed, for h � 0, by the formula:

In(h; j; i) =
[

j�x<N

(x; i + b
hx

N � 1
+

1
2
c):

In fact, some reputed textbooks use a dual definition, with rounding of the half-grid points
down - as opposed to up:

In(h; j; i) =
[

j�x<N

(x; i + d
hx

N � 1
�

1
2
e):

2. An alternative methodDn(s; i) = Rn(h; 0; i) recursively draws the two parallel half-segments:

� from (0; i) to (N
2 � 1; i + b h

2c);

� from (N
2 ; i + h� b h

2c) to (N � 1; i+ h).

The corresponding algorithm is defined by the rules, where N0 = N
2 :

R0(h; j; i) = (j; i)
Rn+1(2h; j; i) = Rn(h; j; i) [Rn(h; j + N0; i + h)

h > 0 : Rn+1(2h + 1; j; i) = Rn(h; j; i) [Rn(h; j + N0; i + h + 1)
h < 0 : Rn+1(2h� 1; j; i) = Rn(h; j; i) [Rn(h; j + N0; i + h� 1)

A simple computer search shows that both methods coincide for N � 8, and they differ at
I4(3=15; 0), as shown by the table:

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I4(5; 0; 0) 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3
R4(5; 0; 0) 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

It is evident that both methods rarely differ; and, when they do, it is by at most one pixel. For the
practical purpose of identifying straight lines in digital images, definitions I and R are equivalent:
this is confirmed by computer simulation.

5: Fast Hough Transform

The recursive definition of R implies the following formula for computing H:

H0(h; j; i) = P(j; i)
Hn+1(2h; j; i) = Hn(h; j; i) +Hn(h; j + N0; i + h)

h > 0 : Hn+1(2h + 1; j; i) = Hn(h; j; i) +Hn(h; j + N0; i + h + 1)
h < 0 : Hn+1(2h� 1; j; i) = Hn(h; j; i) +Hn(h; j + N0; i + h� 1)

We can read this as a recursive definition for H. It can be implemented as such. Or, it can be
obtained iteratively: starting from the input image H0 = P , compute H1, where h 2 f�1; 0; 1g;
then, compute H2, where h 2 f�3;�2;�1; 0; 1; 2; 3g, and so on. In the general case, iterative step
p computes the discrete Hough transforms of 2n�p subdomains. Each subdomain has width 2p, and
we compute histograms for the 2p+1 � 1 values of h such that jhj < 2p. The three stages in our
working example, are:

H0 =

2
664

1 0 0 0
0 1 1 1
1 1 1 0
0 0 0 1

3
775

H1 =

2
664

2 1 1 1 0 0
1 1 0 1 2 1
1 2 2 2 1 1
0 0 1 0 1 0

3
775

H2 =

2
664

4 3 3 1 1 1 1
1 3 2 3 1 0 0
1 1 3 3 4 3 2
0 0 0 1 1 3 2

3
775

Proposition 1 Computing all values Hn(h; 0; i) for 0 � i < N, N = 2n, and jhj < N by the fast
Hough transform FHT requires 2nN2 � N(N � 1) additions over n + m bits numbers.

For a square domain N = 32, the FHT requires 9K additions, compared to 64K additions for the
naive Hough transform.

6: Circuits for the FHT

The smallest circuit for implementing the FHT uses bit-serial integer arithmetics; we denote by
FHTn the N = 2n version of the circuit.

The input to FHTn is formed by the bits P[0::N � 1], which present in parallel the N points of a
line in the input image. As we use bit-serial arithmetics, consecutive input lines are only consumed
once, for each n + m clock cycles.

The output from FHTn is formed by 2N � 1 bits H[�N + 1::N � 1]. Line H bit-serially present
- over n + m consecutive cycles - the values of the Hough transform for all slopes in�N < h < N.
Output lines which are n + m time cycles apart correspond to consecutive values of the intercept
parameter 0 � i < N.

Circuits for the FHT are built from only two primitive blocks:

1. Serial adder, with two inputs, one output and one internal storage bit for the carry - represented
in our schemas by a circle around a + sign. The serial adder is a primitive operator in the 2Z
language, noted by +.

2. Delay unit, implemented by a n + m bit long shift register - represented by a square in our
schemas. The corresponding 2Z definition of D is - with reg noting a one bit synchronous
flip-flop:

// m bits long shift register
D(m)(i) = o[m]
where
o[0] = i;
for k < m do
o[k+1] = reg o[k]

end for;
end where;

The basic operator in the FHT construction combines both circuits:

// Basic FHT butterfly operator
bFly(d,m, k)(a,b) = (l,r)
where
da = D(d * m)(a); // delay d
l’ = D(m)(da) + b;

r’ = D(m)(da + b);
l = D(m * k)(l’); // delay k
r = D(m * k)(r’);

end where;

6.1: Schematics for FHT4

+

+

++

+

+ +

++

+ +

+ +

++

+ + +

++

+ +

++

+ +

++

+

++

+

+ +

+

+ +

+

+

+

+ + +

+

+

+ +

+

+ +

+

+

+

+ + +

+

+

+

+ +

+

+

+

+

+

+ +

+

+ +

+

+

+ +

+

+ +

+

+

+

+ + +

+

+

+ +

+

+ +

+

+

+

+ + +

+

+

+

+ +

+

+

+

+

+

+ +

+

+ +

+

6.2: A generator for FHTn

expressed in the 2Z language [3].

// Fast Hough Transform
FHT(n, m)(in : [2**n]) = out : [2**(n+1) - 1]
where
if n=0 then
out = in

else
N = 2**(n-1);
low = FHT(n-1, m)(in[0..N-1]);
high = FHT(n-1, m)(in[N..2*N-1]);
// Negative slopes
for k < N-1 do

(out[2*k],out[2*k+1]) =
bFly(N-k-1, m, k)(low[k], high[k]);

end for;
// Positive slopes
for k < N-1 do

(out[4*N-2*k-2], out[4*N-2*k-3]) =
bFly(N-k-1, m, k)(high[2*N-k-2], low[2*N-k-2]);

end for;
// Minus one slope

out[2*N-2] = D(m*(N-1))(D(m*N)(low[N-1])+high[N-1]);
// Zero slope

out[2*N-1] = D(m*N)(low[N-1] + high[N-1]);
// Plus one slope

out[2*N] = D(m*(N-1))(low[N-1] + D(m)(high[N-1]));
end if

end where;

7: Conclusion

While it remains a compute intensive problem, we believe that the Hough transform will become
much more widely used, thanks to the fast FHT algorithm, and the increase in computing power,
for modern micro-processors and specific circuits.

8: Acknowledgements

Thanks to R. Bock for bringing the problem to our attention. H. Touati has programmed the
methods, and performed the validating statistical analysis.

References

[1] Bresenham, J. E., Algorithm for Computer Control of a Digital Plotter , in IBM Syst. J.,
4(1):25-30, 1965.

[2] Badier J., Bock R., Busson P., Centro S., Charlot C., Davis E.W., Denes E., Gheorghe A.,
Klefenz F., Krischer W., Legrand I., Lourens W., Malecki P., Männer R., Natkaniec Z., Ni
P., Noffz K.-H., Odor G., Pascoli D., Zoz R., Sobala A., Taal A., Tchamov N., Thielmann
A., Vermeulen J., and Vesztergombi G., Evaluating Parallel Architectures for two Real-Time
Applications with 100kHz Repetition Rate, in IEEE Transactions Nuclear Science, 40:1:45-55,
1993.

[3] Bourdoncle F., Vuillemin J. and Berry G., The 2Z reference manual, PRL report 40, Digital
Equipment Corporation, Laboratoire de Recherche de Paris, 85 avenue Victor Hugo, 92563
Rueil Malmaison Cedex, France, 1994.

[4] Cormak A.M., Representation of a function by its line integrals with some radiological
applications, in J. Appl. Phys. 34:2722-2727, 1963.

[5] Duda R.O. and Hart P.E., Pattern Classification and Scene Analysis, Wiley, New York, 1973.

[6] Jain Avril K., Fundamentals of Digital Image Processing, Prentice Hall, Englewood Cliffs,
1989.

[7] Radon J., Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser
Mannigfaltigkeiten, Ber. Saechsische Akad. Wiss. 29:262-279, 1917.

[8] Rosenfeld A., Kak A.C., Digital Picture Processing, Academic Press, San Diego, 1982.

