
Efficient Data Structure and Algorithms for
Sparse Integers, Sets and Predicates

Jean E. Vuillemin

March 12, 2009

Abstract

We construct natural number n ∈ N + 2 through trichotomy

n = g + Xpd, Xp = 22p
, 0 ≤ g < Xp, 0 < d < Xp,

applied recursively, and by systematically sharing equal integer value
nodes. The resulting Integer Decision Diagram IDD is a directed
acyclic graph DAG which represents n ∈ N by S(n) nodes in com-
puter memory. IDDs compete with bit-arrays, which represent the
consecutive bits of n within roughly l(n) contiguous bits in memory.
Unlike the binary length l(n), size S(n) is not monotonic. Most inte-
gers are dense: their size is near worst & average. The IDD size of
sparse integers is arbitrarily smaller.

Over dense numbers, the worst/average time/space complexity
of IDDs arithmetic operations is proportional to that of bit-arrays.
Yet, equality testing is performed in unit time with IDDs and the
time/space complexity of some operations (e.g. sign(n−m), n± 2m,
22n

) is (at least) exponentially faster with IDDs than bit-arrays, even
over dense operands. Over sparse operands, the time/space complex-
ity of ALU operations {∩,∪,⊕, +,−} is also in general arbitrarily
better with IDDs than bit-arrays.

The coding powers of integers lets us use IDDs to represent bi-
nary strings/integer sets/predicates/polynomials as well as numbers.
The result a single alternative to a number of successful (yet rather
different) packages for processing large numbers, dictionaries, Boolean
functions & more. Performance levels are comparable over dense struc-
tures, and IDDs prove best in class over sparse structures.

Keywords: integer dichotomy and trichotomy, sparse numbers,
dictionaries, boolean functions, store/compute/code once, decision di-
agrams IDD/BDD/BMD/ZDD.

1

818 = 20100110011 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0

00

0

0002

2

3

3

3

3

350

818

1

2 3

50

818

2

3

Figure 1: Bit-array, bit-tree and bit-dag for decimal integer 818. The integer
labels {0, 1, 2, 3, 50, 818} at tree & dag nodes are computed rather than stored.
Labels {2, 3} inside the DAG (Directed Acyclic Graph) represent pointers to
nodes in the bit-dag labeled by integers 2 and 3.

1 Introduction

To ease the presentation, we postpone discussing machine specific word size
optimizations to sect. 2.5. Pretend till then to operate on a (bare-bone)
computer with minimal word size w = 1 bit. Also, negative numbers Z are
only introduced in sect. 2.4; meanwhile, we only discuss natural numbers N.

1.1 Bit arrays, trees and dags

1.1.1 Bit-array

Arithmetic packages like [1, 7] store the binary representation of n ∈ N as a
finite array of consecutive memory words containing all

n0···l−1 = 2[B
n
0 · · · Bn

l−1]

the significant k < l bits nk = B
n
k ∈ B = {0, 1} of

n = n0··· =
∑

k∈N

B
n
k2k =

∑

k<l

nk2
k.

The binary length l = l(n) = dlog2(n + 1)e of n ∈ N is defined by

l(n) = (n = 0) ? 0 : 1 + l(n÷ 2). (1)

Note that 0 = l(0) and l(n) = 1 + blog2(n)c for n > 0.
For example, integer 818 (3 decimal digits) has l(818) = 10 bits, namely:

818 = 20100110011.

Index 2 is written here to reminds us of Little Endian L.E . (from least to most
significant bit), rather than Big Endian B .E . (from MSB to LSB) which

2

we write (as in [12]) 818 = 11001100102. Depending on the algorithm’s
processing order, one endian is better than the other: say L.E . for add and
subtract, B .E . for compare and divide.

Since bit-arrays yield the value of any bit in n in unit time, we can traverse
the bits with equal efficiency in both L.E . and B .E . directions.

We assume familiarity with [10] which details the arithmetic operations
and their analysis for bit-arrays. An important hidden feature of bit-array
packages is their reliance on sophisticated storage management, capable of
allocating & de-allocating consecutive memory blocks of arbitrary length.
The complexity of such storage allocation [9] is proportional to the size of
the block (at least if we amortize the cost over long enough sequences). Yet,
the constant involved in allocating/de-allocating bit-arrays is not negligible
against the complexity of other linear time O(l(n)) arithmetic operations,
such as comparison and in-place ALU operations. Efficient storage allocation
is a well-known key to efficient processing of very large numbers [7].

1.1.2 Bit-tree

Lisp languages [2] allocate computer memory differently: a word per atom
(0 and 1 on a single bit computer), and a pair of word-pointers for each cons.
In exchange, storage allocation and garbage collection is fully automatic and
hopefully efficient.

Representing an integer by its bit-list1, say 818 = (0 1 0 0 1 1 0 0 1 1) is
good for L.E . operations. It is bad for B .E . operations, which must be
preceded by a (linear time and memory) list reversal [2].

In LeLisp arithmetics [2], we use a medium endian bit-tree compromise.
Each integer is represented by a (perfectly balanced binary) bit-tree, like

818 = ((((0.1).(0.0)).((1.1).(0.0))).(((1.1).(0.0)).((0.0).(0.0)))),

which is drawn in fig. 1. Dichotomy represents n > 1 by a bit-tree whose
leaves are the bits of n = n0···2p−1, padded with zeroes up to length 2p ≥ l(n).
The bit-tree has 2p < 2l(n) leaves, and 2p−1 internal cons nodes. The height
of the bit-tree is the binary depth p = ll(n) of n (p = dlog2 log2(n + 1)e for
n > 0):

ll(n) = (n < 2) ? 0 : l(l(n)− 1). (2)

Dichotomy gives access to any bit of n in time proportional to the depth p of
the bit-tree. Dichotomy achieves L.E . for pre-order [9] bit-tree traversal, and
B .E . for post-order. Dichotomy concisely codes each operation on 2 digits
numbers, through divide & conquer, by a sequence of (recursive) operations

1The list notation (a b) stands in Lisp for (a.(b.()))

3

on single digits integers. Dichotomy requires near twice the storage for bit-
arrays, in exchange for an automatic memory allocation scheme.

An experimental benchmark (recorded on real life continued fractions
[14]) of bit-trees in [2] vs. bit-arrays in [7] shows that, on a word-size w = 16
bits computer, the average time for bit-tree operations is within a factor
c < 4 slower than bit-arrays - in agreement with the (easy to do) theory.

1.1.3 Bit-dag

The IDD representation combines dichotomy with a motto:

store once!

A bit-dag represents a bit-tree by sharing a single memory big-dag address
for all the nodes with equal integer value (fig 1). We make sure (at creation
time sec. 2) that two nodes with equal integer value n share a pointer to the
same memory address n.a in the DAG.

An integer is uniquely decomposed n = T(n.0, p, n.1) = n.0 + Xpn.1 into
the triple: p = ll(n)− 1 is the depth minus one, so that n < Xp+1 and n ≥ Xp

for n > 0; the most n.1 = n ÷ Xp and least n.0 = n ÷ Xp significant digits of
n are the quotient and rest in the integer division by Xp. By construction:
max(n.0, n.1) < Xp and (n > 1 ⇔ 0 6= n.1). Conversely, a triple g, p, d of
integers results from the trichotomy decomposition n = T(n.0, n.p, n.1) of
n = g + Xpd, i.e. g = n.0, p = n.p, d = n.1 if and only if

max(g, d) < Xp, d 6= 0. (3)

Safe Haven Dichotomy is a safe haven where to analyze trichotomy. If we
turn off all hash-tables in a trichotomy package, we end up performing the
very same (bit for bit) operations with bit-dags and bit-trees. It follows that
the space & time complexity of trichotomy is bounded, in the worst case (no
sharing) by that of dichotomy, within a constant factor to account for the
cost of searching hash-tables. Indeed, our experimental implementation of
trichotomy in Jazz [6] realizes the above benchmark in less than c < 8 the
time for bit-arrays; and within less than a third of the memory, since many
continued fraction expansions in the benchmark from [14] are sparse.

DAG Sizes Integer labels in the bit-dag are the least set containing n and
closed under trichotomy. This set S(n) of labels to DAG nodes is defined by:

S(0) = S(1) = {},
(3) ⇒ S(T(g, p, d)) = {g + Xpd} ∪ S(g) ∪ S(p) ∪ S(d).

(4)

4

For example (fig. 1): S(818) = {2, 3, 50, 818} and s(818) = 4. We let
s(n) = |S(n)| count the nodes (excluding leaves 0,1) in the bit-dag for n.

While bit-trees are (almost twice) bigger than bit-arrays, sharing nodes
guaranties that bit-dags are always smaller:

n > 0 ⇒ s(n) < l(n). (5)

More sharing takes place as n gets bigger, since

s(n) <
2l(n)

ll(n)− l(ll(n))
. (6)

The worst case w(p) = max{s(k) : k < Xp} is shown in [15] to be such that:

1 = lim inf
p7→∞ p2−pw(p), 2 = lim sup

p7→∞
p2−pw(p),

so inequality (6) is ”tight”. The average a(p) = 1
Xp

∑
k<Xp

s(k) is near worst:

1 = lim sup
p7→∞

w(p)/a(p), lim inf
p 7→∞ w(p)/a(p) = 1− 1

2e
' 0.81606 · · ·

In other words, a ”random” integer n < Xp is dense: the size of its bit-dag
is near the worst case s(n) ' w(p) with probability near 1. An equivalent
way is to regard as dense any number n ∈ N whose bit-size Bs(n) > l(n) is
greater than the binary length. Indeed, we have

Bs(n) = s(n)(l(s(n))− 1) < 2l(n) (7)

for all n, and Bs(n) > l(n) for ”almost all” integers. Observe that 3Bs(n) is
a naive upper-bound on the total number of bits in all pointers needed to
represent n by trichotomy. Using a more elaborate coding scheme (i.e. a
smart print routine for bit-dags), Kiefer & al. [8] show that the bit-size is
proportional to the source entropy [5], under some specific stochastic model
of the input bits from n. In other words, representing binary sequences by
integer IDDs is a general purpose entropy compression scheme.

In particular, we see from (16) and fig. 2 that consecutive numbers are
efficiently coded by bit-dags. In the limit, coding all consecutive numbers up
to n is optimal (against nl(n) for bit-arrays):

s(2, · · · , n) = n− 1. (8)

Another (near) optimal example is the bit-dag for all 2-powers up to n:
s(20, · · · , 2n) < n + l(n); the corresponding size for bit-arrays is n(n + 1)/2.

5

1

h2

5

h3h3-1

h2-1

4

h3+1

h2+1

6

2

1 1 1 101

2h2

2h3h2 h2 h2 h2

5 5 5 5

Figure 2: Huge? These 13 DAG nodes represents {h3 − 1, h3, h3 + 1, 2h3}.

1.2 Trichotomy

A theoretical advantage of IDDs is combine, in a single package, all oper-
ations from (at least three) currently distinct packages: dictionaries [11],
Boolean functions [12] and integers [10], within state-of-the-art performance.

1.2.1 Dictionaries

Finite sets of natural numbers are efficiently represented by IDDs through
the natural isomorphism

{n1, · · · , ns} ⇀↽ 2n1 + · · ·+ 2ns

{k : k ∈ n} ⇀↽ n =
∑

k∈n 2k (9)

which transforms set operations (∪, ∩, ⊕) into logical ones (&, |, ⊕). We
similarly define, for k, n ∈ N: k ∈ n ⇔ 1 = B

n
k and k ⊆ n ⇔ k = k ∩ n.

For example, {k : k ∈ 818} = {1, 4, 5, 7, 8, 9}. The set defined by (12) has 2n

elements, e.g. {k : k ∈ h3} = {1, 4, X5, 4X5, Xh2 , 4Xh2 , X5Xh2 , 4X5Xh2}.
The size of set {k : k ∈ n} is the binary weigth2 of n ∈ N:

ν(n) =
∑

k<l(n)

B
n
k = |{k : k ∈ n}|. (10)

The binary length l(n) = i + 1 of n > 0 is equal to the largest i = max{ni :
ni ∈ N} element of N plus one, and its depth to ll(n) = l(i). Testing for
membership k ∈ amounts to computing bit k of n.

The IDD package implements dictionaries [11], with extensive operation
support: member, insert, delete, min, max, merge, size, intersect, median,
range, which all translate by (9) to efficient trichotomy operations.

2a.k.a population count, sideways sum, number of ones in the binary representation
[12], and parallel counter.

6

The IDD dictionary time complexity is within a constant factor of the
best-in-class specialized data-structures, such as tries and Patricia trees [11].
It can be arbitrarily less for sparse dictionaries which map to sparse integers
by (9). An example which IDDs can handle, unlike no other structure, is the
set {k : k ∈ hn} of one bits in (say) h1024 (12).

In general, s(n) ≤ ν(n)ll(n) and the size of set representations is smaller
with IDDs than with sorted lists of integers (size ν(n)l(n)). Because of
sharing and regardless of density, this size is also smaller than any (un-
shared) tree representation of dictionaries, such as binary tries or Patricia
trees [11].

1.2.2 Predicates

Boolean function are just as efficiently represented by IDDs through the
natural (truth-table) isomorphism

f ∈ Bi 7→ B ⇀↽ F = τ(f) =
∑

n<2i f(B
n
0 , · · · , B

n
i−1)2

n. (11)

Note that (11) transforms again set operations (∪, ∩, ⊕, · · ·) into logical ones
(&, |, ⊕, · · ·). Is is observed in [12] (exer. 256) that the IDD for the truth-
table F = τ(f) is isomorphic to the zero suppressed decision diagrams ZDD
[13]. With a theoretical difference: depth pointers are coded by integers in
ZDDs, and by pointers to DAG nodes in IDDs. In practice (once optimized
for word size - sec. 2.5), this hardly matters; it limits ZDDs to handle integers
of depth less than 264 (barely enough for h3, but h4 won’t do). Beyond ZDD,
other explicit one-to-one correspondences relate the complexity of Boolean
operations on IDDs to those on Binary Moment Diagrams (BMD [4]) and
Binary Decisions Diagram (BBD [3]). So, in theory, the proposed integer
IDD package can manipulate boolean functions (i.e. set operations) just as
well as the best known packages designed for that single purpose.

1.2.3 Dense and Sparse Integers

In addition, IDDs are also good at integer arithmetics.
Admittedly, most numbers are dense. Over dense numbers, the basic

integer operations +,−,×, ÷ ,÷ are slower with IDDs than with bit-arrays,
by at most constant factor c (say c < 8). Over dense numbers, the space for
IDDs is (arbitrarily) smaller than for bit-arrays. So, bit-dags and bit-arrays
trade time for space over dense numbers. In addition, IDDs are arbirarily
more efficient than bit-arrays for a number of useful operations (see sect. 2).

The advantages of IDDs appear over sparse integers. To illustrate the
concept, consider the largest integer hs = max{n : s(n) = s} which can be

7

represented by s bit-dag nodes:

h0 = 1, hs+1 = hs(1 + 22hs
) = T(hs, hs, hs). (12)

Letter h stands here for huge: h1 = 5, h2 = 21474836485 > 234; the binary
length of h3 exceeds the number atoms on earth, and it will never be physi-
cally represented by bit-arrays. Physicists will grant that h1024 is bigger than
any estimate on the number of physical particles in the known universe, by
orders of magnitude. It follows simply from (12) that hn ≥ 2∗(2n), where
the generalized 2-exponential is defined by: 2∗(0) = 1 and 2∗(n + 1) = 22∗(n).
Some (humongous) vital statistics (n > 0) for hn:

l(hn) =
∑

k<n

2hk ; ll(hn) = hn−1; ν(hn) = 2n.

Yet, fig. 2 illustrates some DAG sizes related to h3, and we find:

s(hn + 1) = 2n, s(hn − 1) = 2n, s(2hn) = 2n + 1.

Compute Once Operating on huge numbers like h1024 would be hopeless,
without a second motto: compute once!

Consider for example the (cute) computation of ν(n) by trichotomy:

ν(0) = 0, ν(1) = 1,
ν(T(g, p, d)) = ν(g) + ν(d).

(13)

Tracing ν(hn) reveals that ν(1) is recursively evaluated 2n times, 2n−1 times
for ν(5), 2n−2 times for ν(h2), and so on. Altogether, computing ν(hn) by
(13) takes exponential time O(2n). This problem is fixed by (automatically)
turning ν into a local memo function . On the first call to ν(n), a table Hν of
recursively computed values is created. Each recursive call ν(m) is handled
by first checking if ν(m) has been computed before, i.e. m ∈ Hν : if so, we
simply return the already computed value; if not, we recursively compute
ν(m) and duly record the result in Hν , for further use. Upon returning the
final result ν(n), table Hν is garbage collected.

Once (13) is implemented as a local memo function, the number of ad-
ditions for computing ν(hn) becomes linear O(n). The IDD package relies
extensively on (local and global) memo functions, for most operations. The
purpose is to never compute twice the same operation on the same operands.
One consequence is that m+h1024 and m×h1024 (for any small or sparse m)
are both computed efficiently with IDDs.

Testing for integer equality in a DAG reduces to testing equality between
memory addresses, in one machine cycle: n = m ⇔ n.a = m.a. Note

8

that equality testing requires at worst l(n) cycles with bit-arrays/trees/list.
Comparison cmp(n,m) = (n = m) ? 0 : (n > m) ? 1 : −1 is computed by

cmp(n,m) = (n = m) ? 0 :
(n.p 6= m.p) ? cmp(n.p,m.p) :
(n.1 6= m.1) ? cmp(n.1,m.1) : cmp(n.0,m.0).

(14)

At most 3 equality tests are performed at each node, and exactly one path
is followed down the respective IDDs . The computation of cmp(n, m) visits
recursively at most min(ll(n), ll(m)) nodes, with up to 3 operations at each
node, requires O(min(ll(n), ll(m))) cycles; in the worst case, this is exponen-
tially faster than with bit-arrays.

A number of useful operations (see sect. 2.1) are also (at least) exponen-
tially faster with bit-dags than bit-arrays: either sparse operations, whose
result is sparse regardless of the operands (like 2n), or any other operation
on sparse enough operands (sect. 2).

2 Integer Decision Diagrams

Under condition (3) (g < Xp and 0 < d < Xp), we build a unique triple
n = T(g, p, d) = g + Xpd at a unique memory address n.a. This is achieved
through a global hash table H = {(n.h, n.a) : n in memory}, which stores
all pairs of unique hash-code h = n.h = hash(g.a, p.a, d.a) and allocated
addresses a = n.a, among all numbers constructed thus far. If (h, a) ∈ H,
we return the address a of the already constructed result. Else, we allocate
a new triple n = T(g, p, d) at the next available memory address a = n.a,
we update table H = {(n.a, n.h)} ∪ H, and we return a. In other word, the
triple constructor T is a global memo function (using table H).

We assume that searching & updating table H is performed in (average
amortized) constant time [11]. It follows that constructing node

(3) ⇒ n = T(g, p, d) = g + Xpd

and accessing the trichotomy fields

n.0 = g, n.p = p = ll(n)− 1, n.1 = d

or the node address n.a, are all computed in constant time with bit-dags.

2.1 Fast Operations

Computing Xp = 22p
is performed in unit time and size s(Xp) = 1+s(p) ≤ l(p)

with IDDs, compared with time and space 2p with bit-arrays. Similarly, 2n

9

is computed below (20) by 2n = AM(0, n) in time O(l(n)ll(n)) and space

s(2n) < ν(n) + l(n). (15)

Both are exponentially smaller than the corresponding O(n) for bit-arrays.
We show that decrement D(n) = n − 1 and increment I(n) = n + 1 are

both computed in time O(ll(n)), by descending the DAG along a single path.
In the worst case, this is exponentially faster than bit-arrays. Since

s(n, n− 1) < s(n) + ll(n), (16)

the incremental cost of representing n± 1 as well as n (dense or not) is ll(n)
for IDDs, against l(n) for bit-arrays.

Decrement Computing D(n) = n− 1 follows a single path in the DAG:

n > 0 ⇒ D(n) = (n = 0) ? − 1 : (n = 1) ? 0 :
(n.0 6= 0) ? T(D(n.0), n.p, n.1) :
(n.1 = 1) ? x′(n.p) : T(x′(n.p), n.p, D(n.1).

(17)

Function x′(q) = Xq − 1 = 22q − 1 is computed in time O(q) by x′(0) = 1 and
x′(q + 1) = T(x′(q), q, x′(q)). It follows that s(Xq − 1) < 2q is small. We im-
plement x′ as a memo function, and make it global to share its computations
with those of other I/D operations. The alternative is to pay the time/space
price q = ll(n)− 1 at each individual I/D operation (without memo).

Increment Computing I(n) = n+1 also follows a single path in the DAG:

I(n) = (n = 0) ? 1 : (n = 1) ? T(0, 0, 1) :
(n.0 6= x′(n.p)) ? T(I(n.0), n.p, n.1) :
(n.1 6= x′(n.p)) ? T(0, n.p, I(n.1)) : T(0, I(n.p), 1).

(18)

Altogether, computing I(n) or D(n) requires ll(n) operations to follow the
single DAG path, to which we may (or may not) have to add ll(n) operations
to account for computing Xp − 1.

Add/remove MSB The operations of removing RM(n) = (m, i) the MSB
(n > 0, n = m+2i, i = l(n)−1, m = n−2i), or adding the MSB AM(m, i) =
m + 2i (for m < 2i) are defined by the mutually recursive pair:

RM(1) = (0, 0);
RM(T(g, p, d)) = (m,AM(l, p))

{(e, l) = RM(d); //d = e + 2l

m = (e = 0) ? g : T(g, p, e)}.
(19)

10

AM(m, 0) = m + 1; AM(m, 1) = m + 2;
AM(m, i) = (l > m.p) ? T(m, l, AM(0, e)) : T(m.0, l, AM(m.1, e))

{(e, l) = RM(i) //i = e + 2l}.
(20)

The justification for (19) is: n = g + Xpd = g + Xp(e + 2l) = m + 2i, where
m = g+Xpe and i = l+2p; The justification for (20) is: n = m+2i = m+Xl2

e,
where i = e + 2l and l ≥ m.p since m < 2i; if l = m.p, we finish by
n = m.0 + Xl(m.1 + 2e), else by n = m + Xl(0 + 2e). An analysis of (19,20)
shows that, for n = m + 2i, the time for computing AM(m, i) or RM(n) is
O(l(n)ll(n)): indeed, (20,19) collectively follow a single DAG path with at
most ll(n) nodes; the operation at each node happens on numbers of length
at most l(n), and its complexity is O(l(n)) by the above safe haven argument.

Note that computing m±2i for 2i ≤ m is a simple (dual pathes) variation
on (18,17) and s(m± 2i) < s(m) + 2ll(m) in this case. Thus in general, the
sparseness of m implies the sparseness of both m± 2i.

2.2 ALU operations

Constructors Let us weaken the pre-condition (3) on triplets T to

max(g, d) < Xp+1, (21)

and define constructor C(g, p, d) = g + Xpd (assuming (21) by:

C(g, p, d) = (d = 0) ? g :
(p = g.p) ? C(g.0, p, A(d, g.1)) :
(p = d.p) ? T(C(g, p, d.0), I(p), d.1) : T(g, p, d).

(22)

Note that C relies on incrementation (18) and addition A defined below (25).

Twice & Thrice As a warm-up, consider the function 2×n = n+n = 2n
which is a special case for add and multiply. Trichotomy recursively computes
twice by:

2× 0 = 0, 2× 1 = 2, 2× T(g, p, d) = C(2× g, p, 2× d). (23)

It relies on constructor C (22) to pass ”carries” from one digit to the next.
Obviously, twice must be declared as a local memo function (with hash table
H2×), to stand a chance of computing, say 2× hn (see. fig. 2).

The number of nodes in S(n) at depth q < ll(n) can at worst double
in S(2 × n): after shifting, and depending on the position, their 0 parity
may change to a 1 (shifted out of the previous digit). A single node may

11

be promoted to depth n.p + 1, when a 1 is shifted out from the MSB at the
bottom level. It follows that

s(2a) ≤ 2s(a). (24)

Note that the above argument applies just as well to any ALU like function
which takes in a single carry bit, and releases a single carry out. In particular,
it follows that s(3n) ≤ 2s(n). Thus, if n is sparse, so are 2n and 3n (fig. 2).

Add Trichotomy defines A(a, b) = a + b recursively by:

A(a, b) = (a = 0) ? 0 : (a = 1) ? I(a) :
(a = b) ? 2× a : (a > b) ? A(b, a) :
(a.p > b.p) ? C(A(a, b.0), b.p, b.1) : Am(a, b),

(25)

and, for 1 < a < b and a.p = b.p, by

Am(a, b) = C(A(a.0, b.0), a.p, A(a.0, b.0)). (26)

The reason for separating the case a.p = b.p (26) from the others (25) is to
declare Am as a (local) memo function, but not A. In this way, table HAm

only stores the results of the additions A(a, b) (with a < b and a.p = b.p)
which are recursively computed. The size of table HAm is (strictly) less than
s(a)s(b). By the argument already used to analyze 2×, releasing the carries
hidden in C by (26) can at most double that size. It follows that

s(a + b) < 2s(a)s(b). (27)

Again, the sum two sparse enough numbers is sparse.

Subtract For a > b > 1 and p = a.p = ll(a)−1, we compute the difference
by a − b = 1 + a + (Xp − b − 1) − Xp = d.0, where d = I(A(a, b′)) and
b′ = Xp− b−1 is b’s two’s complement. An easy exercise in trichotomy shows
that s(b′) < s(b) + p. Combining with (27) yields

a > b ⇒ s(a− b) < 2s(a)(s(b) + ll(a)− 1) (28)

and the difference of two sparse enough numbers is sparse.

Logic Operations Due to space limitations, we refer to [12] and the cor-
respondance with ZDDs to perform logical operations on bit-dags, and find:

max{s(a ∪ b), size(a ∩ b), size(a⊕ b)} < s(a)s(b). (29)

So, for all ALU operations {+,−,∪,∩,⊕}, the output is sparse when both
inputs are sparse enough.

12

2.3 Multiplication

Integer multiplication and division have nice trichotomy definitions, although
we don’t present division, due to lack of space. The trichotomy product
P (n,m) = n×m is defined by:

P (a, b) = (a = 0) ? 0 : (a = 1) ? b : (a > b) ? P (b, a) :
C(P (a, b.0), b.p, P (a, b.1)).

(30)

We declare P to be a memo-function, and the size of the hash table HP is
bounded by the product s(n)s(m) of the operand’s sizes.

In practice, this is sufficient to compute some remarkably large products,
such as 808× h1024 and h1024 × h1024.

Yet constructor C in (30) is now hiding digit carries, as opposed to bit
carries in ALU operations. It follows that, in general, the product of sparse
numbers is not sparse. A first example was found by Don Kuth ([12], exer.
256). A simpler example is provided by the product (shift) n × 2m whose
size can be as big as 2msn.

2.4 Negative numbers

We represent a relative number z ∈ Z by the pair (s = sign(z), n = abs(n))
of its sign (1 if z < 0, else 0) and its absolute value represented by a bit-dag.
We define the opposite by −z = (n = 0) ? (0, 0) : (1 − s, n) and the logical
negation by ¬z = −(1 + n). We extend all previously defined operations
from N to Z in the obvious way.

2.5 Word size optimization

Finally, for the sake of software efficiency, the recursive decomposition should
not be carried out all the way down to bits, but rather be stopped at the
machine-word size, say 32 = X5 or 64 = X6 bits. In this manner, primitive
machine operations rather than recursive definitions are used on word size
operands, at unit cost.

3 Conclusion

With word size optimization, the dichotomy package becomes competitive,
and one benchmark shows that its performance is less than an order of magni-
tude slower than bit-arrays over dense numbers (within less memory), while
it keeps all its advantages over sparse numbers. It seems worth-while invest-
ing time & efforts into improving the theory & implementation of integer

13

IDD software packages. The goal is to reach the point where the gains in
generality & code sharing (one package replaces many) overcome the time
performance loss over dense structures, and to keep alive most of the demon-
strated advantages over sparse structures.

In its current implementation, our IDD package relies on external soft-
ware, for hash tables and memory management. Yet, once the word-size
optimization is made, our experimental benchmarks show that both are crit-
ical issues in the overall performance of the package. It would be interesting,
both in theory & practice, to somehow incorporate either or both features
into some extended IDD package. After all, a hash-table is a sparse array
with few primitives: is-in, insert, release-all. The memory available for the
application is another one, into which we merely allocate & free IDD nodes.

Another closely related question is the following. It would be interest-
ing, both in theory & practice, to efficiently mark & distinguish dense sub-
structures from sparse ones. One could then implement a hybrid structure,
where dense integers are represented by their bit-arrays, operated upon with-
out memo functions (useless there), and allocated through some IDD indexed
buddy-system [9]. Sparse integers would be dealt with as usual, and one could
then hope for the best of both worlds - dense & sparse.

A number of natural extensions can be made to the IDD package, for
multi-sets, polynomials, and sets of points in the plane. In each case, the
extension is made through some integer encoding which transforms the oper-
ations from the application area into natural operations over binary numbers.

In theory, each extension has the same order complexity as the best known
specialized implementations, and it uses less memory. In practice, each ex-
tension performs faster than the specialized one over sparse structures.

Acknowledgments We thank Don Knuth for his truly constructive criti-
cism of an early draft.

References

[1] The gnu multiple precision arithmetic library. http://gmplib.org/, 2007.

[2] J. Chailloux & al. LE-LISP de l’INRIA : le manuel de reference, volume
Version 15-2. I.N.R.I.A, 1986.

[3] R. E. Bryant. Symbolic boolean manipulations with ordered binary
decision diagrams. ACM Comp. Surveys, 24:293–318, 1992.

14

[4] R. E. Bryant and Y.-A. Chen. Verification of arithmetic functions with
binary moment diagrams. Design Automation Conf., pages 535–541,
1995.

[5] W. Weaver C. E. Shannon. The Mathematical Theory of Communica-
tion. University of Illinois Press, Urbana, 19497.

[6] A. Frey, G. Berry, P. Bertin, F. Bourdoncle, and Jean Vuillemin. The
jazz home page http://www.exalead.com/jazz/index.html. 1998.

[7] J-C. Hervé, B. Serpette, and J. Vuillemin. Bignum: a portable effi-
cient package for arbitrary-precision arithmetic. In PRL report 2, Paris
Research Laboratory. Digital Equipment Corp., 1989.

[8] J. C. Kiefer, E. Yang, G. J. Nelson, and P. Cosman. Universal lossless
compression via multilevel pattern matching. IEEE Transactions on
Information Theory, 46:1227–1245, 2000.

[9] D. E. Knuth. The Art of Computer Programming, vol. 1, Fundamental
Algorithms. Addison Wesley, 3-rd edition, 1997.

[10] D. E. Knuth. The Art of Computer Programming, vol. 2, Seminumerical
Algorithms. Addison Wesley, 3-rd edition, 1997.

[11] D. E. Knuth. The Art of Computer Programming, vol. 3, Sorting and
Searching. Addison Wesley, 2-nd edition, 1998.

[12] D. E. Knuth. The Art of Computer Programming, vol. 4A, Enumeration
and Backtracking: http://www-cs-faculty.stanford.edu/ uno/taocp.html.
Addison Wesley, 2009.

[13] S. I. Minato. Zero suppressed decision diagrams. ACM/IEEE Design
Automation Conf., 30:272–277, 1993.

[14] J. Vuillemin. Exact real arithmetic with continued fractions. In 1988
ACM Conference on Lisp and Functional Programming, Snowbird, Utah,
pages 14–27. ACM, 1988. Best LISP conference paper award for 1988.

[15] J. Vuillemin and F. Béal. On the bdd of a random boolean function. In
M.J. Maher, editor, ASIAN04, volume 3321 of Lecture Notes in Com-
puter Science, pages 483 – 493. Springer-Verlag, 2004. Celebrating Jean-
Louis Lassez’s fifth cycle birthday.

15

