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Abstract

We establish new, yet intimate relationships between the2adic integers
2Z from arithmetics anddigital circuits, finite and infinite, from electronics.

(a) Rational numbers with an odd denominator correspond to output only
synchronous circuits.

(b) Bit-wise 2ading mappings correspond to combinational circuits.

(c) On-line functions,8n 2 N; x 2 2Z : f(x) = f(x mod 2n) (mod 2n);
correspond to synchronous circuits.

(d) Continuous functions2Z 7! 2Z, correspond to circuits with output
enable.

The proof is obtained by constructingsynchronous decision diagramsSDD.
They generalize to sequential circuits what classical BDD constructs achieve
for combinational circuits.

From simple identities over2Z, we derive both classical andnewbit-serial
circuits for computing:f+;�;�; 1=(1 + 2x);

p
1 + 8xg. Thecorrectnessof

each circuit directly follows from the 2adic definition of the corresponding
operator.

All but the adders (+;�) above areinfinite. Yet, the use ofresetsignals
reduces all previously infinite operators tofinitecircuits.

We indicate which features from this abstract 2adic semantics help syn-
thesize some of the largest synchronous hardware designs ever implemented,
through the 2Z language.

Keywords: Synchronous, sequential, combinational circuit semantics and synthe-
sis. Bit-serial 2adic arithmetics, arbitrary precision. Periodic numbers. Bit-wise,
on-line, continuous functions. Enable, reset. Programmable Active Memories.
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1 Introduction

Modern electronic circuits fall in two categories,analoganddigital.
The dynamic analysis of analog circuits involves physical parameters, such as

currents and voltages, whose valuevt 2 R vary continuously withreal timet 2 R.
Carver Mead’s book [M89] provides an excellent introduction to analog circuits.

Digital circuits are characterized by a finite number of physical variables,
whose valuevt 2 B is identified with either zero or one through discretization:
say 0 when voltage< 1V and 1 when voltage> 2V .

Digital circuits may further be classified asasynchronousor synchronous. In
asynchronous circuits, communication of values between the constituting units
may occur at any real instantt 2 R.

Within synchronous circuits, all variables are sampled at integer multiples
(t = n∆t for n 2 N) of the same global clock period∆t. Setting∆t = 1 through a
suitable choice of the physical units thus allows to identifydigital time t 2 N with
the set of natural numbers.

The present work is exclusively concerned with synchronous circuits, which
we characterize mathematically as follows:

Definition 1 (Digital Synchronous Circuit) In a synchronous circuitC, the value
of any variablev 2 V(C) is a bit vt 2 B = f0; 1g which may only change at
integer timet 2 N = f0; 1; 2; � � �g:

8v 2 V(C); t 2 R; 9n = btc 2 N : vt = vn 2 B:

Here, btc denotes the largest integer which is less than or equal tot. A direct
consequence of definition 1 is that all delays in a digital circuit areexact integers. In
particular,combinationalcircuits havezero delay: the output response to changes
in the inputs is instantaneous; time plays no part in their mathematical analysis.
With synchronous(a. k. a. sequential) circuits, changes in the digital values of
variables are equally instantaneous; they precisely occur at digital timest 2 N.
Every physical implementation of such mathematical circuits has (hopefully very)
small delays, but (certainly) not zero delays. As a consequence, the physical
behavior matches its mathematical idealization only when operated on with a
clock whose period∆t > � exceeds the maximum physical delay� (critical path).

Synchronous circuits naturally operate uponinfinite binary sequences: within
any computation performed by circuitC, each variablev 2 V(C) takes on
consecutive binary valuesv0; v1; � � �vt; � � � 2 B as digital time progresses through
the natural numberst 2 N. Synchronous circuits map infinite binary sequences,
representing the successive input values at each clock tickt 2 N, into infinite
binary sequences, representing the corresponding output values.

2



1.1 Hensel’s Numbers

Infinite binary sequences have a rich mathematical structure, namely that of
the 2adic integers2Z, whose algebraic properties are presented in section 2.
Set 2Z supports most1 of the usual operations over the ordinary integersZ =

f� � � ;�2;�1; 0; 1; 2; � � �g hence the name. In addition, it supports all operations
over the subsets2N of the natural numbers. In short, the 2adic integers2Z are both
a boolean algebra(;; ;[;\) and an integerring (0; +;�; 1;�) (see proposition
1).

The p-adic integerspZ were introduced around 1900 by K. Hensel [H13],
for each primep 2 N. They play a central role in arithmetic (see [A75] and
[K77]). Such numbers are obtained by extending indefinitely the ordinary basep

representation, as computed by the rule:

Bp(n) ) (n �j� p) Bp(n� p): (1)

We usen � p to represent thequotientandn �j� p the remainderin the integer
division of n by p 6= 0, son = p � (n � p) + (n �j� p) with 0 � (n �j� p) < p: For
example, we compute the infinite binary (p = 2) representation of decimal number
22=2+4+16 by:

B2(22) �) 011010 � � �0 � � �= 201101(0):

In the above equality, subscript2 indicates the representation base 2 as well as the
reading order, from low order bits to high order bits; the (0) denotes an infinite
(periodic) sequence of zeroes. Similarly, we find:

B2(�7) �) 100111 � � �1 � � � = 2100(1);
B2(�45 ) �) 0011 � � �0011 � � � = 2(0011);

and B2(13 ) �) 11010 � � �10 � � � = 21(10):

In general, we represent thesemanticvalue of each variablev within each
synchronous circuit by its infinite binary expansion as a 2adic number:

2v0 � � �vt � � � =

X
t2N

vt2
t:

1but not all: we loose integer comparison, integer division, and exact division by an even number;
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1.2 Synchronous Circuits

Synchronous circuits can all be built from two atomic gates, themultiplexorand
theregister, also known as flip-flop.

Definition 2 (The Multiplexor ?2 2Z3 ! 2Z) mux m=?(c,b,a)
The value of outputmt 2 B at clock tick
t 2 N is determined from the three input
valuesct; bt; at 2 B by:

mt =?(ct; bt; at) =

(
bt if ct = 1;

at if ct = 0:

c

m
b

a

1

0

Note that: ?(c; b; a) = (c ^ b) _ (:c ^ a) = if c then b elsea. Together with
0 = 2(0), the electrical ground and�1 = 2(1), the electrical power supply whose
bits are one at all times, the multiplexor provides abasis for boolean algebra:
:b =?(b; 0;�1), a _ b =?(a; a; b) anda ^ b =?(a; b; a).

Definition 3 (The Register2� 2 2Z ! 2Z) reg r = 2� i

The outputrt of a register is 0 at initial time:r0 = 0; for
t � 1, it is equal to the valueit�1 of its input, sampled at
the previous clock tick:rt = it�1:

i r

As we represent the input sequence by the 2adic integeri =
P

t2N it2
t, the 2adic

integero =
P

t2N ot2
t representing the output of the register is equal tor = 2� i.

Complex synchronous circuits are constructed by wiring together a number of
muxes and registers. All registers aresynchronousin that they share the same
global clock signal. In order to always ensure that our circuits have a well defined
synchronous semantics(definition 1), it is sufficient to require that all purely
combinational pathes through the muxes in our circuits have afinite length. The
purpose of this restriction is to eliminate from consideration cyclic combinational
structures, such asu =?(u; 0; 1) whose value isundefinedin the boolean domain.

Definition 4 A synchronous circuitC 2 C(?; 2�) is a setV = V(C) = I[M[R
of digital variables composed of:

� Inputs I = fi[0]; � � � ; i[i � 1]g in finite numberi = jIj; they may take
arbitrary 2adic integer values.

� MuxesM = fm[0]; � � � ; m[n] � � �g; each is defined by a mux equation:

8m 2 M; 9c; a; b2 V(C) : m =?(c; b; a):
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The mux-ordering� induced over the variablesV(C) by

m =?(c; b; a) impliesc � m; b � m anda � m;

must bewell-founded:every descending chainv[1] � � � � � v[n] � � � � is
finite.

� RegistersR = fr[0]; � � � ; r[n]; � � �g; each is defined by aregequation:

8r 2 R; 9i 2 V(C) : r = 2� i:

The outputsO = fo0; � � � ; oo�1g � V(C) form a finite subseto = jOj of the
variablesV = I [M[R.

Note that definition 4 allows for infinite as well as finite circuits. When the graph
of a synchronous circuit contains loops, it is straightforward to verify from the
well-founded mux ordering that each loop through the circuit must traverse at least
one register.

It also follows that eachfinite synchronous circuit has a well definedcritical
path �. This ensures that such circuits may be physically implemented. They
operate reliably with any synchronous clock of period∆t > � greater than the
circuit’s largest delay. Such properties need not always be true of our forthcoming
infinite synchronous circuits.

From an arbitrary assignment of boolean values to the inputs, provided by
the 2adic integersI [j] =

P
t2N it[j]2t (for 0 � j < i = jIj), we may compute,

from time t = 0; 1; 2; � � � and so on, the values of each mux and reg in circuit
C 2 C(?; 2�). The results are the 2adic integersO[j] =

P
t2N ot[j]2t (for

0 � j < o = jOj) which represent the circuit’s output responses.

Example 1 (Register with initial value 1)
The circuit to the right computes o = 1 + 2� i

where
fi = ?(i; 0;�1);
2i = 2� i;

o = ?(2i; 0;�1)g
i 1+2i

In the following examples of synchronous circuits with constant inputs (or no
input), we are able to label each variable by its semantic value: it is given both in
decimal and in binary, with low order bit first and periodic part in parenthesis.

Example 2 The numbers22; 1
3

and�7;�4

5
as circuits:
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1(0)

1 2 11 22

01(0) 1101(0) 01101(0)(0)

−6

010(1)

(01)

3

1(10)

3
1−2

−1

(1)

−2

0(1)

−4

00(1) 100(1)

−7 5

(0011)

(0110)

5
−2 −4

In our schemas: circles denote inverters and squares denote registers with initial
valuezero. A register with inverters on both sides (example 1) is recognized as
having initial valueone: it computes1 + 2x.

1.3 Summary of Results

Section 2 regroups some definitionsand elementary results about the 2adic integers:
where boolean algebra meets binary arithmetics.Proposition 2 confirms that, as
illustrated in examples 2, we can always label finite synchronous circuits which
haveconstantinputs by rational numbers with an odd denominator.

Section 3 classifies the mappings2Z 7! 2Z over 2adic integers into three
inclusive sets: bit-wise, on-line and continuous functions.

Section 4 gives classical results about bit-wise functions. Through the BDD
construction of [A78] and [B86], we characterize them as finite combinational (a.
k. a. memoryless) circuits in theorem 1.

Thesynchronous decision diagramsSDD introduced in section 5 give a strict
generalization of thebinary decision diagramsBDD algorithm to sequential
circuits. It is used to prove in theorem 2 that a function is on-line if and only if it
may be computed by some synchronous circuits. The SDD algorithm is a novel
and powerful technique for the synthesis of synchronous circuits. We discuss
some of its applications and limitations.

Section 6 shows that allcontinuousfunctions over the 2adic integers may be
realized by synchronous circuits withoutput enable(theorem 3).

From simple identities over 2adic integers, we derive in section 7 both classical
andnewbit-serial circuits for computing:

f+;�;�; 1=(1 + 2x);
p
1 + 8xg:

In each case, thecorrectnessof the proposed implementation follows directly from
the 2adic definition of the corresponding operator.
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All but the addersf+;�g above areinfinite. We use reset signals in order to
pipeline finite integer computations through arbitrary 2adic networks (theorem 4).
In this context, all previouslyinfinite arithmetic circuits becomefinite, in section
8.

We conclude in section 9 with some applications of the present 2adicsemantics
to synchronous designsynthesisin the language 2Z.

2 The 2adic integers2Z

While Hensel’s construction applies for any primep, we need only concern
ourselves with the casep = 2 of the 2adic integers2Z for the purpose of studying
digital circuits. Thearithmeticproperties of2Z are (almost) similar to those of
the p-adic integerspZ for p > 2. The logical properties of2Z are unique, a fact
which we emphasize in the following definition.

Definition 5 A 2adic integerB 2 2Z is the limit of three equivalent infinite
sequences

B = lim
n7!1

2b0 � � �bn = lim
n7!1

b(n) = lim
n7!1

bfng;
respectively composed, for eachn 2 N , of:

1. bitsbn 2 B, with bn = (B � 2
n) �j� 2;

2. natural numbersb(n) 2 N, with b(n) = B �j� 2n+1
=
P

0�k�n bk2
k;

3. finite integer setsbfng � f0; 1; � � � ; ng, with bfng = fk � n : bk = 1g.
Let us make explicit the meaning of the wordlimit in definition 5, by introducing
a distanceover binary sequences.

Definition 6 � Thevaluationv2(b) 2 N of a 2adic integerb 2 2Z is equiva-
lently, the:

1. index of the first non-zero bit in the binary representation ofb;

2. largest power of two which dividesb(n), for n 2 N;

3. smallest element in the setbfng, for n 2 N.

� Thenormof a 2adic integerx 2 2Z is defined by2jxj = 2
�v2(x).

� Thedistancebetween 2adic integersx; y 2 2Z is the norm of their difference:

2jx� yj.
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Note thatv2(0) = 1 so 2jxj = 0 if and only if x = 0, and0 < 2jxj � 1 for
x 6= 0. Norm 2jxj is related to the (soon to be defined) sum and product by:

(i) 2jx + yj � maxf 2jxj; 2jyjg;
(ii) 2jx� yj = 2jxj � 2jyj:

Property (i), which is characteristic ofultra-metricnorms (see [K77]) isstronger
than the corresponding classical triangle inequality for real numbersR: jx + yj �
jxj + jyj.

It follows from definition 6 of the distance in2Z, that thefinite approximants

2b0 � � �bn = b(n) = bfng converge to numberB 2 2Z according to:

8n 2 N : 2jB � 2b0 � � �bnj = 2jB � b(n)j = 2jB � bfngj � 2
�n+1:

As a consequence, each infinite binary sequenceA = (a0 � � �an � � �) with an 2 B
for n 2 N is equalto theunique2adic integerA =

P
n2N an2

n of which it is the
base 2 representation (rule (1) wherep = 2). Two infinite binary sequencesA;B
areequalA = B when 2jA�Bj = 0. This is equivalent to each of the following:

8n 2 N : an = bn , 8n 2 N : a(n) = b(n) , 8n 2 N : afng = bfng:

This lets us use the following notations for representing eachB 2 2Z:

B = 2b0 � � �bn � � � =

X
n2N

bn2
n
=

_
n2N

b(n) =

[
n2N

bfng:

One may choose either of the proposed representations - bits or integers or sets -
in order to introduce operations over2Z:

Definition 7 Let A =
W
n2N a(n) =

S
n2N afng and B =

W
n2N b(n) =S

n2N bfng be 2adic integersA;B 2 2Z. We define the operations:

� not :A =
S
n2Nfk � n : k =2 afngg,

� or A _B =
S
n2N(afng [ bfng),

� and A ^B =
S
n2N(afng \ bfng).

� plus A +B =
W
n2N(a(n) + b(n)) �j� 2n+1,

� minus A�B =
W
n2N(a(n) � b(n)) �j� 2n+1,

� times A�B =
W
n2N(a(n) � b(n)) �j� 2n+1.
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It follows from elementary set theory and arithmetic modulo2
n+1 that:

Proposition 1 (Structure of 2Z)

1. The 2adic integers(2Z;:;_;^) form a boolean algebra, isomorphic to
(2N; ;[;\). It containsall finite boolean algebrasZ �j� 2n for n 2 N.

2. The 2adic integers(2Z; +;�;�) form a ring which contains the ordinary
integersZ and the odd denominator rationalsZ=1+2N as proper sub-rings.

Let us further characterize the set inclusionsZ � Z=1 + 2N � 2Z, both arithmeti-
cally and in terms of synchronous circuits havingconstantinputs.

Proposition 2 Assertions (i), (ii), (iii) and (iv) are equivalent:

(i) A 2adic integerB = z 2 2Z is an ordinary integerB 2 Z.

(ii) 9z 2 Z; 8k 2 N : B = z (mod 2k+1).

(iii) The binary representation ofB = 2b0 � � �bl�1(bl) is ultimately constant:
9l 2 N; 8k � l : bk = bl; here, l + 1 is the (ordinary) binary length of
z 2 Z, in two’s complement representation.

(iv) B =
P

t2N bt2
t is the output of somefinite acyclic synchronous circuit

having constant inputs, either0 = 2(0) or �1 = 2(1).

Assertions (v), (vi), (vii) and (viii) are equivalent:

(v) A 2adic integerB 2 2Z is an odd denominator rationalB =
z

1+2d 2
Z=1 + 2N.

(vi) 9z 2 Z; d 2 N; 8k 2 N : B � (1 + 2d) = z (mod 2k+1).

(vii) The binary representation ofB = 2b0 � � �bi�1(bi � � �bi+p�1) is ultimately
periodic: 9i 2 N; p 2 N + 1; 8k � i : bk = bk+p.

(viii) B =
P

t2N bt2
t is the output of somefinitesynchronous circuit with constant

inputs.

The proof of this result can be found in the appendix section 11. The circuits
introduced there are precisely those constructed by the SDD procedure (forward
algorithm 2, section 5), upon constant (arity=0) inputf () = z

1+2n 2 Z=1 + 2N.
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It establishes a direct correspondence between the ultimately periodic binary
representation of an odd denominator rational, such as

22

7
= 20101(110);

and its realization by a finite synchronous circuit containing exactlyoneloop, such
as:

22

7

3 Mappings over 2adic integers

Computable functions over infinite binary sequences2Z may be split into three
classes.

Definition 8 A (unary) functionf 2 2Z 7! 2Z over the 2adic integers mapping
x =

P
t2N xt2

t into f (x) 2 2Z is:

1. bit-wisewhenf (x) =
P

t2N g(xt)2t for someg 2 B 7! B;

2. on-linewhenf (x) =
P

t2N gt(x0; � � � ; xt)2t for somegt 2 Bt+1 7! B;

3. continuouswhenf (x) =
P

t2N gt(x0; � � � ; xm(t))2t for somem(t) 2 N and
gt 2 Bm(t) 7! B.

It is clear from this definition that each bit-wise function is on-line, and each
on-line function is continuous. Definition 8 is given for unary (single input)
functions; it extends to n-ary (n inputs) functions in a straightforward manner. For
say, two argumentsx; y 2 2Z, it becomes:

1. f (x; y) =
P

t2N g(xt; yt)2t for someg 2 B2 7! B;

2. f (x; y) =
P

t2N gt(x0; � � � ; xt; y0; � � � ; yt)2t for somegt 2 B2t+2 7! B;

3. f (x; y) =
P

t2N gt(x0; � � � ; xm(t); y0; � � � ; ym(t))2t for somem(t) 2 N and
gt 2 B2m(t) 7! B.

Let us comment on the terms of definition 8. For ease of notation, return to the
unary case.
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1. Bit-wise functions will naturally be associated with combinational (no
register) synchronous circuits in the next section 4. The multiplexor is
bit-wise; so are the three boolean operations and their compositions.

2. From definition 6 of the distance between 2adic integers, we see that a
function is on-line if and only if it is anorm contraction:

8x; y 2 2Z : 2jf (x)� f (y)j � 2jx� yj: (2)

We prove in theorem 2 that on-line functions are precisely those computed
by synchronous circuits. The register and the arithmetic operations +;�;�
are all on-line; none is bit-wise.

3. Expressed in terms of distances, our notion of continuity is equivalent to the
following classical definition:

8n 2 N; 8x 2 2Z; 9m = m(x; n) 2 N; 8y 2 2Z :
2jx� yj < 2

�n implies 2jf (x) � f (y)j < 2
�m:

(3)

Heine’s theorem (see e.g. [A75]) shows that a function iscontinuousover
a topologically compact set (namely the whole of2Z) if and only if it is
uniformly continuous. That is to say, (3) is equivalent to:

8n 2 N; 9m = m(n) 2 N; 8x; y 2 2Z :
2jx� yj < 2

�n implies 2jf (x) � f (y)j < 2
�m:

(4)

Example 3 (below) presents two functions, the Peano projections, which are
continuousyet not on-line: it will follow that each may be realized by a
synchronous circuit with output enable (see section 6); neither may be realized by
any synchronous circuit.

The test for zero functionz 2 2Z ! 2Z defined byz(0) = 0 andz(x) = 1 for
x 6= 0 is not continuous at 0; it will therefore follow that is is not computable by
any digital circuit; nor byany form of computer for that matter. The relatedz0

defined byz0(0) = 0 andz0(2v(1 + 2x)) = 2
�v is on-line, and so computable by

some synchronous circuitz0 2 C(?; 2�).

Example 3 (Peano Pairing)Define theCartesian product� 2 2Z � 2Z ! 2Z
of 2adic integers byinterleaving the binary representations of each operand.
The inverse first projection�0 2 2Z ! 2Z extracts theevenbits; the second
�1 2 2Z ! 2Z theoddbits. They are computed by the recursive system:

�(a; b) = a �j� 2 + 2�(b; a� 2);

�0(a) = a �j� 2 + 2�0(a� 4);

�1(a) = �0(a� 2):
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We easily verify that8a; b 2 2Z : �0(�(a; b)) = a; �1(�(a; b)) = b. Product�
establishes a one to one correspondanceN $ N � N between natural numbers
and pairs of natural numbers; similarly for odd denominator rationalsZ=1 + 2N;
similarly for the 2adic integers2Z. While Peano’s Cartesian product� 2 C(?; 2�)
is on-line, neither is�0 nor �1. We leave it as an interesting design exercise for
the reader, to implement� by some synchronous circuit.

4 Binary Decision Diagrams

Theorem 1 A function over the 2adic integers isbit-wise if and only if it may be
computed by some combinational synchronous circuit (no register).

The multiplexor is bit-wise. Bit-wise functions are closed under composition.
So, the converse of the above equivalence is easy. In order to prove the direct
implication, we must show that each boolean functiong 2 Bn 7! B may be
implemented with finitely many multiplexors, and no register.

This classical result is obtained by constructingbinary decision diagrams
BDD, as introduced by [A78] and [B86].

Algorithm 1 (BDD) Let f 2 Bn ! B be some boolean function withn inputs.
A combinational circuitBDD(f ) 2 C(?) for computingf may be constructed as
follows.

1. Recursively decomposef by Shannon’s formula:

f (x0; � � � ; xn�2; xn�1) =?(xn�1; f (x0; � � � ; xn�2; 1); f (x0; � � � ; xn�2; 0)):

What we get at the end of this process is a complete binary tree composed of
2
n � 1 muxes, whose leaves are labelled by the2

n entries inf ’s truth table.

2. Systematically share all equal sub-expressions generated during this process.

While phase 2 of the BDD procedure is not required in order to establish theorem
1, it will be used latter. As shown by R. Bryant [B86], it leads to anormal form
for combinational functions, in which all mux controls are primary inputs.

A further reduction in the size of the constructed circuit results from also
sharing sub-expressions which are related by logical negation. This was proposed
by J. P. Billon who preserves the normal form property by restricting inverters to
only appear on branches where the synthesized function is one on all zeroes inputs
(see [B87]).
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Example 4 (FullAdder) The following 5 muxes and 2 inverters result from ap-
plying algorithm BDD to the synthesis of a full-adder.

FullAdd(a; b; c) = (s; r)
where fo = ?(b; b; a);

e = ?(b; a; b);
r = ?(c; o; e);
a = :a;
x = ?(b; a; a);
x = :x;
s = ?(c; x; x)g

a

b

c

r

s

1

0

1

0

1

0

1

0

1

0

From now on, a trapezoid with two + signs inside denotes a full-adder.

5 Synchronous Decision Diagrams

Theorem 2 A function over the 2adic integers ison-line if and only if it may be
computed by some synchronous circuit.

The converse implication states that the outputs of a synchronous circuit at time
t 2 N may only depend upon the values of its inputs during the firstt clock cycles;
this is obvious.

The direct implication is proved by constructingsynchronous decision dia-
grams(SDD algorithm 2) which generalize the (BDD algorithm 1) to the synthesis
of (sequential) circuits with memory.

The basic step in the SDD construction expresses each on-line functionf in
the form:

f (x) =?(x; b1 + 2f (1)(x); b0 + 2f (0)(x)); (5)

for some bitsb0; b1 2 B and on-line functionsf (0); f (1) 2 2Z ! 2Z. From:

f (x) =
X
t2N

ft(x0; � � � ; xt)2t;

we see thatb0 = f0(0), b1 = f0(1); so we have, forb 2 B:

f (b)(x) =
X
t2N

ft+1(x0; � � � ; xt; b)2t:

Functionsf (0) andf (1) tabulatewhat the value off (x) will be when thelast input
bit of x becomesb. We call them theorder one predictorsof functionf , for b = 0
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and b = 1. Through the same process, we compute four order two predictors
f (b1)(b0)

= f (b0b1) for b0b1 = 00; 01; 10 and11.
By indefinite iteration, we construct the infinitepredictor treefor f . It may be

drawn as:

1

0

1

0

1

0

. . .

. . .

. . .

. . .

x

f(x)

2

2

2

2

2

2

f (101)

f (001)

f (110)

f (010)

f (100)

f (000)

1

0

2
f (111)

2
f (011) 1

0

1

1

f (11)

f (01)

1

0

1

1

f (10)

f (00)

1

0
0
f (0)

0
f (1)

In this schema, each rectangle denotes a multiplexor with control inputx (label 1
on the high input, 0 on low); each square denotes a register: with initial value 0
when the label inside is zero, one otherwise (example 1).

Algorithm 2 (SDD) Letf 2 2Z ! 2Z be some on-line function defined by

f (x) =
X
t2N

ft(x0; � � � ; xt)2t;

with ft 2 Bt+1 7! B for t 2 N. A synchronous circuit SDD(f)2 C(?; 2�) for
computingf may be constructed as follows:

1. Build the infinite predictor tree forf .
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2. Systematically share all equal sub-expressions generated during this process,
as well as their logical negations.

Example 5 (Serial increment) The following circuit results from applying the
SDD procedure to the synthesis of the increment function1 + x.

fSDD(1 + x) = ?(x; v;:v);
v = 2�?(x; v;:x)g

Note the relationv = �2v2(x)+1, wherev2(x)
is the valuation ofx (definition 6).

1+x

x

1

0
1

0

v

Notice the sharing of sub-expressions (predictors) which are the logical negation
of one another.

To simplify notations, the SDD procedure is presented in the generic case of a
one input (k = 1), one output on-line function. The generalization to an arbitrary
number of inputsk � 0 and outputs is direct. Examples 2 show the result of the
procedure for zero input (k = 0), and example 6 below has two inputs (k = 2).

When applied to a combinational function, the SDD procedure (algorithm 2)
generates the same circuit as the BDD procedure (algorithm 1).

Example 6 (SDD Adder) Apply the SDD procedure to the synthesis of a serial
adder (see section 7.1) computingx + y. The synthesized adder SDD(x + y) is:

0

−1
x+y

x

y

1

0 1

01

0

1

0

1

0

While it is by nature aninfinite process, algorithm SDD(f) generates a finite
synchronous circuit (in finite time) if and only if functionf may be defined by
somefinite automaton:

Proposition 3 (SDD Termination) An on-line functionf may be computed by
some finite synchronous circuit if and only if the SDD algorithm 2 terminates, i.e.
functionf has finitely many predictors.

15



Proof: If the SDD procedure terminates, functionf may be computed by afinite
synchronous circuit, namely SDD(f).

Conversely, letf 2 2Z 7! 2Z be some on-line function:

y = f (x) = f (
X
t2N

xt2
t) =

X
t2N

ft(x0; � � � ; xt)2t =
X
t2N

yt2
t;

assume that it is computed by a finite synchronous circuitf 2 C(?; 2�), with n

registers:R = fr[1]; � � � ; r[n]g. This implies that, for1 � k � n, each register is
defined by an equation of the form:r[k] = 2� Sk(x;R); whereSk 2 Bn+1 7! B
is a combinational function; in addition, the outputf (x) = O(x;R) is also given
by some combinational functionO 2 Bn+1 7! B.

Define the state of the registersat time t 2 N by the natural number
Rt =

P
1�k�n rt[k]2k , so thatR0 = 0,Rt+1 = S(xt; Rt) andyt = O(xt; Rt).

Consider the two first order predictorsy(b)
= f (b)(x), defined by equation (5)

for b = 0 andb = 1. Rewritey(b)
t = ft+1(x0; � � � ; xt; b) in terms of the state at time

t + 1, and obtainy(b)
t = O(b; Rt+1).

The circuit definingf (b) has therefore thesamestate functionS asf , and a
different output function. By induction, this holds of each predictor off . All
predictors may thus be defined by circuits which all share the same state functions
and registers; they only differ by their output functions.

Termination of the SDD procedure follows, as there are only finitely many
such combinational output functionsO 2 Bn+1 7! B.

The SDD procedure provides anormal formfor synchronous circuits. In this
normal form the control input of each mux is one of the circuit’s primary inputs,
except for the inverters which arise from sharing logical negations. As for BDDs,
this guarantees that SDD circuits having a small number of primary inputs are
electrically fast, by construction.

The SDD yields excellent results when applied to the synthesis of some simple
functions, such as1 + 2x; 1 + x; 2x; x+ y andx� y.

R. Bryant [B86] has shown that BDD synthesis is not applicable in practice to
the synthesis of multipliers. The same holds for SDD. As a point in case, SDD(3x)
has 8 muxes and 5 registers; the circuit given in example 7 has only 2 registers,
and requires only five muxes.

The arithmetic functions�; i(x) =
1

1+2x and r(x) =
p
1 + 8x are on-line.

Although they are amenable to the SDD algorithm, we construct in section 7 much
smaller bit-serial circuits for implementing such operations.
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6 Circuits with output enable

By theorem 2, we know that there exists no synchronous circuit which computes
the output sequencex� 2 = 2x1x2 � � � in response to the inputx = 2x0x1x2 � � � .
In general, no synchronous circuit is capable of producing strictly less output bits
than it consumes inputs. To get around this problem, experienced designers add a
signalen 2 V(C) which is used toenablethe outputs from circuit C: it is set to
ent = 1 on cyclest 2 N when the outputs of C are significant; it is set toent = 0

on cycles when the outputs of C are irrelevant.
By this convention, we can now computex�2 through the identity circuit with

output enableen = 20(1) = �2. The same identity circuit with output enable
en = 2(10) = �1=3 computes Peano’s first projection�0(x0x1x2 � � �xt � � �) =
x0x2 � � �x2t � � �. Indeed, these are special cases of the following general result:

Theorem 3 Every continuous functionf 2 2Z ! 2Z is computable by some
synchronous circuit with output enable.

Proof: By (4), we may expressf as

f (x) =
X
k2N

2
kfk(x0 � � �xm(k)):

Since a boolean function withk inputs may be considered as a function with
k + 1 inputs which ignores the last one, we assume without loss of generality that
m(k) < m(k + 1) for all k 2 N.

For eacht 2 N such thatm(k) � t < m(k + 1), define gt(x0 � � �xt) =

fk(x0 � � �xm(k)). Functiong is on-lineby construction:

g(x) =
X
t2N

2
jgt(x0 � � �xt):

We know from theorem 2 that g may thus be computed by some synchronous
circuit Cg 2 C(?; 2�). It follows that functionf is computed byCg with output
enable:

en =

X
k2N

2
m(k):

Let us compose circuits with output enables. Suppose thatA 2 C(?; 2�) has
output enable enA. We want to connect the inputs ofA to the outputsB of some
other synchronous circuit with output enable enB. The rules are:

17



1. Replace every registera = 2 � b in A by the enabled registera =

2�?(enB; b; a).

2. Set the output enable of the outputs of A toen = enA ^ enB.

7 Arithmetic circuits

We now introduce bit-serial synchronous circuits for computing the arithmetic
operations +;�;�; 1

1+2x and
p
1 + 8x. They form thecoreof arithmetic circuits:

from each of these atomic synchronous circuits, we may derive an arbitrary number
of parallel implementation through time unfolding (see [L92]), and/or optimize
them through retiming (see [LS91]).

Theonlyfinite circuits in this section are the serial + and�, since:

Proposition 4 Any synchronous circuit for squaring a 2adic integer contains
infinitely many registers.

Proof: Suppose the contrary, namely some circuitC 2 C(?; 2�) with n registers
produces outputx2 for each inputx 2 2Z. Circuit C may reach at most2n

different statesS. There are2n+1 integers in the setI = fy 2 N : y = 2
n+1x; 0 �

x < 2
n+1g: Take the inputs to circuitC from setI , and consider what happens at

time t = 2n + 2:

1. all outputs produced up to this point are zero, sinceC is squaring;

2. there are more elements inI than possible states; hence there must exist
two different numbersy 6= y0 in I which bring C into the samestate
S2n+2(y) = S2n+2(y0), on inputsy andy0. All subsequent inputs are zero.
Thus, all subsequent outputs must be equals. We haveC(y) = C(y0), yet
y2 6= y02, a contradiction.

7.1 Addition

The basic arithmetic invariant of the full-adder is:a+b+c =
s + 2r: Solve this system by lettingc = 2r, and define
addition by:s = a+bwhere (s; c) = FullAdd(a; b; 2�c):

7.2 Substraction

Binary substraction is computed asa� b = a + (�b), with
�b = 1 + :b the opposite ofb. Define substraction by
d = a� b where (d; c) = FullAdd(a;:b; 1+ 2� c):

a
b
c r

s
+
+

a
b
c r

d
+
+
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From now on, a circle with a + inside denotes a serial adder; a serial subtracter
with �.

7.3 Serial-Parallel Multiplier

In order to multiply inputx 2 2Z by some 2adic integerC =
P

k2N c[k]2k,
consider the following elementary identity:

C � x = (c[0] + 2(C � 2))� x = (�c[0]) ^ x + (C � 2)� 2x:

It provides a direct justi-
fication for the following
infinite multiplier: Cx. . .

x
−c[0] 0

+

01

0

+

01

0

+

01

0

+

0

−c[1]−c[2]−c[3]

1

WhenC is constant, slices corresponding toc[n] = 0 simplify to a single
register; muxes may all be eliminated. ForC = 2c0 � � �ci�1(ci � � �ci+p�1) a
constant periodic rational, the multiplier becomes finite withi + p slices: the input
to the last slice is the output from the i-th slice. WhenC = 2c0 � � �ce�1(ce) is a
constant integer, the multiplierbecomes identical to the classical two’s complement
Lyon’s multiplier [L76], after retiming.

Example 7 The following circuits compute respectively3� x = 211(0)� x and
x=3 = 21(10)� x:

x 3x
+

x x/3
+ +

7.4 Serial-Serial Multiplier

Let x = 2x0 � � �xt � � � andy = 2y0 � � �yt � � � be the operands to be multiplied in
order to compute serially the productp = x� y = 2p0 � � �pt � � �. The invariant of
this synchronous multiplierM 2 C(?; 2�) is:

M (2t; x; y) = 2
t(x� 2

t)� (y � 2
t):

From the elementary identity in the 2adic ring,

(x�2
t)� (y�2

t) = xtyt +2xt(y�2
t+1)+2yt(x�2

t+1)+4(x�2
t+1)� (y�2

t+1);

we derive the recurrence relation,

M (2t; x; y) = A(2t; x; y) + 2M (2t+1; x; y);
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whereA is the auxiliary function:

2
�tA(2t; x; y) = a[t] = xtyt + 2xt(y � 2

t+1) + 2yt(x� 2
t+1): (6)

The final product is obtained asp = M (1; x; y) =
P

t2N a[t]2t, where:

M (c; x; y) = A(c; x; y) + 2M (2� c; x; y):

The resulting cellular
structure looks like:

a[0]

++ +

x

A AA . . .

n

p

. . .

a[n] a[1]

y

c[n]=2 c[1]=2 c[0]=1

In order to design cellA, rewrite (6) as

A(c; x; y) = (x ^ y ^ c) + x ^ (�2(c ^ y)) + y ^ (�2(c ^ x))

which is equal to2ta[t], provided thatc = 2
t.

This equation translates to the finite cir-
cuit to the right, where triangles denote
andgates, and half-circlesor gates.

y +
+

x

x

y

c
y
x

a

This design leads to more economical circuits than the Atrubin (see [K81]) or
the Chen and Willoner constructions [CW79]. From here on, a circle with an�
inside denotes this serial-serial multiplier.

7.5 Odd Inverse

An even 2adic integerb = 2b0 2 2Z hasno inverseb� 2 2Z: indeed2b� b� is
even and2b� b� 6= 1 for all b�. So2Z is not a field, but it comes close: we can
define theodd inversei = 1=(1 � 2b) 2 2Z of any 2adic integerb 2 2Z by the
formula:

i =
1

1� 2b
=

X
k2N

(2b)k: (7)
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Rewriting (7) asi(1 � 2b) = 1, we obtain
i = 1+2ibwhich translates to the synchronous
circuit to the right. While it looks finite in the
picture, this is yet another infinite circuit since
it contains the multiplier from the previous
section.

b 1/(1−2b)
x

7.6 Square Root

An odd 2adic integer has a square root if and only if it is congruent to one modulo
8. Such a number1 + 8b 2 2Z has exactly two square roots: (+

p
1 + 8b) �j� 4 = 1

and (�p1 + 8b) �j� 4 = 3. We compute the former
p
1 + 8b = 1+4r so as to verify:

(1+4r)2 = 1+8r +16r2 = 1+8b. Simplifying this last expression tor+2r2 = b;

we see that the square root1 + 4r = +
p
1 + 8b is given byr = b � 2r2 which

translates to the following (infinite) synchronous circuit:

1+4rb

r

x −

21



8 Synchronous circuits with Reset

c4
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−
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−
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−
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+
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+
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+

x
c4

−

+

x

−

+

x

−

−

−

−
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Consider an arbitrary synchronous network, such as the one drawn above
which computes the fast discrete cosine transform for appropriate coefficients
s1; � � � ; s7; c1; � � � ; c7 2 N. How can we pipe-line a sequence of finite pre-
cision integer computations through such a network? By simply adjoining a
(synchronous)resetinput, and replacing each register equationr = 2 � i in the
network by the register with reset:

r = 2�?(reset; 0; i):

Theorem 4 In order to pipe-line a networkf 2 2Z ! 2Z over integer input
sequencesi0 i1 � � � it � � � 2 Z whose binary lengths vary in time8t 2 N; 9m(n) 2
N : it < 2

m(n), we adjoin the following reset signal to all registers:

rst = 1 +
X
t2N

2
m(t):

With this reset, networkf now computes:

F (
X
t2N

itz
t) =

X
t2N

(f (it) �j� 2m(t))zt:
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Note that all the operators which have so far received an infinite definition, such as
multiplication, becomefinite as soon as the numberm = max

n2Nm(n) is itself
finite; indeed, we can truncate the whole network atm bits since all final results
are correct modulo2m+1. The reset signals of two circuits get or-ed together,
during composition.

9 Conclusion

With G. Berry and F. Bourdoncle, we have used this 2adic theory as the semantic
basis for a new circuit language called 2Z [BVB94].

Our main motivation is quite practical.Programmable active memoryPAM
technology, as introduced by [BRV89], is based on large arrays of configurable
logic. It already permits to implement synchronous designs, such as those reported
in [BRV93] and [SV93] which are much larger than whatever may currently fit
on single silicon chips: well over a million of active gates, excluding RAM.
We have learned from experience that the main obstacle to the development of
PAM technology comes from the time required to program such large innovative
hardware designs.

We expect the 2Z language to help overcome this bottleneck, as it incorporates
a number of advanced synthesis features, based on the view of 2adic synchronous
logic presented here. Before commenting on these synthesis features, let us
provide the reader with a feel for the language through a small example.

The following 2Z source code generates the counters from [V91] whose
operating speed is, for all practical purposes,independentof the counter’s length.

SlowCounter[n](incr) = (s[n],ovfl)

where

c[0]=incr;

for k<n do

c[k+1] = c[k] and s[k];

s[k] = reg(c[k] xor s[k])

end for;

ovfl = c[n]

end where;

FastCounter[n](incr) = s[n]

where

k=3; // this parameter is technology-dependent //

if n<k

23



then (s,ovfl) = SlowCounter[n](incr);

else (s[0..k-1],en) = SlowCounter[k](incr);

enable en in

(s[k..n-1],cn) = SlowCounter[n-k](-1);

end enable;

ovfl = cn and en;

end if

end where

The schema resulting from to the execution ofFastCounter[6] is:

++incr

s[0]

+ +

s[2]s[1] s[3]

+ +

s[4] s[5]
−1

Let us summarize the circuit synthesis techniques which 2Z incorporates, in
relation to the present work.

1. The language knows 2adic rationals. The expressionctrl=#(0011), or
equivalentlyctrl=-4/5 will generate the proper circuit from example 2,
based on proposition 2 and the SDD algorithm. This provides a valuable
help in synthesizing the local control structures normally associated with
each part of the data pathes. Note that 2Z truly handlesarbitrary precision.

2. The language knows bit-serial arithmetics, as exposed in section 7. Writing
c=a-b will generate the proper serial substract, andd=252*c the proper
multiplier. This is useful for synthesizing data pathes from graphs of
synchronous operators.

3. The language knows about enable, reset and how to compose such powerful
non local circuit constructions.

4. Finally, the 2Z language knows about fine grain boolean logic synthesis
and retiming (see [LS91]). Both are mandatory within the electrical
optimization of delays in PAM designs. In the 2adic framework, they
express commutation properties between mux, reg and arbitrary functions.
These can be stated, for two input functions, by:

Proposition 5 � A continuous functionf 2 2Z2 ! 2Z commutes with
the mux,

8a; b; c; d; e 2 2Z : ?(a; f (b; c); f (d; e)) = f (?(a; b; d); ?(a; c; e));

if and only if it is a combinational function.
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� An on-line functionf 2 2Z2 ! 2Z commutes with the register,

8a; b 2 2Z : 2f (a; b) = f (2a; 2b);

if and only iff (0; 0) = 0.

Let us now consider some open directions for further research.

� As pointed out earlier, the SDD procedure is an interesting candidate for
compiling finite state machine descriptions (hopefully produced by higher
level systems) into real hardware (silicon or FPGA). It should be instructive
in this respect to compare the resulting SDD implementation with the direct
techniques reported by [B92], and others.

� We expect some CAD systems to incorporate rules for circuit verification,
having to do with thering properties of 2adic algebra; not just the boolean
part. The need for such tools is clear when one considers the problem of
proving functionally equivalent, such structurally different multipliers as,
say the one from section 7.4, and the fully parallel one from [V83]. This
appears to require the full 2adic apparatus introduced here; any proof through
independent means has to discover (prove) and use the ring laws somewhere
along the line; and their relations to boolean algebra, as expressed by
propositions 1 and 2.

� While finite circuits play a central role, both from a theoretical and practical
point of view, we have not been able to quantitatively characterize them:
how many registers does each finite circuit truly requires?

10 Acknowledgements

This work has benefited from important contributions by G´erard Berry, Fran¸cois
Bourdoncle, Herv´e Touati and Patrice Bertin. Merci `a chacun.

11 Proof of Proposition 2

(ii) Let l 2 N be the least integer such thatjzj < 2
l. After computingl bits

of z by rule 1, we reach the state:B2(z) l) z0 � � �zl�1B2(z � 2
l): When

z � 0, we havez � 2
l
= 0, soB2(z � 2

l) = 2(0); whenz < 0, we have
z � 2

l
= �1, soB2(z � 2

l) = 2(1).
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(iii) Conversely,z = 2z0 � � �zl�1(zl) =
P

k<l zk2
k � 2

lzl is an integerz 2 Z.

(iv) Integer z = 2z0 � � �zl�1(zl) is computed by the following acyclic syn-
chronous circuit, withl registers: r[l � 1] = zl�1 + 2 � zl; r[l � 2] =

zl�1 + 2� r[l� 1]; � � � ; r[0] = z0 + 2� r[1]: The inputs�zl = 2(zl); 0;�1
are constant, and the output isr[0].

Conversely, it follows from definitions 2,3 of mux and reg that an acyclic
synchronous circuit withl 2 N registers produces a constant output after at
mostl cycles, upon constant input.

(vi) Let B =
z

1+2n be an odd rational, withz 2 Z andn 2 N + 1. Define the
periodp = p2(1 + 2n) of the denominator1 + 2n to be the order of 2 in the
multiplicative groupZ �j� (1 + 2n) of the integers modulo1 + 2n, namely the
smallest natural number such that:

2
p
= 1 (mod 1 + 2n):

Let q = (2p� 1)� (1 +2n), the corresponding remainder being 0. Compute
I = zq � (2p � 1) the quotient, andP = zq �j� (2p � 1) = 2p0 � � �pp�1 the
remainder in the integer division ofz � q by 2p � 1, so as to write:

B =
z

1 + 2n
= I � P

2p � 1
:

The binary representation of�P
2p�1

= 2(p0 � � �pp�1) is purely periodic. It
follows that the binary representation ofB is ultimately periodic:bk = bk+p

for k � i + p.

(vii) Let number B = 2b0 � � �bi�1(bi � � �bi+p�1) be ultimately periodic, and
consider the integersI = 2b0 � � �bi�1 and P = 2bi � � �bi+p�1. Number
B 2 Z=1 + 2N is the odd rational:

B = I � 2
iP

2p � 1
:

(viii) The periodic rationalB = 2b0 � � �bi�1(bi � � �bi+p�1) is computed by the
following synchronous circuit, withi + p registers:r[i + p� 1] = bi+p�1 +
2� r[i]; r[i + p� 2] = bi+p�2 + 2� r[i + p� 3]; � � � ; r[0] = b0 + 2� r[1]:
The inputs0 and�1 are constants, and the output isr[0].

Conversely, letr[0]; � � � ; r[n� 1] be then registers of a finite synchronous
circuit C 2 C(?; 2�). Define thestate of C at time t by the integer
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St =
P

0�k<n rt[k]2k . This number is bounded bySt < 2
n; so, there

must exist two instants0 � t0 < t1 < 2
N where we find the circuit in the

samestate:St0 = St1 : With a constant input, the output must therefore be
periodicB = 2b0 � � �bi�1(bi � � �bi+p�1) with i = t0 andp = t1 � t0.
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