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Abstract

We establish new, yet intimate relationships betweer?tdwic integers
2Z from arithmetics andligital circuits, finite and infinite, from electronics.

(a) Rational numbers with an odd denominator correspond to output only
synchronous circuits.

(b) Bit-wise 2ading mappings correspond to combinational circuits.

(c) On-line functionsyn € N,z € 2Z : f(z) = f(z mod 2™) (mod2"),
correspond to synchronous circuits.

(d) Continuous functiongZ +— 2Z, correspond to circuits with output
enable.

The proof is obtained by constructimgynchronous decision diagrans®D.
They generalize to sequential circuits what classical BDD constructs achieve
for combinational circuits.

From simple identities ovelZ , we derive both classical améwbit-serial
circuits for computing:{+, —, x, 1/(1 +2z),+/1 +8z}. Thecorrectnesof
each circuit directly follows from the 2adic definition of the corresponding
operator.

All but the adders (+—) above arenfinite. Yet, the use ofesetsignals
reduces all previously infinite operatorsfinite circuits.

We indicate which features from this abstract 2adic semantics help syn-
thesize some of the largest synchronous hardware designs ever implemented,
through the 2Z language.

Keywords: Synchronous, sequential, combinational circuit semantics and synthe-
sis. Bit-serial 2adic arithmetics, arbitrary precision. Periodic numbers. Bit-wise,
on-line, continuous functions. Enable, reset. Programmable Active Memories.



1 Introduction

Modern electronic circuits fall in two categoriemaloganddigital.

The dynamic analysis of analog circuits involves physical parameters, such as
currents and voltages, whose vatyec R vary continuously wittreal timet € R.
Carver Mead’s book [M89] provides an excellent introduction to analog circuits.

Digital circuits are characterized by a finite number of physical variables,
whose valuey; € B is identified with either zero or one through discretization:
say 0 when voltage: 1V and 1 when voltage 2V.

Digital circuits may further be classified asynchronousr synchronous In
asynchronous circuits, communication of values between the constituting units
may occur at any real instaht R.

Within synchronous circuits, all variables are sampled at integer multiples
(t = nAt for n € N) of the same global clock periakt. SettingAt = 1 through a
suitable choice of the physical units thus allows to idendifyital timet € N with
the set of natural numbers.

The present work is exclusively concerned with synchronous circuits, which
we characterize mathematically as follows:

Definition 1 (Digital Synchronous Circuit) Inasynchronous circuit’, the value
of any variablev € V(C) is a bit v; € B = {0,1} which may only change at
integer timet € N = {0,1,2,---}:

Vo e V(IC),teR,In=|t] e N: v = v, € B.

Here, |¢t] denotes the largest integer which is less than or equal té direct
consequence of definition 1 isthat all delays in a digital circuiexact integersin
particular,combinationalkircuits havezero delay the output response to changes
in the inputs is instantaneous; time plays no part in their mathematical analysis.
With synchronouga. k. a. sequential) circuits, changes in the digital values of
variables are equally instantaneous; they precisely occur at digital tinaehl.
Every physical implementation of such mathematical circuits has (hopefully very)
small delays, but (certainly) not zero delays. As a consequence, the physical
behavior matches its mathematical idealization only when operated on with a
clock whose period¢ > § exceeds the maximum physical delagcritical path).
Synchronous circuits naturally operate upofinite binary sequences: within
any computation performed by circu@@, each variablev € V(C) takes on
consecutive binary valueg, vy, - - - v¢, - - - € B as digital time progresses through
the natural numbers € N. Synchronous circuits map infinite binary sequences,
representing the successive input values at each clock tekN, into infinite
binary sequences, representing the corresponding output values.
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1.1 Hensel's Numbers

Infinite binary sequences have a rich mathematical structure, namely that of
the 2adic integers,Z, whose algebraic properties are presented in section 2.
Set,Z supports most of the usual operations over the ordinary integérs-
{-,-2,-1,0,1,2,---} hence the name. In addition, it supports all operations
over the subse of the natural numbers. In short, the 2adic integ&rare both
aboolean algebrd), ,U,N)and an integering (0, +, —, 1, X) (See proposition

1).

The p-adic integergZ were introduced around 1900 by K. Hensel [H13],
for each primep € N. They play a central role in arithmetic (see [A75] and
[K77]). Such numbers are obtained by extending indefinitely the ordinarygase
representation, as computed by the rule:

Bp(n) = (n|p)By(n+p) (1)

We usen + p to represent theuotientand = -|- p the remainderin the integer
divisionof n by p # 0, son = p X (n = p) + (n |- p) with 0 < (n |- p) < p. For
example, we compute the infinite binagy£ 2) representation of decimal number
22=2+4+16 by:

B3(22) = 011010---0--- = 501101(0).

In the above equality, subscriptindicates the representation base 2 as well as the
reading order, from low order bits to high order bits; tl#¢ denotes an infinite
(periodic) sequence of zeroes. Similarly, we find:

By(-7) = 100111---1--- = ,100(1),
Ba(3) = 0011---0011--- = ,(0011),
and By(3) = 11010---10--- = ,1(10).

In general, we represent treemanticvalue of each variable within each
synchronous circuit by its infinite binary expansion as a 2adic number:

Zvo...vt... — th2t'
teN

'put not all: we loose integer comparison, integer division, and exact division by an even number;



1.2 Synchronous Circuits

Synchronous circuits can all be built from two atomic gates,nhutiplexorand
theregister, also known as flip-flop.

Definition 2 (The Multiplexor ? € 2Z* — »Z) mux

The value of outpuin; € B at clock tick
t € N is determined from the three input

C
valuese, by, a; € B by: b
1
b |f Ct = ]-7 m
my =?(ce, by, ar) = { ai if cz =0 a

Note that: ?2€,b,a) = (c A b) V (-c A a) = if ¢ thenb elsea. Together with
0 = 2(0), the electrical ground andl = ,(1), the electrical power supply whose
bits are one at all times, the multiplexor providedbasisfor boolean algebra:
-b =?0,0,—-1),aV b="7(@,a,b)anda A b =?(a, b, a).

Definition 3 (The Register2x € ,Z — ,Z) reg

The outputr; of a register is 0 at initial time:rq = 0; for -
t > 1, itis equal to the valué;_, of its input, sampled at I, ] » r
the previous clock tickr; = ;1.

As we represent the input sequence by the 2adic intege}_, .\ i;2%, the 2adic
integero = >-, N 0:2! representing the output of the register is equal t6 2 x 1.
Complex synchronous circuits are constructed by wiring together a number of
muxes and registers. All registers agnchronousn that they share the same
global clock signal. In order to always ensure that our circuits have a well defined
synchronous semantigslefinition 1), it is sufficient to require that all purely
combinational pathes through the muxes in our circuits hafiei length. The
purpose of this restriction is to eliminate from consideration cyclic combinational
structures, such as=?(u, 0, 1) whose value isindefinedn the boolean domain.

Definition 4 Asynchronous circuif’ € C(?,2x)isasetV = V(C) =ZUMUTR
of digital variables composed of:

e InputsZ = {:[0],---,4[¢ — 1]} in finite number: = |Z|; they may take
arbitrary 2adic integer values.

e MuxesM = {m[0],---,m[n] -}, each is defined by a mux equation:

Ym e M,3ec,a,be V(C): m =?(,b,a).
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The mux-ordering< induced over the variableg(C) by
m =?(c, b, a) impliese < m,b < manda < m,

must bewell-founded: every descending chawi1] > --- > v[n] > ---is
finite.

e Registersk = {r[0],---,r[n],- - -}; each is defined by eegequation:

VreR,JEV(C): r=2xi.

The outputs® = {og,--,0,-1} C V(C) form afinite subseto = |O| of the
variablesy =TU MU R.

Note that definition 4 allows for infinite as well as finite circuits. When the graph
of a synchronous circuit contains loops, it is straightforward to verify from the
well-founded mux ordering that each loop through the circuit must traverse at least
one register.

It also follows that eaclinite synchronous circuit has a well definedtical
path §. This ensures that such circuits may be physically implemented. They
operate reliably with any synchronous clock of peristl > § greater than the
circuit’s largest delay. Such properties need not always be true of our forthcoming
infinite synchronous circuits.

From an arbitrary assignment of boolean values to the inputs, provided by
the 2adic integers$[j] = 3, N #[4]2° (for 0 < j < i = |Z]), we may compute,
from timet = 0,1,2,--- and so on, the values of each mux and reg in circuit
C € C(?,2x). The results are the 2adic intege®gj] = >, N o:[7]2¢ (for
0 < j < o = |0|) which represent the circuit’s output responses.

Example 1 (Register with initial value 1)
The circuit to the right computes o =1+2 x i

{7’ = 7(7’7 07 _1)7 —»(4 F)—»
where 2i = 2Xxi, i 1+2i
?(2;7 07 _1)}

o

In the following examples of synchronous circuits with constant inputs (or no
input), we are able to label each variable by its semantic value: it is given both in
decimal and in binary, with low order bit first and periodic part in parenthesis.

Example 2 The numberg2, 1 and—7, — % as circuits:



0 1 2 -6 11 22 3 3

0) 1(0) 01(0) 010(1) 1101(0) 01101(0 1(10)

-1 __ 2 _ -4 -7

(1) 0(1) 00(1) 100(1)

(0011)

In our schemas: circles denote inverters and squares denote registers with initial
valuezera A register with inverters on both sides (example 1) is recognized as
having initial valueone it computesl + 2z.

1.3 Summary of Results

Section 2 regroups some definitions and elementary results about the 2adic integers:
where boolean algebra meets binary arithmeti€oposition 2 confirms that, as
illustrated in examples 2, we can always label finite synchronous circuits which
haveconstantinputs by rational numbers with an odd denominator.

Section 3 classifies the mapping& — »Z over 2adic integers into three
inclusive sets: bit-wise, on-line and continuous functions.

Section 4 gives classical results about bit-wise functions. Through the BDD
construction of [A78] and [B86], we characterize them as finite combinational (a.
k. a. memoryless) circuits in theorem 1.

The synchronous decision diagran®D introduced in section 5 give a strict
generalization of thebinary decision diagram®$DD algorithm to sequential
circuits. It is used to prove in theorem 2 that a function is on-line if and only if it
may be computed by some synchronous circuits. The SDD algorithm is a novel
and powerful technique for the synthesis of synchronous circuits. We discuss
some of its applications and limitations.

Section 6 shows that atlontinuousfunctions over the 2adic integers may be
realized by synchronous circuits witutput enablgtheorem 3).

From simple identities over 2adic integers, we derive in section 7 both classical
andnewbit-serial circuits for computing:

{+7_7 X,l/(1+2$), V1 +8$}

In each case, theorrectnes®f the proposed implementation follows directly from
the 2adic definition of the corresponding operator.
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All but the adderg[+, —} above aranfinite. We use reset signals in order to
pipeline finite integer computations through arbitrary 2adic networks (theorem 4).
In this context, all previouslynfinite arithmetic circuits becomegnite, in section
8.

We conclude in section 9 with some applications of the present 3adiantics
to synchronous desigsynthesisn the language 2Z.

2 The 2adic integers,Z

While Hensel's construction applies for any prinpe we need only concern
ourselves with the cage= 2 of the 2adic integersZ for the purpose of studying
digital circuits. Thearithmetic properties of,Z are (almost) similar to those of
the p-adic integergZ for p > 2. Thelogical properties okZ are unique, a fact
which we emphasize in the following definition.

Definition 5 A 2adic integerB € ,Z is the limit of three equivalent infinite
sequences
B = lim 3bg---b, = lim b(n) = lim b{n},

respectively composed, for eashe N, of:
1. bitss,, € B, with b, = (B +27)]-2;
2. natural numbers(n) € N, with b(n) = B - 2™ = 3o pern br2F;
3. finite integer setg{n} C {0,1,---,n}, with b{n}={k <n: by =1}

Let us make explicit the meaning of the wdiahit in definition 5, by introducing
adistanceover binary sequences.

Definition 6 e Thevaluationv,(b) € N of a 2adic integew € ,Z is equiva-
lently, the:

1. index of the first non-zero bit in the binary representatio;of
2. largest power of two which dividég¢n), forn € N;
3. smallest element in the detn}, forn € N.

e Thenormof a 2adic integet: € ,Z is defined bys|z| = 27v2().

e Thedistancébetween 2adic integets y € »Z isthe norm of their difference:
2|z — gyl



Note thatv,(0) = oo SO p|z| = 0 if and only if z = 0, and0 < ,|z| < 1 for
z # 0. Norm ,|z| is related to the (soon to be defined) sum and product by:

(2) ole +y| < maz{alz|, 2|yl};
(i) 2|z X y| = 2|2| X 2|yl

Property (i), which is characteristic oftra-metricnorms (see [K77]) istronger
than the corresponding classical triangle inequality for real nuniRets + y| <
| + [y

It follows from definition 6 of the distance igZ, that thefinite approximants
2bo - - - b, = b(n) = b{n} converge to numbeB € ,Z according to:

Vn € N : 2|B - 2b0"'bn| = 2|B - b(n)| = 2|B — b{n}| S 2—n+1‘

As a consequence, each infinite binary sequehee (ap - - - a,, - - -) with a,, € B
for n € N is equalto theunique2adic integetd = 3 N an2™ of which itis the
base 2 representation (rule (1) where: 2). Two infinite binary sequences$, B
areequalA = B when,|A — B| = 0. This is equivalent to each of the following:

VneN: a, =b, & VneN: a(n) =b(n) < Vn € N: a{n} = b{n}.
This lets us use the following notations for representing eBch ,Z:

B = sbp--bpo- = Y. b2"= \/ b(n) = |J b{n}.
neN neN neN

One may choose either of the proposed representations - bits or integers or sets -
in order to introduce operations ov£L:

Definition7 Let A = V na(r) = U,ene{n} and B = V, Nb(n) =
UneN b{n} be 2adic integersi, B € ,Z. We define the operations:

e not A =U Nk <nt k¢ a{n}],
o Or AV B = U,N(a{n} U b{n}),
e and AN B = U,eN(a{n} N b{n}).
o plus A+ B =V, N(a(n) +b(n)) |- 27",
e minus A - B =V, N(a(n) - b(n)) | 27,
o times A x B =V, N(a(n) x b(n)) |- 2.



It follows from elementary set theory and arithmetic modeftd* that:
Proposition 1 (Structure of ,2)

1. The 2adic integer$,Z,—, V,A) form a boolean algebraisomorphic to
(2N,_, U, N). It containsall finite boolean algebraZ |- 2™ for n € N.

2. The 2adic integer§Z, +, —, x) form aring which contains the ordinary
integersZ and the odd denominator rationaks/1 + 2N as proper sub-rings.

Let us further characterize the setinclusi@ns Z/1 + 2N C ,Z, both arithmeti-
cally and in terms of synchronous circuits havicanstaninputs.

Proposition 2 Assertions (i), (i), (iii) and (iv) are equivalent:
(i) A 2adicintegerB = z € 5Z is an ordinary integerB € Z.
(i) 32€Z,VeecN: B =z (mod2*?).

(i) The binary representation oB = ,b¢ - --b;_1(b;) is ultimately constant
3l € N,Vk > 1 : b, = b;; here, [ +1 is the (ordinary) binary length of
z € Z, in two's complement representation.

(V) B = 3N b:2t is the output of somédinite acyclic synchronous circuit
having constant inputs, eithér= ,(0) or —1 = ,(1).

Assertions (v), (vi), (vii) and (viii) are equivalent:

(v) A 2adic integerB € ,Z is an odd denominator rationaB = % ¢
Z/1+2N.

(Vi) 3z€Z,de N,YkcN: Bx(1L+2d) =z (mod2*).

(vii) The binary representation aB = 3bg - - - b;_1(b; - - - b;+p_1) IS ultimately
periodic 32 € N,p e N+1, Vk > i bg = bgp.

(vii) B =3>,cN b;2t is the output of somnite synchronous circuit with constant
inputs.

The proof of this result can be found in the appendix section 11. The circuits
introduced there are precisely those constructed by the SDD procedure (forward
algorithm 2, section 5), upon constant (arity=0) ingf} = —5- € Z/1 +2N.

1+2n




It establishes a direct correspondence between the ultimately periodic binary
representation of an odd denominator rational, such as

22
= = »0101(110),

and its realization by a finite synchronous circuit containing examtigioop, such

as.
22
:

3 Mappings over 2adic integers

Computable functions over infinite binary sequengg&smay be split into three
classes.

Definition 8 A (unary) functionf € »Z +— 5Z over the 2adic integers mapping
z =3, N2 into f(z) € 2 Z is:

1. bit-wisewhenf(z) = 3, N 9(z:)2* for someg € B — B;
2. On'lineWhenf(m) = EtEN gt(mo, e mt)2t for Somegt c Bt+1 — B,

3. continuousvhenf(z) = 35, N 9¢(zo, - - -, Zm()2° for somem(t) € N and
g: € B™®)  B.

It is clear from this definition that each bit-wise function is on-line, and each
on-line function is continuous. Definition 8 is given for unary (single input)
functions; it extends to n-ary (n inputs) functions in a straightforward manner. For
say, two arguments, y € »Z, it becomes:

1. f(z,y) = 3N 9(@:, 4:)2" for someg € B? - B;
2. f(z,9) = XN ge(@o, - - -» 24, Yo, - - -, 9:)2" for someg, € B> — B;

3. f(IE, y) = EtEN gt(m07 s Tan(t), Yo, 0, ym(t))2t for Somem(t) € Nand
g; € B2® 1, B,

Let us comment on the terms of definition 8. For ease of notation, return to the
unary case.
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1. Bit-wise functions will naturally be associated with combinational (no
register) synchronous circuits in the next section 4. The multiplexor is
bit-wise; so are the three boolean operations and their compositions.

2. From definition 6 of the distance between 2adic integers, we see that a
function is on-line if and only if it is anorm contraction

Vo,y €221 o|f(z) = FH)l < 2z —yl. (2)

We prove in theorem 2 that on-line functions are precisely those computed
by synchronous circuits. The register and the arithmetic operatiprs x
are all on-line; none is bit-wise.

3. Expressed in terms of distances, our notion of continuity is equivalent to the
following classical definition:

Yn € N,Ve € oZ,9m = m(z,n) € N,Vy € oZ: 3)
olz — y| < 27" implies 5| f(z) — f(y)] < 27™.
Heine's theorem (see e.g. [A75]) shows that a functiocoistinuousover

a topologically compact set (namely the whole,@) if and only if it is
uniformly continuous That is to say, (3) is equivalent to:

Yn € N,dm = m(n) € N,Ve,y € »Z :

olz — y| < 27™ implies 5| f(z) — f(y)| < 27 ™. 4)

Example 3 (below) presents two functions, the Peano projections, which are
continuousyet not on-line: it will follow that each may be realized by a
synchronous circuit with output enable (see section 6); neither may be realized by
any synchronous circuit.

The test for zero function € ,Z — »Z defined byz(0) = 0 andz(z) = 1 for
z # 0 is not continuous at 0; it will therefore follow that is is not computable by
any digital circuit; nor byany form of computer for that matter. The relateti
defined byz'(0) = 0 andz’(2¥(1 + 2z)) = 27" is on-line, and so computable by
some synchronous circuit € C(?,2x).

Example 3 (Peano Pairing) Define theCartesian produck € »Z x 3Z — »Z
of 2adic integers byinterleavingthe binary representations of each operand.
The inverse first projectiomy € ,Z — »Z extracts theevenbits; the second
w1 € 2Z — 5Z theoddbits. They are computed by the recursive system:
w(a,b) = a|2+27(b,a~x2),
mo(a) = a|-2+2mp(a+4),

m(a) = wola+ 2).
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We easily verify thatva,b € 2Z : m(w(a,b)) = a, m1(7(a,b)) = b. Productr
establishes a one to one correspondaNce> N x N between natural numbers
and pairs of natural numbers; similarly for odd denominator ratioddls+ 2N;
similarly for the 2adic integergZ. While Peano’s Cartesian product C(?,2x)

is on-ling, neither ismy nor=y. We leave it as an interesting design exercise for
the reader, to implememntby some synchronous circuit.

4 Binary Decision Diagrams

Theorem 1 A function over the 2adic integers Ist-wiseif and only if it may be
computed by some combinational synchronous circuit (no register).

The multiplexor is bit-wise. Bit-wise functions are closed under composition.
So, the converse of the above equivalence is easy. In order to prove the direct
implication, we must show that each boolean functipre B® — B may be
implemented with finitely many multiplexors, and no register.

This classical result is obtained by constructibmary decision diagrams
BDD, as introduced by [A78] and [B86].

Algorithm 1 (BDD) Let f € B® — B be some boolean function with inputs.
A combinational circuitBD D(f) € C(?)for computingf may be constructed as
follows.

1. Recursively decompogeby Shannon's formula:

f(m07 T2, mn—l) :?(mn—17 f(m07 T2, 1)7 f(m07 T2, 0))

What we get at the end of this process is a complete binary tree composed of
2™ — 1 muxes, whose leaves are labelled by2hentries inf’s truth table.

2. Systematically share all equal sub-expressions generated during this process.

While phase 2 of the BDD procedure is not required in order to establish theorem
1, it will be used latter. As shown by R. Bryant [B86], it leads ta@mal form
for combinational functions, in which all mux controls are primary inputs.

A further reduction in the size of the constructed circuit results from also
sharing sub-expressions which are related by logical negation. This was proposed
by J. P. Billon who preserves the normal form property by restricting inverters to
only appear on branches where the synthesized function is one on all zeroes inputs
(see [B8T]).
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Example 4 (FullAdder) The following 5 muxes and 2 inverters result from ap-
plying algorithm BDD to the synthesis of a full-adder.
FullAdd(a,b,c) = (s,7)
where {o = ?0,b,a),
e ?@,a,b),
?(c,o0,€),
—|a,,
?0,a,a),
_|IE,
?,z,z)}

From now on, a trapezoid with two + signs inside denotes a full-adder.

wn B 8 Qs
I

5 Synchronous Decision Diagrams

Theorem 2 A function over the 2adic integers @-lineif and only if it may be
computed by some synchronous circuit.

The converse implication states that the outputs of a synchronous circuit at time
t € N may only depend upon the values of its inputs during the fickbck cycles;
this is obvious.

The direct implication is proved by constructirgynchronous decision dia-
grams(SDD algorithm 2) which generalize the (BDD algorithm 1) to the synthesis
of (sequential) circuits with memory.

The basic step in the SDD construction expresses each on-line furfction
the form:

f(2) =2@, b1 +2fD(z), bo + 2V (2)), (5)

for some bitsyg, b, € B and on-line functiong®, fO € ,Z — ,Z. From:

f(:E) = Z ft(m07 o '7mt)2t7
tcN

we see thaly = fo(0), b1 = fo(1); so we have, fob € B:

f(b)(m) = Z fee1(zo, - - -, @4, b)2t,
teN

Functionsf© and () tabulatewhat the value off(z) will be when thdastinput
bit of z become$. We call them th@rder one predictorsf function f, forb = 0
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andb = 1. Through the same process, we compute four order two predictors
f®)o) — f(bob1) for pob, = 00, 01,10 and11.

By indefinite iteration, we construct the infinipeedictor treefor f. It may be
drawn as:

X

Y
'7

B NCEEY

_|t©o11)_lo f(12) |7

_{f@on)_r7 £01) |_{o

—|t(001)_o f(1)

f(x)

=|f(110)=1 f(0) o

—{f(010)=° £(10) |I7

(2007 £(00) |—|o

NN

—|f(000) _Jo

In this schema, each rectangle denotes a multiplexor with control ixfabel 1
on the high input, 0 on low); each square denotes a register: with initial value 0
when the label inside is zero, one otherwise (example 1).

Algorithm 2 (SDD) Let f € 3Z — »Z be some on-line function defined by

f(:E) = Z ft(m07 o '7mt)2t7
teN

with f; € B! — B for t € N. A synchronous circuit SDD@) C(?,2x) for
computingf may be constructed as follows:

1. Build the infinite predictor tree fof.
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2. Systematically share all equal sub-expressions generated during this process,
as well as their logical negations.

Example 5 (Serial increment) The following circuit results from applying the
SDD procedure to the synthesis of the increment fundtier:.

X

{SDD(1 +z) = ?(,v, ),
v 2x?@@,v, )}
Note the relatiorv = —2v2@)*1 wherev, (z)
is the valuation ofe (definition 6).

I

Notice the sharing of sub-expressions (predictors) which are the logical negation
of one another.

To simplify notations, the SDD procedure is presented in the generic case of a
one input ¢ = 1), one output on-line function. The generalization to an arbitrary
number of inputsk > 0 and outputs is direct. Examples 2 show the result of the
procedure for zero inpuk(= 0), and example 6 below has two inpuis£ 2).

When applied to a combinational function, the SDD procedure (algorithm 2)
generates the same circuit as the BDD procedure (algorithm 1).

Example 6 (SDD Adder) Apply the SDD procedure to the synthesis of a serial
adder (see section 7.1) computiag y. The synthesized adder SDDX y) is:

y

While it is by nature aninfinite process, algorithm SDD(f) generates a finite
synchronous circuit (in finite time) if and only if functiofi may be defined by
somefinite automaton

Proposition 3 (SDD Termination) An on-line functionf may be computed by
some finite synchronous circuit if and only if the SDD algorithm 2 terminates, i.e.
function f has finitely many predictors.
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Proof: If the SDD procedure terminates, functigrmay be computed by fnite
synchronous circuit, namely SDD(f).
Conversely, leff € ,Z +— 2Z be some on-line function:

y=f(z) = f(z $t2t) = Z fe(zo, - - ‘:mt)2t = Z yt2t;
tcN teN teN

assume that it is computed by a finite synchronous cirguit C(?,2x), with n
registers:R = {r[1],---,r[nr]}. This implies that, fol < k < n, each register is
defined by an equation of the form[k] = 2 x Si(z, R), whereS;, € B**! i B
is a combinational function; in addition, the outpffe) = O(z, R) is also given
by some combinational functiof? € B™*! — B.

Define thestate of the registersat time ¢t € N by the natural number
Ry = 3 cpen Telk]2%, SO thatRy = 0, Rys1 = S(z¢, Ry) andy; = O(z, Ry).

Consider the two first order predictog®) = f®(z), defined by equation (5)
for b = 0 andb = 1. Rewritey® = fi41(zo, - - -, 2, b) in terms of the state at time
t+1, and obtainy® = O, Rys1).

The circuit definingf® has therefore theamestate functionS as f, and a
different output function. By induction, this holds of each predictorfof All
predictors may thus be defined by circuits which all share the same state functions
and registers; they only differ by their output functions.

Termination of the SDD procedure follows, as there are only finitely many
such combinational output functio® € B**! - B. =

The SDD procedure providesrmal formfor synchronous circuits. In this
normal form the control input of each mux is one of the circuit’s primary inputs,
except for the inverters which arise from sharing logical negations. As for BDDs,
this guarantees that SDD circuits having a small number of primary inputs are
electrically fast by construction.

The SDD yields excellent results when applied to the synthesis of some simple
functions, such as +2z,1 + z, 2z, z +y andz — y.

R. Bryant [B86] has shown that BDD synthesis is not applicable in practice to
the synthesis of multipliers. The same holds for SDD. As a point in case, $5)D(
has 8 muxes and 5 registers; the circuit given in example 7 has only 2 registers,
and requires only five muxes.

The arithmetic functionsx, i(z) = ;ﬁ and r(z) = 4/1+8z are on-line.
Although they are amenable to the SDD algorithm, we construct in section 7 much
smaller bit-serial circuits for implementing such operations.
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6 Circuits with output enable

By theorem 2, we know that there exists no synchronous circuit which computes
the output sequence+2 = ,zqz, - - - inresponse to the input = szgzizs - - - .
In general, no synchronous circuit is capable of producing strictly less output bits
than it consumes inputs. To get around this problem, experienced designers add a
signalen € V(C) which is used tanablethe outputs from circuit C: it is set to
en; = 1 on cycles € N when the outputs of C are significant; it is settg = 0
on cycles when the outputs of C are irrelevant.

By this convention, we can now compute- 2 through the identity circuit with

output enableen = ,0(1) = —2. The same identity circuit with output enable
en = 5(10) = —1/3 computes Peano’s first projection(zozizs - -z-- ) =
zoy - - - Tog - - -. INdeed, these are special cases of the following general result:

Theorem 3 Every continuous functiorf € ,Z — ,Z is computable by some
synchronous circuit with output enable.

Proof: By (4), we may expresg as

F@) =D 2 fu(zo - Tm@))-
keN

Since a boolean function witk inputs may be considered as a function with
k + 1 inputs which ignores the last one, we assume without loss of generality that
m(k) < m(k+1)forall & € N.

For eacht € N such thatm(k) < t < m(k + 1), definegy(zo---2¢) =
Jr(zo - - - zm)). Functiong is on-lineby construction:

g(z) = Z 2jgt(ﬂco ).
teN

We know from theorem 2 that g may thus be computed by some synchronous
circuit Cy € C(?,2x). It follows that functionf is computed byC, with output

enable:
en = Z omi(k)
keN

Let us compose circuits with output enables. SupposehatC(?,2x) has

output enable eA. We want to connect the inputs df to the outputs3 of some
other synchronous circuit with output enableBerThe rules are:
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1. Replace every register = 2 x b in A by the enabled registet =
2x?(enB,b,a).

2. Set the output enable of the outputs of Aeto= en.A A enB.

7 Arithmetic circuits

We now introduce bit-serial synchronous circuits for computing the arithmetic
operations +—, x, ;ﬁ and+/1 + 8z. They form thecore of arithmetic circuits:
from each of these atomic synchronous circuits, we may derive an arbitrary number
of parallel implementation through time unfolding (see [L92]), and/or optimize
them through retiming (see [LS91]).

Theonlyfinite circuits in this section are the serial + andsince:

Proposition 4 Any synchronous circuit for squaring a 2adic integer contains
infinitely many registers.

Proof: Suppose the contrary, namely some cir@it C(?, 2x) with n registers
produces output? for each inputz € ,Z. Circuit C may reach at mos2™
different statesS. There ar@™*! integersinthe sek = {y ¢ N: y = 2"*1z,0 <

z < 2"*1}. Take the inputs to circui€ from setl, and consider what happens at
timet = 2n +2:

1. all outputs produced up to this point are zero, si@te squaring;

2. there are more elements Inthan possible states; hence there must exist
two different numbersy # y’ in I which bring C' into the samestate
Son+2(y) = S2n+2(y’), on inputsy andy’. All subsequent inputs are zero.
Thus, all subsequent outputs must be equals. We 6qy¢ = C(y’), yet
y? # y'%, a contradiction. m

7.1 Addition c r
The basic arithmetic invariant of the full-adder istb+c = b S
s + 2r. Solve this system by letting = 2r, and define a

addition by:s = a+bwhere 6,¢) = FullAdd(a,b,2 X c).

7.2 Substraction

Binary substraction is computed as- b = a + (—5), with c '
—b = 1+ -b the opposite ofh. Define substraction by g d
d=a—-bwhere ¢,c) = FullAdd(a,-b,1+2 X ¢).
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From now on, a circle with a + inside denotes a serial adder; a serial subtracter
with —.
7.3 Serial-Parallel Multiplier

In order to multiply inputz € »Z by some 2adic intege€ = 3, N c[k]2%,
consider the following elementary identity:

Cxz=([0]+2C+2)xz=(-c0]) Az+(C+2)x 2z.

_ — 2 — l —
It provides a direct justi-| x o3 0 —cf2] 0 ~cfl] 0 ~c[0] 0

fication for the following ] - Y| .

infinite multiplier:
lololele

When C is constant, slices corresponding d»] = 0 simplify to a single
register; muxes may all be eliminated. FOr = sco---¢c;—1(c; -+ ci4p-1) @
constant periodic rational, the multiplier becomes finite withp slices: the input
to the last slice is the output from the i-th slice. WhEn= s¢q - - - ce_1(ce) is @
constantinteger, the multiplier becomes identical to the classical two’s complement
Lyon’s multiplier [L76], after retiming.

Example 7 The following circuits compute respectivdlyx =z = ,11(0) x z and
/3 = 51(10) X z:

7.4 Serial-Serial Multiplier

Letz = szp---2¢---andy = 2y0---y; - - - be the operands to be multiplied in
order to compute serially the prodyets X y = apg - - - p: - - - The invariant of
this synchronous multiplieM € C(?,2x) is:

M2 z,y) = 2%z + 2°) x (y + 2.
From the elementary identity in the 2adic ring,
(& +2) X (y+2°) = &ye + 224 (y + 27 + 2y, (2 + 2°71) +4(2 + 2 x (y + 2°),
we derive the recurrence relation,

M2 z,y) = A2, 2, y) +2M (2" 2, y),
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whereA is the auxiliary function:
2P A2 2,y) = alt] = z4ys + 224(y + 277 + 2y, (2 + 27Y). (6)
The final product is obtained as= M(1,z,y) = >_,cN a[t]2t, where:
M(c,z,y) = Ale,2,y) +2M(2 x ¢, z,y).

n
c[n]=2 c[1]=2 c[0]=1
%’—De EE—
y
X | [
The resulting cellular I oy I | |
structure looks like:
A SN A
a[n] al1] a[0]
In order to design cell, rewrite (6) as
Ale,z,y)=(@AyAc)tz A(=2(cAy) +yA(-2(cAz))
which is equal t®ta[t], provided that = 2%.
c
This equation translates to the finite cir- i
cuit to the right, where triangles denote X y
andgates, and half-circlesr gates. X_ gl a
"o

This design leads to more economical circuits than the Atrubin (see [K81]) or
the Chen and Willoner constructions [CW79]. From here on, a circle witk an
inside denotes this serial-serial multiplier.

7.5 Odd Inverse

An even 2adic integel = 2b’ € sZ hasnoinverseb™ € »Z: indeed2b x b~ is
even andb x b~ # 1 forall b~. So,Z is not a field, but it comes close: we can
define theodd inverse; = 1/(1 — 2b) € »Z of any 2adic integeb € ,Z by the
formula:

i:ﬁ = ) (@b 7)
keN
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Rewriting (7) asi(1 — 2b) = 1, we obtain

1 = 1+2¢b which translates to the synchronous

circuit to the right. While it looks finite in the b » OE: d:bllg';Zb)
picture, this is yet another infinite circuit since

it contains the multiplier from the previous
section.

7.6 Square Root

An odd 2adic integer has a square root if and only if it is congruent to one modulo
8. Such a numbet + 8b € ,Z has exactly two square roots:# +8b) -4 = 1

and (+/1 + 8b) -|-4 = 3. We compute the formey1 + 86 = 1 +4r so as to verify:
(1+47)? = 1+8r+167% = 1+8b. Simplifying this last expression to+2r2 = b,

we see that the square rob# 4r = +4/1 +8b is given byr = b — 2r% which
translates to the following (infinite) synchronous circuit:

b 1+4r

—LI=d P =
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8 Synchronous circuits with Reset
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Consider an arbitrary synchronous network, such as the one drawn above
which computes the fast discrete cosine transform for appropriate coefficients
sl,---,87,¢l,---,¢7 € N. How can we pipe-line a sequence of finite pre-
cision integer computations through such a network? By simply adjoining a
(synchronousj)esetinput, and replacing each register equatios 2 x ¢ in the
network by the register with reset:

r = 2X?(reset,0,1).

Theorem 4 In order to pipe-line a networkf € ,Z — ,Z over integer input
sequencesyi; - - -4¢ - - - € Z whose binary lengths vary in timé& € N, 3m(n) €
N : 4, < 2™ we adjoin the following reset signal to all registers:

rst=1+) 2m®,
teN

With this reset, networlf now computes:

FOY a2ty = ) (£Gy) |- 2m )2t
teN teN
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Note that all the operators which have so far received an infinite definition, such as
multiplication, becomdinite as soon as the numbet = maz_ \m(n) is itself

finite; indeed, we can truncate the whole networkmabits since all final results

are correct modul@™*!. The reset signals of two circuits get or-ed together,
during composition.

9 Conclusion

With G. Berry and F. Bourdoncle, we have used this 2adic theory as the semantic
basis for a new circuit language called 2Z [BVB94].

Our main motivation is quite practicalProgrammable active memoBAM
technology, as introduced by [BRV89], is based on large arrays of configurable
logic. It already permits to implement synchronous designs, such as those reported
in [BRV93] and [SV93] which are much larger than whatever may currently fit
on single silicon chips: well over a million of active gates, excluding RAM.
We have learned from experience that the main obstacle to the development of
PAM technology comes from the time required to program such large innovative
hardware designs.

We expect the 2Z language to help overcome this bottleneck, as it incorporates
a number of advanced synthesis features, based on the view of 2adic synchronous
logic presented here. Before commenting on these synthesis features, let us
provide the reader with a feel for the language through a small example.

The following 2Z source code generates the counters from [V91] whose
operating speed is, for all practical purposadependentf the counter’s length.

SlowCounter[n] (incr) = (s[n],ovfl)
where
c[0]=incr;
for k<n do
c[k+1] = c[k] and s[k];
skl = reg(clk] xor s[k])
end for;
ovfl = c[n]
end where;

FastCounter[n] (incr) = s[n]

where
k=3; // this parameter is technology-dependent //
if n<k
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then (s,ovfl) = SlowCounter[n] (incr);

else (s[0..k-1],en) = SlowCounter[k] (incr);
enable en in

(s[k..n-1],cn) = SlowCounter[n-k](-1);
end enable;
ovfl = cn and en;
end if
end where

The schema resulting from to the executiorFaktCounter [6] is:

imW ® II ‘?j]. |- ‘?:]»-

s[0] s(11 _4

Let us summarize the circuit synthesis techniques which 2Z incorporates, in
relation to the present work.

1. The language knows 2adic rationals. The expressitari=#(0011), or
equivalentlyctrl=-4/5 will generate the proper circuit from example 2,
based on proposition 2 and the SDD algorithm. This provides a valuable
help in synthesizing the local control structures normally associated with
each part of the data pathes. Note that 2Z truly harallesrary precision

2. The language knows bit-serial arithmetics, as exposed in section 7. Writing
c=a-b will generate the proper serial substract, ai¥®52*c the proper
multiplier. This is useful for synthesizing data pathes from graphs of
synchronous operators.

3. The language knows about enable, reset and how to compose such powerful
non local circuit constructions.

4. Finally, the 2Z language knows about fine grain boolean logic synthesis
and retiming (see [LS91]). Both are mandatory within the electrical
optimization of delays in PAM designs. In the 2adic framework, they
express commutation properties between mux, reg and arbitrary functions.
These can be stated, for two input functions, by:

Proposition5 e A continuous functiorf € ,Z? — ,Z commutes with
the mux,

Va, b: ¢, d: ec ZZ : ?(a’7 f(ba C), f(d7 e)) = f(?(a’7 b: d)7 ?(a’7 ¢, e)):

if and only if it is a combinational function.
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¢ An on-line functionf € ,Z% — ,Z commutes with the register,
Ya,b € 2Z: 2f(a,b) = f(2a,2b),

if and only if £(0,0) = 0.

Let us now consider some open directions for further research.

¢ As pointed out earlier, the SDD procedure is an interesting candidate for
compiling finite state machine descriptions (hopefully produced by higher
level systems) into real hardware (silicon or FPGA). It should be instructive
in this respect to compare the resulting SDD implementation with the direct
techniques reported by [B92], and others.

¢ We expect some CAD systems to incorporate rules for circuit verification,
having to do with thaing properties of 2adic algebra; not just the boolean
part. The need for such tools is clear when one considers the problem of
proving functionally equivalent, such structurally different multipliers as,
say the one from section 7.4, and the fully parallel one from [V83]. This
appears to require the full 2adic apparatus introduced here; any proof through
independent means has to discover (prove) and use the ring laws somewhere
along the line; and their relations to boolean algebra, as expressed by
propositions 1 and 2.

¢ While finite circuits play a central role, both from a theoretical and practical
point of view, we have not been able to quantitatively characterize them:
how many registers does each finite circuit truly requires?
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11 Proof of Proposition 2

(i) Let I € N be the least integer such that < 2'. After computingl bits

of z by rule 1, we reach the statd3,(z) L -21_1Ba(z + 21). When
z > 0, we havez ~ 2! = 0, soBy(z ~ 2') = ,(0); whenz < 0, we have
Z ol = -1, SOBZ(Z -+ 21) = 2(1)
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(iiiy Conversely,z = 5zp- - z1-1(21) = Y s 262% — 2!z is an integer € Z.

(iv) Integer z = 92¢---2_1(2) is computed by the following acyclic syn-
chronous circuit, withl registers: »[l — 1] = z_1 +2 x z;,7[l — 2] =
zi—1 +2xr[l—1],---,7[0] = 29 +2 x r[1]. The inputs—z; = »(z),0, -1
are constant, and the outputig].

Conversely, it follows from definitions 2,3 of mux and reg that an acyclic

synchronous circuit witlh € N registers produces a constant output after at
most! cycles, upon constant input.

(vi) Let B = 5 be an odd rational, witk € Z andn € N +1. Define the
periodp = ps(1 + 2n) of the denominator + 2n to be the order of 2 in the
multiplicative groupZ -|- (1 + 2n) of the integers moduld + 2n, namely the

smallest natural number such that:
22 =1 (mod1 +2n).

Letg = (27 — 1) = (1 +2n), the corresponding remainder being 0. Compute
I = zq = (2? — 1) the quotient, and® = zq |- (2° — 1) = 2po - - - pPp—1 the
remainder in the integer division afx ¢ by 2P — 1, so as to write:

_ 2 _;. P
1+2n 2 _ 1

The binary representation @5£- = »(po - - -p,—1) is purely periodic. It
follows that the binary representation Bfis ultimately periodic:b, = bg+p
fork > i+p.

(vii) Let number B = 3bg---b;_1(b; - - - bi+p_1) be ultimately periodi¢c and
consider the integer$ = 3bg---b;_1 and P = 3b;---bj4p_1. Number
B € Z/1+2Nis the odd rational:

2t p

B=1- .
2r -1

(viii) The periodic rationalB = 3bg---b;_1(b; - - - bj+p—1) is computed by the
following synchronous circuit, witli + p registers:r[i + p — 1] = bj4p—1 +
2xrli,r[i+p —2] = bjrp_2+2Xr[i+p—3],---,7[0] = bo+2 x r[1].
The inputsd and—1 are constants, and the outpui[8].

Conversely, le#[0], - - -, 7[n — 1] be then registers of a finite synchronous
circuit C € C(?,2x). Define thestateof C' at timet by the integer
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St:

S o<k<n Te[€]2%. This number is bounded by, < 2"; so, there

must exist two instant8 < ¢, < t; < 2V where we find the circuit in the
samestate: Sy, = S, . With a constant input, the output must therefore be
periOdiCB = 9bg--- bi—l(bz' s b'i+p—1) withz = ¢g andp =t —tp. =
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