
Minimal Non-Deterministic xor Automata

Jean Vuillemin, Nicolas Gamma
Ecole Normale Supérieure,

45 rue d’Ulm, 75230 Paris, France.

September 14, 2009

Keywords: Minimal Xor Automata, Mirror Reversal, Minimal Non-Deterministic
Automata, Regular Languages

Abstract
A word w ∈ B∗ in a regular language L ⊆ B∗ is or accepted by a non-deterministic finite

automaton ∪-NFA iff (if and only if) there is a path along w from an initial state to a final state.
Word w is xor accepted by the same non-deterministic automaton ⊕-NFA iff the number of such
pathes is odd. In the special case of deterministic (and more generally unambiguous) automata,
accepting pathes are unique and both (or /xor acceptance) notions coincide.

While minimal size ∪-NFA exist to or accept regular language L, they are not unique [17] and
no polynomial time algorithm is known to compute their size [10], or to decide equivalence between
such classical NFA.

We show that the situation is exponentially better with (non-classical) ⊕-NFA . The dimension
of language L is characterized (in equivalent ways) by d = dim L: an integer which is finite iff L
is regular. It relates to the states s = |mda L| in the minimal deterministic automaton for L by

log2(s) ≤ d ≤ s. (1)

The dimension d is the minimal number of states in any ⊕-NFA for L. All minimal (d = dim L
states) ⊕-NFA for L are similar to the minimal deterministic automaton X = mxa L (the unique such
automaton in diagonal form). Automaton mxa can equivalently be derived from the mda through
replacing the s− d linearly dependent states by non-deterministic transitions. Each automaton X
and M = mda L is a strong normal form SNF : L = L′ ⇔ mxa L = mxa L′ ⇔ mda L = mda L′.

The dimension of a regular language L is invariant dim L = dim ρL by mirror (word reversal
ρ). The minimal mirror M = mxa ρL ⊕-NFA derives from the minimal X = mxa L in linear time.
By contrast, the mda is sometimes exponentially related to its mirror.

Through matrix representation, we construct the minimal mxa L in time O(n3) and memory
O(n2), from any representation of L by finite automata (or regular expression) with n states
(or symbols). The complexity comparison favors mxa over mda in all regular operations (sum,
concatenation, star, mirror, negation), with an exponential gain when d = O(log s).

The minimal mxa L is directly translated into efficient software & hardware recognizers for

language L. In the special case of a finite language L, the synthesized memory-less (combinational)

Boolean circuit is competitive

1 Introduction

Regular languages are at the core of computer science. In theory, Kleene’s
theorem [13] characterizes regular languages by equivalent representations as
finite Regular Expressions RE, Deterministic Finite Automaton DFA and Non-
deterministic Finite Automaton NFA. In practice, applications such as text/web
searching, speech recognition/synthesis [14] and language understanding [9] all
hinge on efficient manipulation of very large automata.

A DFA can be efficiently [?] reduced to its equivalent Minimal Determin-
istic Automaton. The MDA(L) is a Strong Normal Form: it is unique and
characteristic of the regular language: L = L′ ⇔ MDA(L) = MDA(L′).

1

The functions N ∈ B∗ 7→ N+ and W ∈ N+ 7→ B∗ are recursively defined by:

w ∈ B∗

N(ε) = 1
N(0 · w) = 2N(w)
N(1 · w) = 1 + 2N(w)

n ∈ N+ = {n ∈ N : n > 0}
W(1) = ε

W(2n) = 0 ·W(n)
W(1 + 2n) = 1 ·W(n)

(2)

They are respective inverses: n = NW(n) ∈ N+ and w = WN(w) ∈ B∗.

n = N(w) 1 2 3 4 5 6 7 8 9 · · ·
w = W(n) ε 0 1 00 10 01 11 000 100 · · ·

Figure 1: One-to-one correspondence B∗ ⇀↽ N+.

DFA ∪-NFA ⊕-NFA
A ∪B quad lin quad
A⊕B quad quad lin
A ∩B quad quad quad
A ·B quad lin lin
A∗ quad? lin lin
ρA exp lin lin

With such SNF [2], one maps different states of the MDA to different com-
puter memory addresses, and equivalent states to a single shared memory ad-
dress. Testing for state equivalence is reduced to testing equality of memory
addresses, in constant time. The MDA is a natural implementation choice for
applications which require a fast equivalence test between regular languages.

The number of states s = |MDAL| is a key complexity measure for regular
language L: integer m = l2(s) gives the minimal memory (in bits) necessary
(and sufficient) for any Digital Synchronous Circuit DSC to recognize L by hard-
ware, and the least memory m required by any equivalent software recognition.

2 preliminaries

Very few minimal non-deterministic finite automata NFA are known, for good
reasons [10]. Some were found through exhaustive search, up to 5 states [5,
18]; others through mathematical arguments [16]. Yet minimizing NFAs has
remained computationally intractable [11] for over half a century [12].

We show that the situation is quite different when we consider the xor
variant ⊕-NFA of the classical or acceptance by ∪-NFA (def. 2). In general,
NFA a (resp. regular expression RE e) accepts word w ∈ B∗ with multiplicity
a+(w) ∈ N (resp. e+(w) ∈ N). The multiplicity of w in automaton a is the
number a+(w) = |{w : i

w7→ f}| of successful pathes (from initial i to final state
f) along word w in the graph of a. The multiplicity of w in regular expression

2

e is the number e+(w) of ways to parse w according to e.
[18] a+ ∈ B∗ 7→ N

Ex. 1 Our regular work language R is (equally) defined by: the (un-ambiguous
R = λ∪E4 = λ⊕E4) regular expression E4 = (1 + 0 · (1 + 0 · 0))∗ · (ε + 0); the
(equivalent un-ambiguous R = λ∪A4 = λ⊕A4) automaton A4 = mda R, as

presented by the matrices A4 = ([1000],




0100
0010
1000
0001


 ,




1000
1000
0001
0001


 ,




1
1
0
0


) or by

the graph
1 0

1

0 1

0

0+1

.

3 Words & Languages

In a first reading, our theory is just presented for the binary alphabet B = {0, 1}.
Languages are sets of words L ⊆ B∗. Words are binary B∗ = {ε, 0, 1, 00, 10, 01 · · ·}.
The empty word ε has length 0 = |ε|. The empty set of word is noted ∅ = {}.

3.1 Binary Word Number

In fig. 1, word w ∈ B∗ is numbered by n = N(w) ∈ N+, and conversely w =
W(n). One-to-one correspondence (2) lets us freely import/export word/integer
operations.

Length of integer n ∈ N+ is the length of word Wn ∈ B∗: |n| = |Wn| =
blog2 nc.

Order maps integer order < to the (suffix) lexicographic order ≺ over words:

Nw < Nw′ ⇔ w ≺ w′ ⇔
{ |w| < |w′|,
|w| = |w′|&(w = u · 0 · v, w′ = u′ · 1 · v) for u, u′, v ∈ B∗.

Catenate positive integers n,m ∈ N+ by: n ·m = N(Wn ·Wm).

Mirror ρn ∈ N+ integer n ∈ N+ through word mirror: ρn = NρW(n). Word
mirror is defined by ε = ρ(ε), b = ρb for b ∈ B, and by ρ(u · v) = ρv · ρu
for u, v ∈ B∗.

3.2 Arbitrary Alphabet

In a second reading, all results generalize to an alphabet Σ = {0, · · · , k − 1} of
arbitrary size k > 0. Words Σ∗ are numbered in suffix lexicographic order by

N(w1 · · ·wn) = 1 +
∑

j<n

(1 + wj+1)kj = kn +
∑

j<n

wj+1k
j . (3)

3

The language O ⊂ {0}∗ over the one-letter alphabet {0} is equivalently defined
by: O = {0n : (n mod 7) ∈ {0, 1, 2, 4}}; the graph of mda (O) is drawn above

to the left, that of mxa (O) = ([100],




010
001
101


 ,




1
1
1


) to the right.

Figure 2: Single letter alphabet, an example.

Eilenberg [6] calls (3) the Russian correspondence and (1) is the special case
k = 2.

Before proceeding to the second reading, replace throughout: B by Σ, +2
by +k, ÷2 by ÷k, and (1) by (3); once properly done, all claimed results hold
for k > 0.

3.3 Language Table

Definition 1 The table of a language L ⊆ B∗ is the characteristic infinite

bit-vector τL = [N 7→ L1
N] defined, for N ∈ N+ by L1

N =
{

1 ⇔ WN ∈ L
0 ⇔ WN /∈ L

.

For example, the table of R (ex. 1) is τR = [111011110110111110001 · · ·]. Since
w ∈ L ⇔ L1

Nw = 1 (def. 1), table τL = [N 7→ L1
N] is a (first infinite) SNF :

L = L′ ⇔ τL = τL′.

The mirror table τρL = [N 7→ LN
1 = L1

ρN] is a second infinite SNF, the truth-
matrix a third.

3.4 Truth Matrix

Definition 2 The truth-matrix of language L ⊆ B∗ is µL = [Lr
c : r, c ∈ N+],

where

Lr
c =

{
1 ⇔ W(ρr · c) ∈ L
0 ⇔ W(ρr · c) /∈ L

for r, c ∈ N+.

The first row L1
1··· of µL is table τL. The first column is the mirror τρL =

[L1···
1]tr. Each entry in µL is equal to a single bit in the first row/column, by

the rules

Lb+2r
c = Lr

b+2c for b ∈ B, or their equivalent Lr
c = L1

ρr·c = Lρc·r
1 . (4)

It follows that (ρL)r
c = Lc

r and the truth-matrix of the mirror is the transposed
matrix:

µρL = (µL)tr. (5)

4

µR =




1110111101 · · ·
1011101100 · · ·
1110111101 · · ·
0101010001 · · ·
1110111101 · · ·
1011101100 · · ·
1110111101 · · ·
1110111101 · · ·
0000000000 · · ·

· · ·




. (6)

Figure 3: The truth-matrix of language R (ex. 1).

Row L2
1··· = τ(0− · L) of µL is the table of the 0-suffix language 0− · L = {w :

0 ·w ∈ L}. Column L1···
2 = L ·0− tabulates the 0-prefix L ·0− = {w : w ·0 ∈ L}.

Def. 2 implies that:

Proposition 1 Row r = Nu of matrix µL (def. 2) is the table τ(u− · L) of
the u = Wn suffix language u− · L = {w ∈ B∗ : ρu · w ∈ L}. Column c = Nw
tabulates L · w− = ρw−ρL. ¦

4 Regular Languages

Proposition 2 Let r = |R(L)| count the (different) rows R(L) = {Lr
1··· : r >

0} in the truth-matrix µL of L ⊆ B∗, and c = |C(L)| the columns C(L) = {L1···
c :

c > 0}. Then:

• L is regular iff r < ∞, and r = |mda L| is the number of states in mda L.

• L is regular iff c < ∞, and the mirror ρL has c = |mda ρL| states.

Proof: Automata theory ([6], chap. III) shows that the suffixes (prop. 1) of
a language L are finite suffix(L) = {L1 · · ·Lr} iff L is regular. The suffixes
of a regular L correspond one-to-one [6] to the r = |mda L| states and to the
r (different) rows of matrix µL. By mirror (5), the states of mda ρL are the
prefixes of L. ¦

For example, the number of (different) rows in matrix µR (ex. 1, fig 3) is
equal to 4 = |mda R|. Language Mn = B∗1Bn (sec. 5.4) has |mda Mn| =
2n+1 exponentially bigger than its mirror |mda ρMn| = n + 3.

Note 1 The truth-matrix becomes the Hankel matrix defined in [7] if we forget
mirror ρ in (4). Rows of the Hankel matrix [7] thus permute those of our truth-
matrix.

5

4.1 Automata as Matrices

Non-empty NDAs are represented by graphs, or their adjacency matrices [6].

Definition 3 Non-deterministic automaton A = (n, I, T (), F) is presented by:

• n ∈ N+ is the number of states n = |A|.
• I ∈ N[1, n] is the row representing (the multiplicity of) initial states.

• T (b) ∈ N[n, n] are the transition matrices for b ∈ B.

• F ∈ N[n, 1] is the column representing (the multiplicity of) final states.

Transition T (w) ∈ N[n, n] extends T () from letters to words w ∈ B∗ by:

T (ε) = Idn = [δr
c : 1 ≤ r, c ≤ n] is the n× n identity matrix;

T (u · v) = T (u) · T (v) is the integer matrix product, for u, v ∈ B∗. (7)

Definition 4 The multiplicity A(w) ∈ N of word w ∈ B∗ in NDA A =
(n, I, T (), F) is defined by the matrix expression A(w) = trace (I · T (w) · F).

Multiplicity A(w) ∈ N counts [15, 6] the number of paths labeled by w ∈ B∗

which connect initial to final states in the graph of A.

Definition 5 NDA A or / xor accepts two (in general different) languages:

λ∪A = {w ∈ B∗ : A(w) > 0} and

λ⊕A = {w ∈ B∗ : 1 = A(w) (mod 2)}.
Deterministic automata are unambiguous [6]: ∀w ∈ B∗ : D(w) ∈ {0, 1}. For
unambiguous automata, both acceptances coincide λ∪D = λ⊕D. It follows [6]
that xor accepted languages coincide with Kleene’s [13] classical (or accepted)
regular languages.

The or /xor languages accepted by A are different iff some word w ∈ B∗

has an even non-zero multiplicity: A(w) = 2n for n > 0. For example in
C = mxa R (ex. 4), word 00 has multiplicity 2 = C(00) and R = λ⊕C 6=
λ∪C = B∗.

Note 2 The or acceptance (def. 5) is the classical one ([6], ch. VI). Linear
automata are introduced by Schützenberger [15] and their dimension by Fliess
[7] over any field K. The xor acceptance (def. 5) specializes [7] to the binary
field K = F2.

Ex. 2 (Minimal NDA for R) The mda R (ex. 1) is accessible, but not
co-accessible [6]. It is trimmed [6] to the equivalent un-ambiguous NDA R =

λ⊕A3 = λ∪A3, presented by matrices A3 = ([100],




010
001
100


 ,




100
100
000


 ,




1
1
0


)

or graph
1 0

1

0

0

. A computer enumeration of all languages recognized
by NDAs with 2 states or less indicates that R is not one of them. So, A3 is a
minimal NDA for R.

6

4.2 Minimal Deterministic Automaton

Definition 6 The minimal access path to row n of the truth-matrix µL of L
is

pL(n) =
{

n ⇔ ∀m < n : Lm
1··· 6= Ln

1···,
m′ ⇔ ∃m < n : Lm

1··· = Ln
1··· and m′ = pL(m).

By prop. 2, the minimal access paths mapL = {p1 · · · ps} = {pL(n) : n > 0}
of a regular language L canonically number the s = |R(L)| (different) rows of
µL in increasing order 1 = p1 < p2 < · · · < ps. The set is closed by suffix:
∀k > 1, ∃i < k : pi = pk ÷ 2.

Definition 7 (MDA) Let L be a regular language, with (def. 6) mapL =
{p1 · · · ps}. The mda L = (s, I, T (), F) is defined, for 1 ≤ r, c ≤ s by:

Ic = δ1
c , T (b)r

c = δr′
c where pr′ = pL(b + 2pr) for b ∈ B, F r = Lpr

1 .

D = mda L is a finite (s = |mapL| states) SNF for regular language L =
λ∪D = λ⊕D.

4.3 Accepted Language

Definition 8 The row-access-matrix R = ram(A) of NDXA A = (n, I, T (), F)
is the matrix R ∈ F2[∞, n] whose r-th row is Rr = I · T (Wρr), for r ∈ N+.
The c-th column of the column-access-matrix C = cam(A) = cam(ρA)tr of A
is Cc = T (Wc) · F .

By defs. 5 and 8, the product P = ram(A) · cam(A) is the truth-matrix:

Lr
c = P r

c = trace (I · T (ρr) · T (c) · F) (mod 2). (8)

Proposition 3 NDXA A accepts the regular language L iff the truth-matrix is
the product of the access matrices µL = ram(A) · cam(A). ¦

4.4 Atomic NDA Operations

The minimization procedure (alg. 1) relies on three atomic operations.

Definition 9 (Atomic Operations) We map NDA A = (n, I, T (), F) to the:

Transposed Atr = (n, F tr, T ′(), Itr) where T ′(b) = T (b)tr for b ∈ B.

Similar P ·A · P− = (n, I · P, T ′(), P− · F) where b ∈ B, T ′(b) = P− · T (b) · P
and P, P− ∈ N[n, n] form an inverse P · P− = Idn matrix pair.

Reduced A/ = (n − 1, I/, T ()/, F/) where M/ represents the removal of row
& column n− 1 from matrix M .

By (5), the transposed NDXA (def. 9) accepts the mirror: Atr(w) = A(ρw) for
w ∈ B∗. Similarity B = P · A · P− preserves multiplicity: B(w) = A(w) for
w ∈ B∗. Reduction preserves acceptance in alg. 1, as columns n of I and T (b)
are null for b ∈ B.

7

5 Linearly Independent Automata

By prop. 2, the truth-matrix µL of a regular language L has finitely many
r = |mda L| = |R(L)| different rows. The vector space F2 〈R(L)〉 generated
by linear combinations (with coefficients in F2) of rows has a finite dimension:
d = dim F2 〈R(L)〉 ≤ r. The dual space generated by columns has the same
dimension: d = dim F2 〈C(L)〉 ≤ |mda ρL|.
Definition 10 The dimension d = dim (L) of language L ⊆ B∗ is the size of
the largest d× d sub-matrix of µL which has an odd determinant.

Proposition 4 The dimension of a language L is finite iff L is regular. The
dimension d = dim (L) of a regular language L is equal to:

(i) The rank of matrix µL over F2.

(ii) The dimension of the vector space F2 〈R(L)〉 generated by the rows of µL.

(iii) The dimension of the vector space F2 〈C(L)〉 generated by the columns.

(iv) The dimension of the mirror language d = dim (ρL).

Proof: Standard linear algebra shows that (i), (ii), (iii) are equivalent. (i) is
equivalent to def. 10, and to (iv) by (5). ¦

5.1 Regular Kernel

A refined version of def. 10 searches the truth-matrix µL of a regular language
L for its (unique) upper & left-most sub-matrix with full rank over F2.

Definition 11 Let L be a regular language of dimension d > 0 and truth-matrix
µL. The base rows are defined by Br(L) = {Lr1

1··· · · ·Lrd
1···}, where r1 = 1 and rj

is the least integer such that row L
rj

1··· is linearly independent from the previous:
L

rj

1··· /∈ F2

〈
Lr1

1··· · · ·Lrj−1
1···

〉
. Base columns Bc(L) = {L1···

c1
· · ·L1···

cd
} are mirrors

Bc(L) = Br(ρL.

Base rows (def. 11) form a subset Br(L) ⊆mapL of minimal access paths (def.
6).

Definition 12 The kernel of a regular language L is the d×d sub-matrix which
projects µL onto base rows & columns (def. 11) Br(L) & Bc(L):

kerL =




L1
1 · · ·L1

cd· · ·Lri
cj
· · ·

Lrd
1 · · ·Lrd

cd


 .

For example, kerR =
[

11
10

]
(ex. 6) is the upper-most 2× 2 sub-matrix of (6).

It follows from defs. 12 and 11 that all sub-matrices M = [Lhi
vj

: 1 ≤ i, j ≤ k]
of µL, either up (∃i : hi < ri) or left (∃i : vi < ci) of kerL have an even
determinant.

8

Proposition 5 Let L be a regular language with kernel matrix

K = ker L = [Lri
cj

: 1 ≤ i, j ≤ d].

1. The determinant of K is odd: detK ∈ 2N + 1.

2. Matrix K has an inverse K− ∈ F2[d, d] such that Idd = K ·K− (mod 2).

3. The kernel of the mirror language is the transposed kernel matrix. ¦
Definition 13 Let NDXA A = (d, I, T (), F) accept L = λ⊕A. The row-access-
base matrix R = rab(A) ∈ F2[d, n] is extracted from ram(A) at base rows
(def. 11) Br(L) = [r1 · · · rd]: Rk

1···n = I · T (Wρrk) for k ∈ [1 · · · d]. We define
cab(A) = rab(Atr)tr by mirror.

It follows from (8) and defs. 13, 12 that kerL = rab(A) · cab(A).

5.2 Minimal xor Automata

Definition 14 NDXA A is minimal if the number of states n = |A| = dim L
is equal to the dimension of the accepted language L = λ⊕A.

Minimal automata are trim [6], and characterized as follows:

Theorem 1 Let A be a NDXA with n = |A| states, and d = dim L be the
dimension of the accepted language L = λ⊕A. Then:

1. n ≥ d.

2. Automaton A is minimal (n = d) iff n = rank ram(A) = rank cam(A).

3. A minimal NDXA A is similar A′ = P ·A ·P− to any other minimal A′,
for some inverse Idd = P · P− (mod 2) matrix pair.

Proof: Prop. (3) shows that µL = ram(A) · cam(A). It follows that d =
rank µL ≤ rank ram(A) ≤ n and equality n = d holds iff n = rank ram(A) =
rank cam(A).

Matrix R = rab(A) ∈ F2[d, n] (def. 13) has rank d. If n = d, it has an
inverse. NDXA A is similar to C = R− ·A ·R and in turn to A′ = R′ ·C ·R′−,
for R′ = rab(A′). ¦
Note 3 Th. 1 is a special case (K = F2) of Fliess’ theorem, which is proved
in [7] for linear automata over arbitrary rings K.

Ex. 3 The minimal NDXA A2 = P · C · P− is similar to C = mxa L (ex.

4) through P =
[

10
11

]
= P− (mod 2). A2 = (2, [10],

[
11
10

]
,

[
10
00

]
,

[
1
0

]
)

is presented by matrices, or by graph
0+1

0

0

. We note the ambiguity:
R = λ⊕A2 6= λ∪A2 = B∗.

9

5.3 Canonical Form

Definition 15 Let L be a regular language of dimension d = dim L and kernel
K = ker L (def. 12). The canonical mxa L = (d, I, T (), F) is defined by:

• I = [10 · · · 0] ∈ F2[d, 1]

• T (b) = [Lb+2ri
cj

: 1 ≤ i, j ≤ d] ·K− for b ∈ B.

• F = [K1
1 · · ·K1

d]tr ∈ F2[1, d].

Defs. 3 and 15 imply that mxa L accepts L: for all w ∈ B∗

[L1
N(w)] = I · T (w) ·K · Itr = I · T (w) · F (mod 2). (9)

Ex. 4 The canonical C = mxa (R) = (2, [10],
[

01
11

]
,

[
10
10

]
,

[
1
1

]
) for R

(ex. 1) has graph

0+1

0 01

. We note the ambiguity: R = λ⊕C 6= λ∪C =
B∗.

Theorem 2 Let L be regular and C = mxa L (def. 15) its canonical NDXA.

(i) C is a finite SNF for L: mxa L = mxa L′ ⇔ L = L′.

(ii) C is the unique minimal automaton for L in diagonal form (def. 13):

rab(C) = Idd and cab(C) = kerL. (10)

Proof: Automaton C = mxa L is uniquely constructed (def. 15) to accept
language L = λ⊕C; thus mxa L = mxa L′ ⇔ L = L′. By th. 1, all minimal
automata for L are similar (def. 9), and C = mxa L is the unique one in
diagonal form rab(C) = Idd. It follows from kerL = rab(C) · cab(C) that
cab(C) = kerL. ¦

5.4 Examples

Fig. 4 compares, over five classes of regular languages L, the sizes of four finite
SNF for L: mda L, mda ρL, mxa L, the 2-degree (note 4) of L, and the min-
imal memory mem(L) = |s| (where s = |mda L|) in minimal memory circuits
[21] for L. In the corresponding circuit functions [19], operator z denotes the
unit delay element, zn the n bit shift-register, and cmn the n bit counter modulo
2n.

Note 4 For a binary alphabet, the third row L3
1··· = τ(1−L) of the truth-matrix

µL is identical to the automatic sequence associated to L ⊆ B∗ by [1, 4]. Al-
though L3 is not a normal form for L, [4] shows that the automatic sequence of

10

languageL function mda L mda ρL mxa L deg2 L memory
B∗1 x 3 2 2 0 0

0∗1(B∗0)∗ −x 3 5 3 1 1
B∗1Bn znx = 2nx 2n+1 n + 3 n + 2 n + 2 n + 1

B∗1Bn1B∗ 2n+1 + 1 2n+1 + 1 n + 3 n + 3 n + 2
(0 + (10∗)2

n

)∗ cmn(x) 2n 2n 2n 2n − 1 n

Figure 4: Sizes of canonical representations for some regular languages

a regular language is algebraic, i.e. root of some polynomial equation. It is fur-
ther shown in [20, 21] that table τL = L1

1··· is algebraic iff L is regular, and that
the characteristic P = pol (L) is a finite SNF : P is the minimal polynomial
which has table Y = τL for root 0 = P (Y) (mod 2).

Ex. 5 The formal power series Y (z) =
∑

n∈N Rn+1z
n for the truth table of

language R is root 0 = P (Y) of the characteristic polynomial [20] P = pol R:

P (Y) = 1 + Y + z(1 + z)Y 2 + z3Y 4.

The 2-degree of P is 2 = log2(4). By [21], here it has maximal value 2 = dim R.

6 Minimization Algorithm

Our algorithm proceeds à la Brzozowski [3]: a reverse traversal followed by a
direct one C = EDR(EDR(Atr))tr. Unlike [3], our minimal output C is non-
deterministic.

Algorithm 1 (Minimization Algorithm) The input is a n = |A| states NDXA
A which accepts the regular language L = λ⊕A.

1. Eliminate dependent columns of A & compute B = EDR(Atr) by alg. 2.

2. Eliminate dependent columns of B & compute C = EDR(Btr) by alg. 2.

Output C = mxa L: the canonical automaton (def. 15).

Ex. 6 Alg. 1 reduces A = mda R (ex. 1) to C = mxa R (ex. 4):

B = EDR(Atr) = (2, [11],
[

01
11

]
,

[
11
00

]
,

[
1
0

]
),

C = EDR(Btr) = (2, [10],
[

01
11

]
,

[
10
10

]
,

[
1
1

]
).

Theorem 3 The canonical C = mxa L of a regular language L = λ⊕A is
computed, from any NDXA A with n = |A| states, by alg. 1 in time O(n3) and
memory O(n2).

11

Proof: By lemma 3, B = EDR(Atr) is a mirror (λ⊕A = L, λ⊕B = ρL) with
r = |B| = rank ram(Atr) = rank cam(A) = rank ram(B) = rank cam(Btr)
states.

By lemma 3, C = EDR(Btr) is equivalent λ⊕C = L, with c = rank ram(Btr) =
rank cam(B) states. Since cam(Btr) has full-rank r and µL = ram(Btr) ·
cam(Btr) by prop. 3, the rank c = rank ram(Btr) = rank µL is equal to
d = dim L (def. 10).

By lemma 3, B is computed in time O(rn2) and memory O(n2), and C in
time O(dr2). Total time is O(n3), and memory O(n2) is shared between the two
passes. ¦

6.1 Eliminate Dependent Rows

Algorithm EDR eliminates linearly dependent rows/states from NDXA A.

Algorithm 2 (EDR) The input is NDXA A = (n, I, T (), F). The output
is the empty automaton ∅ (of size 0 = |∅|) if I = [0n] is null. Otherwise,
we first compute (r, P, B) = HNF (1, 0, 0, [0], A) by alg. 3. We reduce B =
(n, I ′, T ′(), F ′) to its first r rows & columns and output C = (r, I ′′, T ′′(), F ′′),
where I ′′ = I ′1···r and likewise for F ′′ and T ′′(b), b ∈ B.

Lemma 3 shows that EDR reduces A to r = |C| = rank ram(A) ≤ n = |A|
states.

6.2 Hermite Normal Form

Procedure HNF (alg. 3) is a variant over F2 of Hermite’s [8] normal form .

Algorithm 3 (HNF) The input is three numbers b, j, k, integer vector P =
[p1 · · · pk] and NDXA A = (n, I, T0, T1, F), all satisfying (11). The output is
recursively computed:

HNF (b, j, k, P, A) =





if (j > k) then (k, P, A) else
if (∃m ≥ k : 1 = Jm) then HNF (b′, j′, k + 1, Q, B)
else HNF (b′, j′, k, P, A),

where J = if j = 0 then I else T j
b , and T j

b = T j
1···n is row j of T = T (b);

(b′, j′) = if b = 0 then (1, j) else (0, j + 1);
Q = [p1 · · · pk q] for q = b + 2pj;
NDXA B = U ·A ·V is similar to A, for matrices (U, V) = P(k, m, J) given

by alg. 4.

Lemma 3 shows that HNF reduces A to r = |C| = rank ram(A) states in time
O(rn2) and memory O(n2). Efficiency comes from the sparseness of the chosen
pivots.

Algorithm 4 (Pivot) The input is two numbers k and m such that k ≤ m ≤
n, and a row-matrix J ∈ F2[1, n] such that 1 = Jm. The output (U, V) =
P(k, m, J) is the pair of inverse matrices U = P ·N and V = N · P defined by:

12

• Matrix P permutes columns k and m.

• Matrix N derives from the permuted R = J · P (with 1 = Rk) by:

Nr
c = if (r = k) then Rc else δr

c , for 1 ≤ r, c ≤ n.

6.3 Analysis of the Algorithms

The minimization algorithm 1 is presented top-down. It’s correctness proof is
best understood bottom-up, in order: pivot (alg. 4), HNF (alg. 3) and EDR
(alg. 2).

Lemma 1 For J ∈ F2[1 · · ·n] and m such that 1 = Jm, the matrices (U, V) =
P(k, m, J) computed by alg. 4 are inverse: Idn = U · V (mod 2). Pivot
V = J · U is diagonal:

V = [δk
c : 1 ≤ c ≤ n].

Proof: Permutation P and normalization N matrices in alg. 4 are self-inverse:
Idn = P · P = N · N (mod 2). So Idn = U · V (mod 2) and pivot V =
R ·N = J · U is diagonal. ¦
Lemma 2 The inputs (b, j, k, P = [p0 · · · pk], A = (n, I, T0, T1, F)) to alg. 3
satisfy:

b ∈ B, j ≤ k + 1 and k ≤ n = |A|;
sequence P = [p0 · · · pk] is increasing, 0 = p0 and pi < pi+1 for i < k,
and P is closed by suffix: ∀j > 0, ∃i < j : pi = pj ÷ 2.
for q = b + 2pj : v(q − 1) = h(k);
row r(pi) = [δi

c : 1 ≤ c ≤ n] is diagonal, for i ∈ [1 · · · k].

(11)

In (11), we let v(k) = F2 〈r(1) · · · r(k)〉 and h(k) = F2 〈r(p1) · · · r(pk)〉, where

r(k) = I · T (Wρk) (mod 2) ∈ F2[1, n] for k ∈ N+.

Proof: Conditions (11) are trivially satisfied at the initial call HNF (1, 0, 0, [0], A),
and they remain invariant through subsequent recursions: For q = b + 2pj the
row J computed by alg. 3 is J = r(q) by (11). Condition ∃m ≥ k : 1 = Jm

is thus equivalent to J /∈ h(k). Condition J ∈ h(k) implies that (11) holds for
(b′, j′, k, P,A), since v(q′ − 1) = h(k) with q′ = b′ + 2pj′ and (b′, j′) are the
successors of (b, j) in alg. 3. Condition J /∈ h(k) implies that (11) holds for
(b′, j′, k + 1, Q,B), by alg. 3 and lemma 1. ¦
Lemma 3 The output C = EDR(A) of alg. 2 is an equivalent NDXA λ⊕C =
λ⊕A of size r = |C| = rank ram(A). It is computed in O(rn2) bit-operations
and memory O(n2).

Proof: By lemma 2, the intermediate results (r, [p0p1 · · · pr], B) = HNF (1, 0, 0, [0], A)
in alg. 2 are such that: r = rank ram(A) ≤ n = |B| = |A|, and B is sim-
ilar to A. The row-access-matrix R = ram(B) has rank r = rank R, since

13

Rpi is diagonal for i ∈ [1 · · · r]. All columns r + 1 through n of R are null:
∀n > 0, c > r : Rn

c = 0. It follows that B is equivalent to the reduced output C,
without (useless) rows & columns [r + 1 · · ·n].

There are two types of recursive calls to HNF in alg. 3: the first increases
variable k, the second only increases b + 2j. There are r calls of the first type,
and at most 2r calls of the second, since b + 2j ≤ 2r. In both cases, vector J is
computed in n bit-operations. In addition, similarity U ·A·V is computed r times,
in O(n2) bit-operations due to the sparse nature of the pivot matrices U = N ·P
and V = N · P . Altogether, alg. 3 runs in time O(rn2). All successively
computed (similar) NDXA have size n. All can share space: similarities are
computed in-place, within a common pre-allocated O(n2) memory. ¦

7 Conclusion

The mxa is an attractive alternative to the mda : never bigger, sometimes
exponentially smaller. In theory, the mxa is superior to the mda in order to
represent, recognize, construct and automatically process regular languages. In
practice, this point has to be validated by real-world applications, possibly first
with Boolean functions.

While the canonical mxa has a minimal number of states, it need not have a
minimal number of edges (ex. 6 and 4). Finding a NDXA with minimal number
of states & edges in polynomial time remains an open problem.

Another question relates the structure of the characteristic 2-polynomial P =
pol L [20, 21] to that of mxa L, for a regular language L. It is shown in
[21] that the 2-degree of P (ex. 5) is bounded by the dimension of L (ex. 5,
fig. 4). Unlike the mxa , no efficient algorithms is known for constructing or
minimizing characteristic 2-polynomials.

Acknowledgments This work has benefited from valuable contributions by
Jean-Baptiste Note, and Gérard Huet.

References

[1] J. P. Allouche. Automates finis en théorie des nombres. Expositiones
Mathematicae, 5:239–266, 1987.

[2] R. E. Bryant. Symbolic boolean manipulations with ordered binary decision
diagrams. ACM Comp. Surveys, 24:293–318, 1992.

[3] J.A. Brzozowski. Canonical regular expressions and minimal state graphs
for definite events. Mathematical theory of automata, Brooklyn, Polytech-
nic Institute of Brooklyn, New York, (Symposia Series, 12):529–561, 1962.

[4] G. Christol, T. Kamae, M. Mendès France, and G. Rauzy. Suites
algèbriques, automates et substitutions. Bull. Soc. Math. France, pages
401–419, 1980.

14

[5] Michael Domaratzki, Derek Kisman, and Jeffrey Shallit. On the number
of distinct languages accepted by finite automata with n states. Journal of
Automata, Languages and Combinatorics, 7(4):469–486, 2002.

[6] S. Eilenberg. Automata, Languages, and Machines, volume I. Academic
Press, 1974.

[7] M. Fliess. Matrices de hankel. J. Math. pures et appl., 53:197–224, 1974.

[8] C. Hermite. Sur l’introduction des variables continues dans la theorie des
nombres. J. Reine Angew. Math., 41:191–216, 1851.

[9] G. Huet. Topics in Sanskrit Computational Linguistics, volume 5402.
Springer-Verlag Lecture Notes, eds. G. Huet A. Kulkarni P. Scharf,
2008.

[10] Tao Jiang and B. Ravikumar. Minimal nfa problems are hard. SIAM
Journal on Computing, 22(6):1117–1141, 1993.

[11] Tao Jiang and Bala Ravikumar. Minimal nfa problems are hard. In ICALP,
pages 629–640, 1991.

[12] T. Kameda and P. Weiner. On the state minimalization of nondeterminis-
tic finite. automata. IEEE Transactions on Computers, C-19(7):617–627,
September 1970.

[13] S. C. Kleene. Representation of events in nerve nets and finite automata.
eds. C. E. Shannon J. McCarthy, Princeton U. Press.

[14] M. Mohri. Weighted automata algorithms - in Handbook of weighted au-
tomata, eds. M. Droste and W. Kuich and H. Vogler. Springer, 2009.

[15] M. P. Schützenberger. On the definition of a family of automata. Informa-
tion and Control, 4:245–270, 1961.

[16] Hellis Tamm and Esko Ukkonen. Bideterministic automata and minimal
representations of regular languages. In CIAA, pages 61–71, 2003.

[17] Hellis Tamm and Esko Ukkonen. Bideterministic automata and minimal
representations of regular languages. Theor. Comput. Sci., 328(1-2):135–
149, 2004.

[18] Lynette van Zijl. Succinct descriptions of regular languages with binary
+-nfas. In CIAA, pages 72–82, 2003.

[19] J. Vuillemin. On circuits and numbers. IEEE Trans. on VLSI, 43:8:868–
879, 1994.

[20] J. Vuillemin. Finite circuits are characterized by 2-algebraic truth-tables. In
Advances in Computing Science - ASIAN 2000, volume 1961 of L.N.C.S.,
pages 1–12. Springer-Verlag, 2000.

15

[21] J. Vuillemin. Digital algebra and circuits. In N. Dershowitz, editor, Veri-
fication – Theory & Practice, volume 2772 of L. N. C. S., pages 733 – 746.
Springer-Verlag, 2004. Essays Dedicated to Zohar Manna on the Occasion
of his 64th Birthday.

16

