Minimal Non-Deterministic **xor** Automata

Jean Vuillemin, Nicolas Gamma Ecole Normale Supérieure, 45 rue d'Ulm, 75230 Paris, France.

September 14, 2009

Keywords: Minimal Xor Automata, Mirror Reversal, Minimal Non-Deterministic Automata, Regular Languages

Abstract

A word $w \in \mathbf{B}^*$ in a regular language $L \subseteq \mathbf{B}^*$ is *or* accepted by a non-deterministic finite automaton \cup -NFA iff (if and only if) there is a path along *w* from an initial state to a final state. Word *w* is *zor* accepted by the same non-deterministic automaton \oplus -NFA iff the number of such pathes is odd. In the special case of deterministic (and more generally unambiguous) automata, accepting pathes are unique and both (*or* /*zor* acceptance) notions coincide. While minimal size \cup -NFA exist to *or* accept regular language *L*, they are not unique [17] and no polynomial time algorithm is known to compute their size [10], or to decide equivalence between such classical NFA.

such classical NFA

We show that the situation is exponentially better with (non-classical) \oplus -NFA. The dimension of language L is characterized (in equivalent ways) by $d = \dim L$: an integer which is finite iff L is regular. It relates to the states $s = |\operatorname{mda} L|$ in the minimal deterministic automaton for L by

 $\log_2(s) \le d \le s.$ (1)

The dimension d is the minimal number of states in any \oplus -NFA for L. All minimal $(d = \dim L)$ states) \oplus -NFA for L are similar to the minimal deterministic automaton $X = \max a L$ (the unique such automaton in diagonal form). Automaton $\max a$ can equivalently be derived from the mda through replacing the s - d linearly dependent states by non-deterministic transitions. Each automaton X and $M = \operatorname{mda} L$ is a strong normal form SNF: $L = L' \Leftrightarrow \max L L = \max L' \Leftrightarrow \operatorname{mda} L = \operatorname{mda} L'$. The dimension of a regular language L is invariant dim $L = \dim \rho L$ by mirror (word reversal ρ). The minimal mirror $M = \max \rho L \oplus$ -NFA derives from the minimal $X = \max a L$ in linear time. By contrast, the mda is sometimes exponentially related to its mirror.

By contrast, the **mua** is sometimes exponentially related to its mirror. Through matrix representation, we construct the minimal $\mathbf{mxa} L$ in time $O(n^3)$ and memory $O(n^2)$, from any representation of L by finite automata (or regular expression) with n states (or symbols). The complexity comparison favors \mathbf{mxa} over \mathbf{mda} in all regular operations (sum, concatenation, star, mirror, negation), with an exponential gain when $d = O(\log s)$.

The minimal $\mathbf{mxa} \ L$ is directly translated into efficient software & hardware recognizers for language L. In the special case of a finite language L, the synthesized memory-less (combinational) Boolean circuit is competitive

1 Introduction

Regular languages are at the core of computer science. In theory, Kleene's theorem [13] characterizes regular languages by equivalent representations as finite Regular Expressions RE, Deterministic Finite Automaton DFA and Nondeterministic Finite Automaton NFA. In practice, applications such as text/web searching, speech recognition/synthesis [14] and language understanding [9] all hinge on efficient manipulation of very large automata.

A DFA can be efficiently [?] reduced to its equivalent Minimal Deterministic Automaton. The MDA(L) is a Strong Normal Form: it is unique and characteristic of the regular language: $L = L' \Leftrightarrow MDA(L) = MDA(L')$.

The functions $\mathbf{N} \in \mathbf{B}^* \mapsto \mathbf{N}^+$ and $\mathbf{w} \in \mathbf{N}^+ \mapsto \mathbf{B}^*$ are recursively defined by:

$$w \in \mathbf{B}^{*} \qquad n \in \mathbf{N}^{+} = \{n \in \mathbf{N} : n > 0\}$$

$$\mathbf{N}(\epsilon) = 1 \qquad \mathbf{w}(1) = \epsilon$$

$$\mathbf{N}(0 \cdot w) = 2\mathbf{N}(w) \qquad \mathbf{w}(2n) = 0 \cdot \mathbf{w}(n)$$

$$\mathbf{N}(1 \cdot w) = 1 + 2\mathbf{N}(w) \qquad \mathbf{w}(1 + 2n) = 1 \cdot \mathbf{w}(n)$$
(2)

They are respective inverses: $n = {}_{\mathbf{N}\mathbf{W}}(n) \in \mathbf{N}^+$ and $w = {}_{\mathbf{W}\mathbf{N}}(w) \in \mathbf{B}^*$.

$n = \mathbf{N}(w)$	1	2	3	4	5	6	7	8	9	• • •
$w = \mathbf{w}(n)$	ϵ	0	1	00	10	01	11	000	100	• • •

Figure	e 1: One-	to-one c	orrespond	ence $\mathbf{B}^* \rightleftharpoons$	• N ⁺ .
		DFA	∪-NFA	⊕-NFA	
	$A \cup B$	quad	lin	quad	
	$A \oplus B$	quad	quad	lin	

quad

lin

lin

lin

quad

lin

lin

lin

quad

quad

quad?

exp

 $A \cap B$

 $A \, \cdot B$

 A^*

 ρA

With such SNF [2], one maps different states of the MDA to different com-
puter memory addresses, and equivalent states to a single shared memory ad-
dress. Testing for state equivalence is reduced to testing equality of memory
addresses, in constant time. The MDA is a natural implementation choice for
applications which require a fast equivalence test between regular languages.

The number of states s = |MDAL| is a key complexity measure for regular language L: integer m = l2(s) gives the minimal memory (in bits) necessary (and sufficient) for any Digital Synchronous Circuit DSC to recognize L by hardware, and the least memory m required by any equivalent software recognition.

$\mathbf{2}$ preliminaries

Very few minimal non-deterministic finite automata NFA are known, for good reasons [10]. Some were found through exhaustive search, up to 5 states [5, 18]; others through mathematical arguments [16]. Yet minimizing NFAs has remained computationally intractable [11] for over half a century [12].

We show that the situation is quite different when we consider the *xor* variant \oplus -NFA of the classical **or** acceptance by \cup -NFA (def. 2). In general, NFA a (resp. regular expression RE e) accepts word $w \in \mathbf{B}^*$ with multiplicity $a_+(w) \in \mathbf{N}$ (resp. $e_+(w) \in \mathbf{N}$). The multiplicity of w in automaton a is the number $a_+(w) = |\{w : i \stackrel{w}{\mapsto} f\}|$ of successful pathes (from initial *i* to final state f) along word w in the graph of a. The multiplicity of w in regular expression

e is the number $e_+(w)$ of ways to parse *w* according to *e*. [18] $a_+ \in \mathbf{B}^* \mapsto \mathbf{N}$

Ex. 1 Our regular work language \mathbf{R} is (equally) defined by: the (un-ambiguous $\mathbf{R} = \lambda_{\cup} E4 = \lambda_{\oplus} E4$) regular expression $E4 = (1 + 0 \cdot (1 + 0 \cdot 0))^* \cdot (\epsilon + 0)$; the (equivalent un-ambiguous $\mathbf{R} = \lambda_{\cup}A4 = \lambda_{\oplus}A4$) automaton $A4 = \mathbf{mda} \mathbf{R}$, as 0100 1000 1 presented by the matrices A4 = ([1000], |0010 1000 1 , 1000 0001 0 0001 0001 0 the graph

3 Words & Languages

In a first reading, our theory is just presented for the binary alphabet $\mathbf{B} = \{0, 1\}$. Languages are sets of words $L \subseteq \mathbf{B}^*$. Words are binary $\mathbf{B}^* = \{\epsilon, 0, 1, 00, 10, 01 \cdots\}$. The empty word ϵ has length $0 = |\epsilon|$. The empty set of word is noted $\emptyset = \{\}$.

3.1 Binary Word Number

In fig. 1, word $w \in \mathbf{B}^*$ is numbered by $n = \mathbf{N}(w) \in \mathbf{N}^+$, and conversely $w = \mathbf{w}(n)$. One-to-one correspondence (2) lets us freely import/export word/integer operations.

Length of integer $n \in \mathbf{N}^+$ is the length of word $\mathbf{w}n \in \mathbf{B}^*$: $|n| = |\mathbf{w}n| = \lfloor \log_2 n \rfloor$.

Order maps integer order < to the (suffix) lexicographic order \prec over words:

$$\mathbf{N}w < \mathbf{N}w' \Leftrightarrow w \prec w' \Leftrightarrow \left\{ \begin{array}{c} |w| < |w'|, \\ |w| = |w'| \& (w = u \cdot 0 \cdot v, w' = u' \cdot 1 \cdot v) \text{ for } u, u', v \in \mathbf{B}^*. \end{array} \right.$$

Catenate positive integers $n, m \in \mathbf{N}^+$ by: $n \cdot m = \mathbf{N}(\mathbf{w}n \cdot \mathbf{w}m)$.

Mirror $\rho n \in \mathbf{N}^+$ integer $n \in \mathbf{N}^+$ through word mirror: $\rho n = {}_{\mathbf{N}}\rho_{\mathbf{W}}(n)$. Word mirror is defined by $\epsilon = \rho(\epsilon)$, $b = \rho b$ for $b \in \mathbf{B}$, and by $\rho(u \cdot v) = \rho v \cdot \rho u$ for $u, v \in \mathbf{B}^*$.

3.2 Arbitrary Alphabet

In a second reading, all results generalize to an alphabet $\Sigma = \{0, \dots, k-1\}$ of arbitrary size k > 0. Words Σ^* are numbered in *suffix lexicographic order* by

$$\mathbf{N}(w_1 \cdots w_n) = 1 + \sum_{j < n} (1 + w_{j+1})k^j = k^n + \sum_{j < n} w_{j+1}k^j.$$
(3)

The language $O \subset \{0\}^*$ over the one-letter alphabet $\{0\}$ is equivalently defined by: $O = \{0^n : (n \mod 7) \in \{0, 1, 2, 4\}\}$; the graph of **mda** (O) is drawn above to the left, that of **mxa** (O) = ([100], $\begin{bmatrix} 010\\001\\101 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$) to the right.

Figure 2: Single letter alphabet, an example.

Eilenberg [6] calls (3) the Russian correspondence and (1) is the special case k = 2.

Before proceeding to the second reading, replace throughout: **B** by Σ , +2 by +k, \div 2 by $\div k$, and (1) by (3); once properly done, all claimed results hold for k > 0.

3.3 Language Table

Definition 1 The table of a language $L \subseteq \mathbf{B}^*$ is the characteristic infinite bit-vector $\tau L = [\mathbf{n} \mapsto L^1_{\mathbf{N}}]$ defined, for $\mathbf{n} \in \mathbf{N}^+$ by $L^1_{\mathbf{N}} = \begin{cases} 1 \Leftrightarrow \mathbf{w} \mathbf{n} \in L \\ 0 \Leftrightarrow \mathbf{w} \mathbf{n} \notin L \end{cases}$.

For example, the table of **R** (ex. 1) is $\tau \mathbf{R} = [111011110110111110001\cdots]$. Since $w \in L \Leftrightarrow L^1_{\mathbf{N}w} = 1$ (def. 1), table $\tau L = [\mathbf{N} \mapsto L^1_{\mathbf{N}}]$ is a (first infinite) **SNF**:

$$L = L' \Leftrightarrow \tau L = \tau L'.$$

The mirror table $\tau \rho L = [\mathbf{N} \mapsto L_1^{\mathbf{N}} = L_{\rho \mathbf{N}}^1]$ is a second infinite SNF, the truthmatrix a third.

3.4 Truth Matrix

Definition 2 The truth-matrix of language $L \subseteq \mathbf{B}^*$ is $\mu L = [L_c^r : r, c \in \mathbf{N}^+]$, where

$$L_c^r = \begin{cases} 1 \Leftrightarrow \mathbf{w}(\rho r \cdot c) \in L \\ 0 \Leftrightarrow \mathbf{w}(\rho r \cdot c) \notin L \end{cases} \text{ for } r, c \in \mathbf{N}^+.$$

The first row $L_{1...}^1$ of μL is table τL . The first column is the mirror $\tau \rho L = [L_1^{1...}]^{\mathbf{tr}}$. Each entry in μL is equal to a single bit in the first row/column, by the rules

$$L_c^{b+2r} = L_{b+2c}^r \text{ for } b \in \mathbf{B}, \text{ or their equivalent } L_c^r = L_{\rho r \cdot c}^1 = L_1^{\rho c \cdot r}.$$
(4)

It follows that $(\rho L)_c^r = L_r^c$ and the truth-matrix of the mirror is the transposed matrix:

$$\mu\rho L = (\mu L)^{\mathbf{tr}}.\tag{5}$$

Figure 3: The truth-matrix of language \mathbf{R} (ex. 1).

Row $L_{1...}^2 = \tau(0^- \cdot L)$ of μL is the table of the 0-suffix language $0^- \cdot L = \{w : 0 \cdot w \in L\}$. Column $L_2^{1...} = L \cdot 0^-$ tabulates the 0-prefix $L \cdot 0^- = \{w : w \cdot 0 \in L\}$. Def. 2 implies that:

Proposition 1 Row $r = {}_{\mathsf{N}}u$ of matrix μL (def. 2) is the table $\tau(u^- \cdot L)$ of the $u = {}_{\mathsf{W}}n$ suffix language $u^- \cdot L = \{w \in \mathbf{B}^* : \rho u \cdot w \in L\}$. Column $c = {}_{\mathsf{N}}w$ tabulates $L \cdot w^- = \rho w^- \rho L$.

4 Regular Languages

Proposition 2 Let $r = |\mathcal{R}(L)|$ count the (different) rows $\mathcal{R}(L) = \{L_{1...}^r : r > 0\}$ in the truth-matrix μL of $L \subseteq \mathbf{B}^*$, and $c = |\mathcal{C}(L)|$ the columns $\mathcal{C}(L) = \{L_c^{1...} : c > 0\}$. Then:

- L is regular iff $r < \infty$, and $r = |\mathbf{mda} L|$ is the number of states in $\mathbf{mda} L$.
- L is regular iff $c < \infty$, and the mirror ρL has $c = |\mathbf{mda} \ \rho L|$ states.

Proof: Automata theory ([6], chap. III) shows that the suffixes (prop. 1) of a language L are finite suffix $(L) = \{L^1 \cdots L^r\}$ iff L is regular. The suffixes of a regular L correspond one-to-one [6] to the $r = |\mathbf{mda} L|$ states and to the r (different) rows of matrix μL . By mirror (5), the states of **mda** ρL are the prefixes of L.

For example, the number of (different) rows in matrix $\mu \mathbf{R}$ (ex. 1, fig 3) is equal to $4 = |\mathbf{mda R}|$. Language $M_n = \mathbf{B}^* \mathbf{1B}^n$ (sec. 5.4) has $|\mathbf{mda } M_n| = 2^{n+1}$ exponentially bigger than its mirror $|\mathbf{mda } \rho M_n| = n+3$.

Note 1 The truth-matrix becomes the Hankel matrix defined in [7] if we forget mirror ρ in (4). Rows of the Hankel matrix [7] thus permute those of our truth-matrix.

4.1 Automata as Matrices

Non-empty NDAs are represented by graphs, or their adjacency matrices [6]. **Definition 3** Non-deterministic automaton A = (n, I, T(), F) is presented by:

- $n \in \mathbf{N}^+$ is the number of states n = |A|.
- $I \in \mathbf{N}[1, n]$ is the row representing (the multiplicity of) initial states.
- $T(b) \in \mathbf{N}[n, n]$ are the transition matrices for $b \in \mathbf{B}$.
- $F \in \mathbf{N}[n, 1]$ is the column representing (the multiplicity of) final states.

Transition $T(w) \in \mathbf{N}[n, n]$ extends T() from letters to words $w \in \mathbf{B}^*$ by:

 $\begin{array}{rcl} T(\epsilon) &=& \mathbf{Id}_n = [\delta_c^r : 1 \leq r, c \leq n] \text{ is the } n \times n \text{ identity matrix;} \\ T(u \cdot v) &=& T(u) \cdot T(v) \text{ is the integer matrix product, for } u, v \in \mathbf{B}^*. \end{array}$ (7)

Definition 4 The multiplicity $A(w) \in \mathbf{N}$ of word $w \in \mathbf{B}^*$ in NDA A = (n, I, T(), F) is defined by the matrix expression $A(w) = \mathbf{trace} (I \cdot T(w) \cdot F)$. Multiplicity $A(w) \in \mathbf{N}$ counts [15, 6] the number of paths labeled by $w \in \mathbf{B}^*$ which connect initial to final states in the graph of A.

Definition 5 NDA A or / xor accepts two (in general different) languages:

 $\lambda_\cup A = \{w \in \mathbf{B}^*: \ A(w) > 0\} \ and$

 $\lambda_{\oplus}A = \{ w \in \mathbf{B}^* : 1 = A(w) \pmod{2} \}.$

Deterministic automata are unambiguous [6]: $\forall w \in \mathbf{B}^*$: $D(w) \in \{0, 1\}$. For unambiguous automata, both acceptances coincide $\lambda_{\cup}D = \lambda_{\oplus}D$. It follows [6] that **xor** accepted languages coincide with Kleene's [13] classical (**or** accepted) regular languages.

The or /xor languages accepted by A are different iff some word $w \in \mathbf{B}^*$ has an even non-zero multiplicity: A(w) = 2n for n > 0. For example in $C = \mathbf{mxa} \mathbf{R}$ (ex. 4), word 00 has multiplicity 2 = C(00) and $\mathbf{R} = \lambda_{\oplus}C \neq \lambda_{\cup}C = \mathbf{B}^*$.

Note 2 The or acceptance (def. 5) is the classical one ([6], ch. VI). Linear automata are introduced by Schützenberger [15] and their dimension by Fliess [7] over any field K. The **xor** acceptance (def. 5) specializes [7] to the binary field $K = \mathbf{F}_2$.

Ex. 2 (Minimal NDA for R) The mda R (ex. 1) is accessible, but not co-accessible [6]. It is trimmed [6] to the equivalent un-ambiguous NDA R =

 $\lambda_{\oplus}A_3 = \lambda_{\cup}A_3, \text{ presented by matrices } A3 = (\begin{bmatrix} 100 \end{bmatrix}, \begin{bmatrix} 010\\001\\100\\000 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\000 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix})$

or graph \bigvee . A computer enumeration of all languages recognized by NDAs with 2 states or less indicates that **R** is not one of them. So, A3 is a minimal NDA for **R**.

4.2 Minimal Deterministic Automaton

Definition 6 The minimal access path to row n of the truth-matrix μL of L is

$$\boldsymbol{p}_L(n) = \left\{ \begin{array}{l} n \Leftrightarrow \forall m < n: \ L_{1\dots}^m \neq L_{1\dots}^n, \\ m' \Leftrightarrow \exists m < n: \ L_{1\dots}^m = L_{1\dots}^n \ and \ m' = \boldsymbol{p}_L(m) \end{array} \right.$$

By prop. 2, the minimal access paths $map_L = \{p_1 \cdots p_s\} = \{p_L(n) : n > 0\}$ of a regular language L canonically number the $s = |\mathbf{R}(L)|$ (different) rows of μL in increasing order $1 = p_1 < p_2 < \cdots < p_s$. The set is closed by suffix: $\forall k > 1, \exists i < k : p_i = p_k \div 2$.

Definition 7 (MDA) Let L be a regular language, with (def. 6) $map_L = \{p_1 \cdots p_s\}$. The mda L = (s, I, T(), F) is defined, for $1 \le r, c \le s$ by:

$$I_c = \delta_c^1, T(b)_c^r = \delta_c^{r'}$$
 where $p_{r'} = p_L(b+2p_r)$ for $b \in \mathbf{B}, F^r = L_1^{p_r}$.

 $D = \mathbf{mda} \ L$ is a finite $(s = |\mathbf{map}_L| \text{ states}) \ \mathbf{SNF}$ for regular language $L = \lambda_{\cup} D = \lambda_{\oplus} D$.

4.3 Accepted Language

Definition 8 The row-access-matrix R = ram(A) of NDXA A = (n, I, T(), F)is the matrix $R \in \mathbf{F}_2[\infty, n]$ whose r-th row is $R^r = I \cdot T(\mathbf{w}\rho r)$, for $r \in \mathbf{N}^+$. The c-th column of the column-access-matrix $C = cam(A) = cam(\rho A)^{tr}$ of A is $C_c = T(\mathbf{w}c) \cdot F$.

By defs. 5 and 8, the product $P = ram(A) \cdot cam(A)$ is the truth-matrix:

$$L_c^r = P_c^r = \operatorname{trace}\left(I \cdot T(\rho r) \cdot T(c) \cdot F\right) \pmod{2}.$$
(8)

Proposition 3 NDXA A accepts the regular language L iff the truth-matrix is the product of the access matrices $\mu L = ram(A) \cdot cam(A)$.

4.4 Atomic NDA Operations

The minimization procedure (alg. 1) relies on three atomic operations.

Definition 9 (Atomic Operations) We map NDA A = (n, I, T(), F) to the:

Transposed $A^{tr} = (n, F^{tr}, T'(), I^{tr})$ where $T'(b) = T(b)^{tr}$ for $b \in \mathbf{B}$.

Similar $P \cdot A \cdot P^- = (n, I \cdot P, T'(), P^- \cdot F)$ where $b \in \mathbf{B}$, $T'(b) = P^- \cdot T(b) \cdot P$ and $P, P^- \in \mathbf{N}[n, n]$ form an inverse $P \cdot P^- = \mathbf{Id}_n$ matrix pair.

Reduced A = (n - 1, I/, T()/, F/) where M represents the removal of row \mathscr{E} column n - 1 from matrix M.

By (5), the transposed NDXA (def. 9) accepts the mirror: $A^{tr}(w) = A(\rho w)$ for $w \in \mathbf{B}^*$. Similarity $B = P \cdot A \cdot P^-$ preserves multiplicity: B(w) = A(w) for $w \in \mathbf{B}^*$. Reduction preserves acceptance in alg. 1, as columns n of I and T(b) are null for $b \in \mathbf{B}$.

5 Linearly Independent Automata

By prop. 2, the truth-matrix μL of a regular language L has finitely many $r = |\mathbf{mda} L| = |\mathcal{R}(L)|$ different rows. The vector space $\mathbf{F}_2 \langle \mathcal{R}(L) \rangle$ generated by linear combinations (with coefficients in \mathbf{F}_2) of rows has a finite dimension: $d = \dim \mathbf{F}_2 \langle \mathcal{R}(L) \rangle \leq r$. The dual space generated by columns has the same dimension: $d = \dim \mathbf{F}_2 \langle \mathcal{C}(L) \rangle \leq |\mathbf{mda} \rho L|$.

Definition 10 The dimension $d = \dim(L)$ of language $L \subseteq \mathbf{B}^*$ is the size of the largest $d \times d$ sub-matrix of μL which has an odd determinant.

Proposition 4 The dimension of a language L is finite iff L is regular. The dimension $d = \dim(L)$ of a regular language L is equal to:

- (i) The rank of matrix μL over \mathbf{F}_2 .
- (ii) The dimension of the vector space $\mathbf{F}_2 \langle \mathcal{R}(L) \rangle$ generated by the rows of μL .
- (iii) The dimension of the vector space $\mathbf{F}_2 \langle \mathcal{C}(L) \rangle$ generated by the columns.
- (iv) The dimension of the mirror language $d = \dim (\rho L)$.

Proof: Standard linear algebra shows that (i), (ii), (iii) are equivalent. (i) is equivalent to def. 10, and to (iv) by (5). \diamond

5.1 Regular Kernel

A refined version of def. 10 searches the truth-matrix μL of a regular language L for its (unique) upper & left-most sub-matrix with full rank over \mathbf{F}_2 .

Definition 11 Let *L* be a regular language of dimension d > 0 and truth-matrix μL . The base rows are defined by $\mathbf{B}_r(L) = \{L_{1...}^{r_1} \cdots L_{1...}^{r_d}\}$, where $r_1 = 1$ and r_j is the least integer such that row $L_{1...}^{r_j}$ is linearly independent from the previous: $L_{1...}^{r_j} \notin \mathbf{F}_2 \langle L_{1...}^{r_1} \cdots L_{1...}^{r_{j-1}} \rangle$. Base columns $\mathbf{B}_c(L) = \{L_{c_1}^{1...} \cdots L_{c_d}^{1...}\}$ are mirrors $\mathbf{B}_c(L) = \mathbf{B}_r(\rho L$.

Base rows (def. 11) form a subset $\mathbf{B}_r(L) \subseteq map_L$ of minimal access paths (def. 6).

Definition 12 The kernel of a regular language L is the $d \times d$ sub-matrix which projects μL onto base rows & columns (def. 11) $\mathbf{B}_r(L) \& \mathbf{B}_c(L)$:

$$\ker L = \begin{bmatrix} L_1^1 \cdots L_{c_d}^1 \\ \cdots L_{c_j}^{r_i} \cdots \\ L_1^{r_d} \cdots L_{c_d}^{r_d} \end{bmatrix}.$$

For example, ker $\mathbf{R} = \begin{bmatrix} 11\\ 10 \end{bmatrix}$ (ex. 6) is the upper-most 2×2 sub-matrix of (6).

It follows from defs. 12 and 11 that all sub-matrices $M = [L_{v_j}^{h_i} : 1 \le i, j \le k]$ of μL , either up $(\exists i : h_i < r_i)$ or left $(\exists i : v_i < c_i)$ of ker L have an even determinant.

Proposition 5 Let L be a regular language with kernel matrix

$$K = \ker L = [L_{c_i}^{r_i} : 1 \le i, j \le d].$$

- 1. The determinant of K is odd: det $K \in 2\mathbf{N} + 1$.
- 2. Matrix K has an inverse $K^- \in \mathbf{F}_2[d, d]$ such that $\mathbf{Id}_d = K \cdot K^- \pmod{2}$.
- 3. The kernel of the mirror language is the transposed kernel matrix.

 \diamond

Definition 13 Let NDXA A = (d, I, T(), F) accept $L = \lambda_{\oplus}A$. The row-accessbase matrix $R = \mathbf{rab}(A) \in \mathbf{F}_2[d, n]$ is extracted from $\mathbf{ram}(A)$ at base rows (def. 11) $\mathbf{B}_r(L) = [r_1 \cdots r_d]$: $R_{1 \cdots n}^k = I \cdot T(\mathbf{w}\rho r_k)$ for $k \in [1 \cdots d]$. We define $\mathbf{cab}(A) = \mathbf{rab}(A^{\mathbf{tr}})^{\mathbf{tr}}$ by mirror.

It follows from (8) and defs. 13, 12 that $\ker L = rab(A) \cdot cab(A)$.

5.2 Minimal xor Automata

Definition 14 NDXA A is minimal if the number of states $n = |A| = \dim L$ is equal to the dimension of the accepted language $L = \lambda_{\oplus} A$.

Minimal automata are trim [6], and characterized as follows:

Theorem 1 Let A be a NDXA with n = |A| states, and $d = \dim L$ be the dimension of the accepted language $L = \lambda_{\oplus} A$. Then:

- 1. $n \geq d$.
- 2. Automaton A is minimal (n = d) iff $n = \operatorname{rank} \operatorname{ram}(A) = \operatorname{rank} \operatorname{cam}(A)$.
- 3. A minimal NDXA A is similar $A' = P \cdot A \cdot P^-$ to any other minimal A', for some inverse $\mathbf{Id}_d = P \cdot P^- \pmod{2}$ matrix pair.

Proof: Prop. (3) shows that $\mu L = \operatorname{ram}(A) \cdot \operatorname{cam}(A)$. It follows that $d = \operatorname{rank} \mu L \leq \operatorname{rank} \operatorname{ram}(A) \leq n$ and equality n = d holds iff $n = \operatorname{rank} \operatorname{ram}(A) = \operatorname{rank} \operatorname{cam}(A)$.

Matrix $R = rab(A) \in \mathbf{F}_2[d, n]$ (def. 13) has rank d. If n = d, it has an inverse. NDXA A is similar to $C = R^- \cdot A \cdot R$ and in turn to $A' = R' \cdot C \cdot R'^-$, for R' = rab(A').

Note 3 Th. 1 is a special case $(K = \mathbf{F}_2)$ of Fliess' theorem, which is proved in [7] for linear automata over arbitrary rings K.

Ex. 3 The minimal NDXA $A_2 = P \cdot C \cdot P^-$ is similar to $C = \mathbf{mxa} L$ (ex. 4) through $P = \begin{bmatrix} 10\\11 \end{bmatrix} = P^- \pmod{2}$. $A_2 = (2, [10], \begin{bmatrix} 11\\10 \end{bmatrix}, \begin{bmatrix} 10\\00 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix})$

is presented by matrices, or by graph $\overset{0+1}{\frown}$. We note the ambiguity: $\mathbf{R} = \lambda_{\oplus} A_2 \neq \lambda_{\cup} A_2 = \mathbf{B}^*$.

5.3 Canonical Form

Definition 15 Let L be a regular language of dimension $d = \dim L$ and kernel $K = \ker L$ (def. 12). The canonical $\max L = (d, I, T(), F)$ is defined by:

- $I = [10 \cdots 0] \in \mathbf{F}_2[d, 1]$
- $T(b) = [L_{c_j}^{b+2r_i} : 1 \le i, j \le d] \cdot K^-$ for $b \in \mathbf{B}$.
- $F = [K_1^1 \cdots K_d^1]^{\operatorname{tr}} \in \mathbf{F}_2[1, d].$

Defs. 3 and 15 imply that **mxa** L accepts L: for all $w \in \mathbf{B}^*$

$$[L^{1}_{\mathbf{N}(w)}] = I \cdot T(w) \cdot K \cdot I^{\mathbf{tr}} = I \cdot T(w) \cdot F \pmod{2}.$$
(9)

Ex. 4 The canonical $C = \mathbf{mxa}$ (\mathbf{R}) = $(2, [10], \begin{bmatrix} 01\\11 \end{bmatrix}, \begin{bmatrix} 10\\10 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix})$ for \mathbf{R}

(ex. 1) has graph $(1 - 0)^{-0}$. We note the ambiguity: $\mathbf{R} = \lambda_{\oplus} C \neq \lambda_{\cup} C = \mathbf{B}^*$.

Theorem 2 Let L be regular and $C = \mathbf{mxa} \ L$ (def. 15) its canonical NDXA.

- (i) C is a finite SNF for L: $mxa \ L = mxa \ L' \Leftrightarrow L = L'$.
- (ii) C is the unique minimal automaton for L in diagonal form (def. 13):

$$rab(C) = Id_d and cab(C) = \ker L.$$
 (10)

Proof: Automaton $C = \mathbf{mxa} \ L$ is uniquely constructed (def. 15) to accept language $L = \lambda_{\oplus}C$; thus $\mathbf{mxa} \ L = \mathbf{mxa} \ L' \Leftrightarrow L = L'$. By th. 1, all minimal automata for L are similar (def. 9), and $C = \mathbf{mxa} \ L$ is the unique one in diagonal form $\mathbf{rab}(C) = \mathbf{Id}_d$. It follows from ker $L = \mathbf{rab}(C) \cdot \mathbf{cab}(C)$ that $\mathbf{cab}(C) = \text{ker } L$.

5.4 Examples

Fig. 4 compares, over five classes of regular languages L, the sizes of four finite **SNF** for L: **mda** L, **mda** ρL , **mxa** L, the 2-degree (note 4) of L, and the minimal memory mem(L) = |s| (where $s = |\mathbf{mda} L|$) in minimal memory circuits [21] for L. In the corresponding circuit functions [19], operator \mathbf{z} denotes the unit delay element, \mathbf{z}^n the n bit shift-register, and cm_n the n bit counter modulo 2^n .

Note 4 For a binary alphabet, the third row $L_{1...}^3 = \tau(1^-L)$ of the truth-matrix μL is identical to the automatic sequence associated to $L \subseteq \mathbf{B}^*$ by [1, 4]. Although L^3 is not a normal form for L, [4] shows that the automatic sequence of

languageL	function	mda L	mda ρL	mxa L	$\deg_2 L$	memory
\mathbf{B}^*1	x	3	2	2	0	0
$0^*1(\mathbf{B}^*0)^*$	-x	3	5	3	1	1
$\mathbf{B}^* \mathbf{1B}^n$	$\mathbf{z}^n x = 2^n x$	2^{n+1}	n+3	n+2	n+2	n+1
$\mathbf{B}^* 1 \mathbf{B}^n 1 \mathbf{B}^*$		$2^{n+1} + 1$	$2^{n+1} + 1$	n+3	n+3	n+2
$(0+(10^*)^{2^n})^*$	$cm_n(x)$	2^n	2^n	2^n	$2^n - 1$	n

Figure 4: Sizes of canonical representations for some regular languages

a regular language is algebraic, i.e. root of some polynomial equation. It is further shown in [20, 21] that table $\tau L = L_{1...}^1$ is algebraic iff L is regular, and that the characteristic $P = \mathbf{pol}(L)$ is a finite **SNF**: P is the minimal polynomial which has table $Y = \tau L$ for root $0 = P(Y) \pmod{2}$.

Ex. 5 The formal power series $Y(z) = \sum_{n \in \mathbb{N}} \mathbf{R}_{n+1} z^n$ for the truth table of language \mathbf{R} is root 0 = P(Y) of the characteristic polynomial [20] $P = \mathbf{pol} \mathbf{R}$:

$$P(Y) = 1 + Y + z(1+z)Y^2 + z^3Y^4.$$

The 2-degree of P is $2 = \log_2(4)$. By [21], here it has maximal value $2 = \dim \mathbf{R}$.

6 Minimization Algorithm

Our algorithm proceeds à la Brzozowski [3]: a reverse traversal followed by a direct one $C = EDR(EDR(A^{tr}))^{tr}$. Unlike [3], our minimal output C is non-deterministic.

Algorithm 1 (Minimization Algorithm) The input is a n = |A| states NDXA A which accepts the regular language $L = \lambda_{\oplus} A$.

1. Eliminate dependent columns of $A \ \mathcal{C}$ compute $B = EDR(A^{tr})$ by alg. 2.

2. Eliminate dependent columns of B & compute $C = EDR(B^{tr})$ by alg. 2.

Output $C = \mathbf{mxa} \ L$: the canonical automaton (def. 15).

Ex. 6 Alg. 1 reduces $A = \mathbf{mda} \mathbf{R}$ (ex. 1) to $C = \mathbf{mxa} \mathbf{R}$ (ex. 4):

$$B = EDR(A^{tr}) = (2, [11], \begin{bmatrix} 01\\11 \end{bmatrix}, \begin{bmatrix} 11\\00 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix}),$$
$$C = EDR(B^{tr}) = (2, [10], \begin{bmatrix} 01\\11 \end{bmatrix}, \begin{bmatrix} 10\\10 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix}).$$

Theorem 3 The canonical $C = \max L$ of a regular language $L = \lambda_{\oplus}A$ is computed, from any NDXA A with n = |A| states, by alg. 1 in time $O(n^3)$ and memory $O(n^2)$.

Proof: By lemma 3, $B = EDR(A^{tr})$ is a mirror $(\lambda_{\oplus}A = L, \lambda_{\oplus}B = \rho L)$ with $r = |B| = \operatorname{rank} ram(A^{tr}) = \operatorname{rank} cam(A) = \operatorname{rank} ram(B) = \operatorname{rank} cam(B^{tr})$ states.

By lemma 3, $C = EDR(B^{tr})$ is equivalent $\lambda_{\oplus}C = L$, with $c = \operatorname{rank} ram(B^{tr}) = \operatorname{rank} cam(B)$ states. Since $cam(B^{tr})$ has full-rank r and $\mu L = ram(B^{tr}) \cdot cam(B^{tr})$ by prop. 3, the rank $c = \operatorname{rank} ram(B^{tr}) = \operatorname{rank} \mu L$ is equal to $d = \dim L$ (def. 10).

By lemma 3, B is computed in time $O(rn^2)$ and memory $O(n^2)$, and C in time $O(dr^2)$. Total time is $O(n^3)$, and memory $O(n^2)$ is shared between the two passes.

6.1 Eliminate Dependent Rows

Algorithm **EDR** eliminates linearly dependent rows/states from NDXA A.

Algorithm 2 (EDR) The input is NDXA A = (n, I, T(), F). The output is the empty automaton \emptyset (of size $0 = |\emptyset|$) if $I = [0^n]$ is null. Otherwise, we first compute (r, P, B) = HNF(1, 0, 0, [0], A) by alg. 3. We reduce B = (n, I', T'(), F') to its first r rows & columns and output C = (r, I'', T''(), F''), where $I'' = I'_{1...r}$ and likewise for F'' and T''(b), $b \in \mathbf{B}$.

Lemma 3 shows that **EDR** reduces A to $r = |C| = \operatorname{rank} \operatorname{ram}(A) \le n = |A|$ states.

6.2 Hermite Normal Form

Procedure **HNF** (alg. 3) is a variant over \mathbf{F}_2 of Hermite's [8] normal form.

Algorithm 3 (HNF) The input is three numbers b, j, k, integer vector $P = [p_1 \cdots p_k]$ and NDXA $A = (n, I, T_0, T_1, F)$, all satisfying (11). The output is recursively computed:

$$\boldsymbol{HNF}(b, j, k, P, A) = \begin{cases} & \text{if } (j > k) \text{ then } (k, P, A) \text{ else} \\ & \text{if } (\exists m \ge k : 1 = J_m) \text{ then } \boldsymbol{HNF}(b', j', k + 1, Q, B) \\ & \text{else } \boldsymbol{HNF}(b', j', k, P, A), \end{cases}$$

where J = if j = 0 then I else T_b^j , and $T_b^j = T_{1...n}^j$ is row j of T = T(b); (b', j') = if b = 0 then (1, j) else (0, j + 1);

 $Q = [p_1 \cdots p_k q] \text{ for } q = b + 2p_j;$

NDXA $B = U \cdot A \cdot V$ is similar to A, for matrices $(U, V) = \mathbf{P}(k, m, J)$ given by alg. 4.

Lemma 3 shows that **HNF** reduces A to $r = |C| = \operatorname{rank} \operatorname{ram}(A)$ states in time $O(rn^2)$ and memory $O(n^2)$. Efficiency comes from the sparseness of the chosen pivots.

Algorithm 4 (Pivot) The input is two numbers k and m such that $k \leq m \leq n$, and a row-matrix $J \in \mathbf{F}_2[1, n]$ such that $1 = J_m$. The output $(U, V) = \mathbf{P}(k, m, J)$ is the pair of inverse matrices $U = P \cdot N$ and $V = N \cdot P$ defined by:

- Matrix P permutes columns k and m.
- Matrix N derives from the permuted $R = J \cdot P$ (with $1 = R_k$) by:

 $N_c^r = if(r = k)$ then R_c else δ_c^r , for $1 \le r, c \le n$.

6.3 Analysis of the Algorithms

The minimization algorithm 1 is presented top-down. It's correctness proof is best understood bottom-up, in order: pivot (alg. 4), HNF (alg. 3) and EDR (alg. 2).

Lemma 1 For $J \in \mathbf{F}_2[1 \cdots n]$ and m such that $1 = J_m$, the matrices $(U, V) = \mathbf{P}(k, m, J)$ computed by alg. 4 are inverse: $\mathbf{Id}_n = U \cdot V \pmod{2}$. Pivot $V = J \cdot U$ is diagonal:

$$V = [\delta_c^k : 1 \le c \le n]$$

Proof: Permutation P and normalization N matrices in alg. 4 are self-inverse: $\mathbf{Id}_n = P \cdot P = N \cdot N \pmod{2}$. So $\mathbf{Id}_n = U \cdot V \pmod{2}$ and pivot $V = R \cdot N = J \cdot U$ is diagonal.

Lemma 2 The inputs $(b, j, k, P = [p_0 \cdots p_k], A = (n, I, T_0, T_1, F))$ to alg. 3 satisfy:

 $b \in \mathbf{B}, \ j \le k+1 \ and \ k \le n = |A|;$ sequence $P = [p_0 \cdots p_k]$ is increasing, $0 = p_0$ and $p_i < p_{i+1}$ for i < k, and P is closed by suffix: $\forall j > 0, \exists i < j : p_i = p_j \div 2.$ (11) for $q = b + 2p_j : \mathbf{v}(q-1) = \mathbf{h}(k);$ row $\mathbf{r}(p_i) = [\delta_c^i : 1 \le c \le n]$ is diagonal, for $i \in [1 \cdots k].$

In (11), we let $\mathbf{v}(k) = \mathbf{F}_2 \langle \mathbf{r}(1) \cdots \mathbf{r}(k) \rangle$ and $\mathbf{h}(k) = \mathbf{F}_2 \langle \mathbf{r}(p_1) \cdots \mathbf{r}(p_k) \rangle$, where

$$\mathbf{r}(k) = I \cdot T(\mathbf{w}\rho k) \pmod{2} \in \mathbf{F}_2[1, n] \text{ for } k \in \mathbf{N}^+$$

Proof: Conditions (11) are trivially satisfied at the initial call HNF(1, 0, 0, [0], A), and they remain invariant through subsequent recursions: For $q = b + 2p_j$ the row J computed by alg. 3 is $J = \mathbf{r}(q)$ by (11). Condition $\exists m \ge k : 1 = J_m$ is thus equivalent to $J \notin \mathbf{h}(k)$. Condition $J \in \mathbf{h}(k)$ implies that (11) holds for (b', j', k, P, A), since $\mathbf{v}(q' - 1) = \mathbf{h}(k)$ with $q' = b' + 2p_{j'}$ and (b', j') are the successors of (b, j) in alg. 3. Condition $J \notin \mathbf{h}(k)$ implies that (11) holds for (b', j', k + 1, Q, B), by alg. 3 and lemma 1.

Lemma 3 The output C = EDR(A) of alg. 2 is an equivalent NDXA $\lambda_{\oplus}C = \lambda_{\oplus}A$ of size $r = |C| = \operatorname{rank} ram(A)$. It is computed in $O(rn^2)$ bit-operations and memory $O(n^2)$.

Proof: By lemma 2, the intermediate results $(r, [p_0p_1 \cdots p_r], B) = HNF(1, 0, 0, [0], A)$ in alg. 2 are such that: $r = \operatorname{rank} ram(A) \leq n = |B| = |A|$, and B is similar to A. The row-access-matrix R = ram(B) has rank $r = \operatorname{rank} R$, since R^{p_i} is diagonal for $i \in [1 \cdots r]$. All columns r + 1 through n of R are null: $\forall n > 0, c > r : R_c^n = 0$. It follows that B is equivalent to the reduced output C, without (useless) rows & columns $[r + 1 \cdots n]$.

There are two types of recursive calls to **HNF** in alg. 3: the first increases variable k, the second only increases b + 2j. There are r calls of the first type, and at most 2r calls of the second, since $b + 2j \leq 2r$. In both cases, vector J is computed in n bit-operations. In addition, similarity $U \cdot A \cdot V$ is computed r times, in $O(n^2)$ bit-operations due to the sparse nature of the pivot matrices $U = N \cdot P$ and $V = N \cdot P$. Altogether, alg. 3 runs in time $O(rn^2)$. All successively computed (similar) NDXA have size n. All can share space: similarities are computed in-place, within a common pre-allocated $O(n^2)$ memory.

7 Conclusion

The **mxa** is an attractive alternative to the **mda**: never bigger, sometimes exponentially smaller. In theory, the **mxa** is superior to the **mda** in order to represent, recognize, construct and automatically process regular languages. In practice, this point has to be validated by real-world applications, possibly first with Boolean functions.

While the canonical **mxa** has a minimal number of states, it need not have a minimal number of edges (ex. 6 and 4). Finding a NDXA with minimal number of states & edges in polynomial time remains an open problem.

Another question relates the structure of the characteristic 2-polynomial P =**pol** L [20, 21] to that of **mxa** L, for a regular language L. It is shown in [21] that the 2-degree of P (ex. 5) is bounded by the dimension of L (ex. 5, fig. 4). Unlike the **mxa**, no efficient algorithms is known for constructing or minimizing characteristic 2-polynomials.

Acknowledgments This work has benefited from valuable contributions by Jean-Baptiste Note, and Gérard Huet.

References

- J. P. Allouche. Automates finis en théorie des nombres. Expositiones Mathematicae, 5:239-266, 1987.
- [2] R. E. Bryant. Symbolic boolean manipulations with ordered binary decision diagrams. ACM Comp. Surveys, 24:293–318, 1992.
- [3] J.A. Brzozowski. Canonical regular expressions and minimal state graphs for definite events. Mathematical theory of automata, Brooklyn, Polytechnic Institute of Brooklyn, New York, (Symposia Series, 12):529–561, 1962.
- [4] G. Christol, T. Kamae, M. Mendès France, and G. Rauzy. Suites algèbriques, automates et substitutions. Bull. Soc. Math. France, pages 401-419, 1980.

- [5] Michael Domaratzki, Derek Kisman, and Jeffrey Shallit. On the number of distinct languages accepted by finite automata with n states. Journal of Automata, Languages and Combinatorics, 7(4):469-486, 2002.
- [6] S. Eilenberg. Automata, Languages, and Machines, volume I. Academic Press, 1974.
- [7] M. Fliess. Matrices de Hankel. J. Math. pures et appl., 53:197-224, 1974.
- [8] C. Hermite. Sur l'introduction des variables continues dans la theorie des nombres. J. Reine Angew. Math., 41:191–216, 1851.
- [9] G. Huet. Topics in Sanskrit Computational Linguistics, volume 5402. Springer-Verlag Lecture Notes, eds. G. Huet A. Kulkarni P. Scharf, 2008.
- [10] Tao Jiang and B. Ravikumar. Minimal nfa problems are hard. SIAM Journal on Computing, 22(6):1117–1141, 1993.
- [11] Tao Jiang and Bala Ravikumar. Minimal nfa problems are hard. In ICALP, pages 629–640, 1991.
- [12] T. Kameda and P. Weiner. On the state minimalization of nondeterministic finite. automata. IEEE Transactions on Computers, C-19(7):617–627, September 1970.
- [13] S. C. Kleene. Representation of events in nerve nets and finite automata. eds. C. E. Shannon J. McCarthy, Princeton U. Press.
- [14] M. Mohri. Weighted automata algorithms in Handbook of weighted automata, eds. M. Droste and W. Kuich and H. Vogler. Springer, 2009.
- [15] M. P. Schützenberger. On the definition of a family of automata. Information and Control, 4:245–270, 1961.
- [16] Hellis Tamm and Esko Ukkonen. Bideterministic automata and minimal representations of regular languages. In CIAA, pages 61–71, 2003.
- [17] Hellis Tamm and Esko Ukkonen. Bideterministic automata and minimal representations of regular languages. Theor. Comput. Sci., 328(1-2):135– 149, 2004.
- [18] Lynette van Zijl. Succinct descriptions of regular languages with binary +-nfas. In CIAA, pages 72–82, 2003.
- [19] J. Vuillemin. On circuits and numbers. IEEE Trans. on VLSI, 43:8:868– 879, 1994.
- [20] J. Vuillemin. Finite circuits are characterized by 2-algebraic truth-tables. In Advances in Computing Science - ASIAN 2000, volume 1961 of L.N.C.S., pages 1–12. Springer-Verlag, 2000.

[21] J. Vuillemin. Digital algebra and circuits. In N. Dershowitz, editor, Verification – Theory & Practice, volume 2772 of L. N. C. S., pages 733 – 746. Springer-Verlag, 2004. Essays Dedicated to Zohar Manna on the Occasion of his 64th Birthday.