
Compiling Synchronous Kahn Networks to

Efficient Reconfigurable Hardware

Jean Vuillemin∗, Jean-Baptiste Note
Ecole Normale Supérieure, 45 rue d’Ulm, 75005 Paris France.

January 11, 2007

Abstract

We present research on automatically compiling efficient reconfigurable
hardware from high level software specification.

Our abstract computational model is that of finite synchronous Kahn
networks [10, 11]. In such networks, every variable carries a unique stream
of integer values, as a response to some integer input stream.

Commercial systems exist to generate hardware (say VHDL) from
high-level (say C) code [6]. Yet, none claims to generate efficient hard-
ware, whose performance is no worse than twice that of any hand-crafted
hardware design. Our system shows that it is possible to write the source
code so that the compiler automatically generates such efficient hardware,
at least within over a dozen leading edge video applications [13, 14, 19].

Within a software application (say soft), a specific co-routine (say
hard) is co-designed, in both hardware and software. The compiler output
for hard is an application specific hardware design for some reconfigurable
system [19, 13, 16]. The compiler output for soft is a specific software
running on the host, together with interfaces [14] to the hard co-routine
running on the hardware co-processor.

The compiler proceeds in stages. Each stage exploits the previous
Automatic Annotations AA in order to contribute useful AA of its own.
The compiler trusts source guidance: each AA may be subsumed by an
explicit Manual Annotation MA in the source code and each MA is
checked at run-time.

By construction, the hardware co-processor performs the very same
bit-wise computation as its matching software co-routine for hard. It
speeds up the performance of the application, and it is correct by con-
struction: no need to verify the compiled hardware as such, once the
compiler has been certified. Conversely, some amount of verification &
test can be done through the software-only version of soft ; much more
can be achieved through hardware acceleration, including real-time tests
& verifications.

∗This work is dedicated to Gilles Kahn, a long standing friend & Scientific Mentor.

1



1 Introduction

The goal is to automatically compile efficient hardware from the high-level soft-
ware source code of some application. Our experimental setup comprises a
standard host work-station which is tightly coupled through a high bandwidth
bus to a re-configurable co-processor, either external [16] or internal [13].

1.1 Hardware/Software co-design

A software application is compiled from its soft source code. The binary code
is first executed on the host, at standard level of performances. All subsequent
variants (hardware & software) of this code are systematically checked for bit-
wise compatibility with the above specification.

Some part (say hard) of soft is co-designed, i.e. compiled and executed on
some available programmable hardware co-processor. Both together bit-wise
perform the very same computation as soft, at hopefully much higher speed.
The source code must be thoroughly verified and tested, first without and
then with help from hardware acceleration.

The whole system is thus a fully automatic hardware accelerator for software
applications. The required hardware configurations get automatically com-
piled and dynamically down-loaded into the re-configurable co-processor. They
are automatically interfaced with software running on the host, and benchmarks
on test data are automatically conducted & reported. The bulk of the work in-
volved in bringing up such a hardware accelerator resides in implementing all
the system routines (some in software, others in hardware) required for the ap-
plication to operate at speed. This paper only surveys the hardware compiler
aspect of such a system. See [14] for more on these and other issues in automatic
hardware acceleration.

It must be noted that, while the overall Kahn network represented by soft
is synchronous, the hardware accelerated implementation is not: the bus &
driver layers asynchronously communicate data between the host and the re-
configurable coprocessor, while each part realizes a synchronous Kahn network.

1.2 Compiling Hardware from Software

Our experimental hardware compiler proceeds in stages.

1. The source code is macro-generated to a single static assignment SSA
form [5].

2. The range of variables is automatically analyzed. When range analysis
fails to converge, some manual annotation1 is required as source guidance
in order to proceed.

1Typically, the range of some critical loop variable gets asserted in the source code.

2



3. Once range analysis succeeds, a bit-level binary representation is derived
from the known finite ranges, for each variable and operator (arithmetic
& memory) in the source code.

4. There results a Register Transfer Level RTL description for hard.

5. Through source guidance, the design is automatically re-mapped in time
& space, so as to finely tune the amount of parallelism per input cycle.

6. The compiler then performs technology mapping and partial place & route
to enforce layout regularity. It also automatically inserts re-timing regis-
ters [12] so as to optimize the final clock speed.

7. The result of this processing is fed into the vendor’s back-end tools to
generate the final FPGA bit-stream configuration for the hard co-routine.

Each compiler stage translates one version of the source code to the next, by
adding Automatic Annotations AA. An AA does not change the (bit & cycle
wise) semantics of the program: it merely records a specific type property of the
annotated variable, for further use. All annotations are part of the syntax of
the source language. An explicit manual annotation MA in the source code
over-rules the AA: it is more stringent and it must be checked at run-time.

An experienced designer uses source guidance through MA to code each
specific hardware detail, whenever the automatic compiler proves sub-optimal.

Our experience with over half a dozen leading edge real-time video applica-
tions is that the compiler [14] can synthesize high performance re-configurable
designs, with little source guidance: a few MA within each source code.

1.3 Digital Dithering

Our hardware compiler is applied here to two algorithms for digital dithering.
The Art of dithering is known as half-toning through the history of print-

ing. Its modern incarnation renders continuous-tone (256 levels of grey) digital
images on half-tone (black or white) dot devices.

Dot printing devices perform these algorithms at very high speed, on account
of the required resolution & pages per minute [13]. We borrow the vocabulary
from black&white ink jet printers. Dithering is rather similar for laser and
impact printers, color or not.

The ink-head moves in raster-scan order, at the rate of one column of ink-
spots per cycle. The output i ∈ {0, 1} of dithering digitally controls each ink-
nozzle: a dot of ink (worth 256 units) is dropped (i = 1) or not (i = 0) on the
current spot. For specificity, we fix the image line width to 630 pixels.

Each input pixel value p is added e = p + d to the error d diffused by the
previous pixels. Number e/256 represents the fractional ink quantity to ideally
drop at the spot, for some hypothetical 256 tones printer. The error remaining
r = e − 256i is the difference between the actual and theoretical quantities of
ink dropped on the spot.

Digital dithering is done in two stages within a feed-back loop:

3



• dropInk controls the binary output i, and the final ink-nozzle.

• diffuseError diffuses to nearby pixels the error r remaining at each spot.

1.3.1 Drop Ink

The binary decision i = t ≥ h drop/no drop results from comparing the total
ink e to the threshold h. We illustrate two versions of dropInk:

• In this naive code2, the threshold is constant and equal to the nominal
ink per drop, h = 256.

fun i = dropInkRD(e) {: ink drop if t[8]=1; 0 ≤ t < 512
i = e À 8; } : ink drop if e ≥ 256; i ∈ {0, 1} (1)

• In the advanced version, a static Threshold Table th (of size, say 16) is
used to compute the pseudo-random value h = th[t&15] = th[t[0..3]]; this
effectively eliminates Moiré effects where rendering uniform tones.

var th = [10, 15, 11, 8, 12, 14, 12, 13, 15, 11, 14, 15, 9, 13];
: Threshold Table th[0..15] ∈ [8, 15]

fun i = dropInkFS(e) {
h = th[e&15]; : threshold value; 8 ≤ h < 16
i = (e À 4) > h; } : ink drop if e > 16h; i ∈ {0, 1}

(2)

1.3.2 Error Diffusion

When the ink dropped e is not equal to the nominal drop value of 256, there
remains an error r = e− 256× i. This error is split & diffused to nearby pixels,
so as to best preserve the overall & local ink quantity.

General Random Floyd-Steinberg

1 → p2

↙ ↓ ↘
p3 p4 p5

1 → 1
2

↙ ↓ ↘
0 1

2 0

1 → 7
16

↙ ↓ ↘
3
16

5
16

1
16

In the above schemes, error r at pixel p[r, c] is diffused to four nearby pixels
p[r, c + 1],p[r + 1, c− 1],p[r + 1, c],p[r + 1, c + 1], by (rounded) ratio pk × r for
k ∈ [2..5] so that 1 = p2 + · · ·+ p5.

1.4 Summary

In this paper, two specific source codes are compiled.
2Apart from their concrete syntax, the arithmetic operators here have the same meaning as

in the language C; except for the comparison operator, whose result is an integer in B = {0, 1}
rather than a boolean value. All variables shown in codes have the type int ; more precisely,
they denote indefinite streams of (arbitrary size) integer values.

4



Section 2 presents an overview of the FPGA compiler, as applied to the
simple source code for random diffusion. Random Diffusion is an elementary
code to compile, but it is poor at rendering real images.

Section 3 illustrates the compilation of the more advanced source code
for Floyd-Steinberg diffusion, a state-of-the-art image rendering technique. We
discuss the intrinsic difficulty of range analysis and existing approaches.

Section 4 concludes on an optimistic note regarding compiling efficient re-
configurable designs from high level software.

2 Compiling Random Diffusion

We illustrate the compiler stages on the simplest dithering algorithm (constant
threshold and random diffusion). It is defined by the following source code:

fun i = ditherRD1(p) {
e = p + z(d); : pixel error
i = e À 8; : ink drop if i=1
a = (e À 1)&127; : half error
d = a + (e&1) + z629(a); } : diffused error

(3)

In this code, operator z denotes the unit delay between consecutive pixels
on the same line; z630 denotes the delay between pixels on the same column.3

Code (3) is programmed in Jazz [8], an experimental language for hardware
synthesis. Jazz supports higher-types and strong type-inference (à la ML [9]
or Haskell [3]), together with some object programming (à la Java) and opera-
tor overloading (à la C++). Translating code (3) between Jazz, C or Java is
straightforward.

int DitherRd (const unsigned char px) {
static int zd, za[L-1], idx = 0;

int e = px + zd,
i = e À 8,
a = (e À 1) & 127,
d = a + (e & 1) + za[idx];

za[idx] = a;
zd = d;

idx = (idx + 1) % (L-1);
return i; }

(4)

All codes Jazz (3)/ C (4)/Java yield the same bit-stream output sequence i
on the same integer-stream p of input pixels: 0 ≤ p < 256. Range analysis
derives from this unique input assertion that all variables in (3) can be safely
represented by 16 bits4 signed integers.

3We assume that input pixels appear in raster-scan order and that line width is 630.
49 bits suffice here.

5



A strength of Jazz is that the very same code (3) can be executed over many
input types, from symbolic (for code generation and range analysis) to numeric
(for simulation). All variables in the source code (3) have the same type T.
Type T supports all memory (z, z629) and all integer operations

(+,−, ∗,÷, <<,À,¬, &, |,⊕, <, ==, >,≥,≤)

in language C over type int, including shifts and Boolean operations.5

In that respect, Jazz is comparable to Lava [4]. In Lava, type classes and
monads [20] allow the programmer to define new interpretations for the same
circuit code, by sharing or specializing already-implemented behaviors.

2.1 Single Static Assignment SSA form

Program (3) is translated to Single Static Assignment form [2]. Thus by con-
struction, the source code (3) and its SSA form (5) have identical behavior.
Feedback loops are marked in the SSA form and the resulting graph structures
all subsequent stages in the compiler.

2.2 Range Analysis

We now execute code (5) with an input p : [0, 255] of symbolic type: constant
stream of interval. The execution converges to a fixed-point in 3 iterations, as
shown by the following simulation.

fun i = ditherRD3(p : [0,255]){ : [0, 255] [0, 255] [0, 255] · · ·
e = p + z(d); : [0, 255] [0, 383] [0, 510] · · ·
i = e À 8; : [0, 0] [0, 1] [0, 1] · · ·
t = e&1; : [0, 1] [0, 1] [0, 1] · · ·
m = e À 1; : [0, 127] [0, 191] [0, 255] · · ·
a = m&127; : [0, 127] [0, 127] [0, 127] · · ·
r = t + a; : [0, 128] [0, 128] [0, 128] · · ·
c = z629(a); : [0, 0] [0, 127] [0, 127] · · ·
d = r + c; } : [0, 128] [0, 255] [0, 255] · · ·

2.3 Bit-sizing

When the above analysis converges, the fixed-point interval ranges [i, s] associ-
ated to each variable are represented in binary by arrays of l = 1+ blog2(s− i)c
bits; they are marqued as unsigned : u if i ≥ 0, or signed : s if i < 0.

5One minor difference is that comparison operators {<, ==, >} yield an integer in {0, 1}
rather than a Boolean, for the sake of type uniformity.

6



p +

>>

8

i

127

1

>>

1

+ +

629

e a

d

m c

t r

fun i = ditherRD2(p) {
f = z(d); : feedback error
e = p + f ; : pixel error
i = e À 8; : ink drop

m = e À 1; : remaining error
t = e&1; : parity
a = m&127; : half error
r = a + t; ; : row error
c = z629(a); : column error
d = r + c; } : diffused error

(5)

Figure 1: Random Diffusion in SSA form

The following bit-sized version is automatically annotated from code (5).

fun i = ditherRD4(p : u8) {
e = p + z(d) : u9; i = e À 8 : u1;

m = e À 1 : u8; t = e&1 : u1;
a = a&127 : u7;
r = a + t : u8; c = z629(a) : u7;
d = r + c : u8; }

(6)

2.4 Register Transfer Level RTL

Code (6) is then translated to bit-level operations on the finite bit vectors which
now represent each variable. The result is an RTL description, which is auto-
matically simplified to:

fun i = ditherRD5(p : u8) {
e[0..8] = p[0..7] + z(d[0..7]);
c[0..6] = z629(e[1..7]);
d[0..7] = e[0] + e[1..7] + c[0..6]; }

(7)

7



2.5 Technology mapping

The RTL description is then decomposed into atomic building blocks (memory,
logic, arithmetic & communication) and each block is directly mapped the target
FPGA technology. It is crucial here that each group of operators be represented
by its most efficient structure, and that the back-end compiler for the specific
FPGA technology does use that specific best structure.

In current practice, a large number of annotations must be generated by our
front-end compiler in order to force the vendor’s back-end compiler [22] to best
use it’s own internal structures. Among others, we found that it is mandatory
to guide the vendor’s back-end by:

• relative gate placement within arithmetic operators, based on bit order;

• relative gate placement between operators, based on topological order;

• systematically re-time between feed-forward atomic operators.6

We refer to [14] for more details on this specific FPGA technology part of the
compiler. The final hardware layout is found in Figure 2.

i

p
[2
]

c[2
]

6
2
9

e[2
]

+ +
+ +

d
[2
]

b
[2
] d
[1
]

p
[1
]

c[1
]

6
2
9

e[1
]

+ +
+ +

d
[1
]

b
[1
] d
[0
]

p
[0
]

0

e[0
]

+ +

d
[0
]

p
[3
]

c[3
]

6
2
9

e[3
]

+ +
+ +

d
[3
]

b
[3
] d
[2
]

p
[4
]

c[4
]

6
2
9

e[4
]

+ +
+ +

d
[4
]

b
[4
] d
[3
]

p
[5
]

c[5
]

6
2
9

e[5
]

+ +
+ +

d
[5
]

b
[5
] d
[4
]

p
[6
]

c[6
]

6
2
9

e[6
]

+ +
+ +

d
[6
]

b
[6
] d
[5
]

p
[7
]

c[7
]

6
2
9

e[7
]

+ +
+ +

d
[7
]

b
[7
] d
[6
]

d
[7
]

Figure 2: Hardware layout compiled from (3).

The synthesized Digital Synchronous Circuit comprises 15 full-adders fa
(including one half-adder), 8 unit delays z and 7 delays z629 by 629 clock cycles.
The design operates at 100 Mhz on a Virtex-II [21] FPGA.

2.6 Automatic Space Time Tradeoffs

So far, we have assumed that the input pixels are presented by 8 bits in parallel,
one pixel at each processing cycle. We can measure (or simply estimate) the
actual processing bandwidth P of our automatic implementation on some device,
and compare it to the nominal requirement R.

R < P < 2R We are doing just fine.
6The theory of re-timing is from [12]. Modern FPGA have many internal registers. Unlike

ASIC technology, the problem here is not to minimize their number, but to achieve the best
possible bandwidth while keeping a low overall latency.

8



R > P We are too slow, say by a factor 2: P < R < 2P . In this case, the design
must be unfolded twice in space:

1. The effective bandwidth doubles P ′ = 2P , as we process 2 pixels per
clock cycle, and the clock cycle is kept the same.7

2. The amount of logic & control doubles: from 30 odd gates to 60 in
our case.

3. The RAM to store the diffusion buffer must now have twice the IO
bandwidth. Yet its content remains invariant at 629×7 bits (one
block of local sRAM in current FPGA technology [21]).

4. More unfolding is needed when 2P < R.

2R < P We are too fast, by at least a factor 2! So, we can fold part of the
computation from space to time and trade processing bandwidth for area.
Figure 3 illustrates this case.

Each input pixel p appears in bi-
nary at the rate of one bit per
clock cycle, least significant bit
first and for 8 cycles. Bits of
output i are produced on cycles
8,16,24,· · · which are multiples
of 8.

+

+

7

629x8

p

d

e

i

en0 (10 )
8 7

U

1
 m

u
x

 0

+

+

en

Figure 3: Bit-serial circuit compiled from (3) under the explicit manual anno-
tation MA on input p : bitSerial(8).

3 Floyd-Steinberg Dithering

FloydSteinberg dithering [7] is used by millions of current ink&laser jet printers.

3.1 Range Analysis

The source code (Figure 4) is unfolded to 17 Static Single Assignement SSA
definitions (9) through standard techniques [2].

7This can effectively be achieved within the feed-forward parts of the design, by simply
inserting re-timing register. Unfolding feedback loops requires more advanced techniques, and
it is not always possible.

9



: Threshold table
var ths = [10,15,11,8,10,15,13,12,14,8,14,12,15,9,13,9];

fun FloydSteinberg(px) = di {
te = px+z(ce+e0+7*e1); : total error
e0 = te & 15; : error zero
eq = te À 4; : error quotient
di = ths[e0]<eq; : drop ink
e1 = di ? eq-16 : eq; : error one
ce = z628(3 ∗ e1 + z(5 ∗ e1 + z(e1))); } : current error

Figure 4: Source code for Floyd-Steinberg diffusion.

Naive Interval Analysis succeeds on code (3) in section 2.2, but it fails on
code (9): ever larger intervals are computed at each iteration, for most variables.
Yet, it is sufficient to add a single manual annotation MA to the source code
(9) in order for NIA to properly and automatically converge, namely:

e1 : [−7,15]. (8)

With this single MA (in addition to the input assertion px : [0, 255]), the naive
interval analysis of code (3&8) converges in 3 cycles8 to the proper fixed-point
ranges, for all 16 remaining variables in (9).

var definition range type long name
1 de = z(ke) [-112,255] s9 : diffused error
2 te = px+de [-112,510] s10 : total error
3 e0 = te&15 [0,15] u4 : error zero
4 eq = te À 4 [-7,31] s6 : error left
5 th = ths[e0] [8,15] u4 : threshold
6 di = th<eq [0,1] u1 : drop ink
7 e1 = di ? eq-16 : eq [-7,15] s5 : error one
8 e3 = 3×e1 [-21,45] s7 : error three
9 e5 = 5×e1 [-35,75] s8 : error five
10 e7 = 7×e1 [-49,105] s8 : error seven
11 s1 = z(e1) [-7,15] s5 : sum one
12 r5 = e5+s1 [-42,90] s8 : r five
13 s5 = z(r5) [-42,90] s8 : sum three
14 r3 = e3+s5 [-63,135] s9 : r three
15 ce = z628(r3) [-63,135] s9 : column error
16 le = ce+e7 [-112,240] s9 : line error
17 ke = e0+le [-112,255] s9 : current error

(9)

One understands that invariant (8) comes from the values stored in the lookup
table, which are in the [8, 16] range. This propagates range conditions on the

8All registers except for the one on line 1 are recognized as feed-forward, and thus effectivelly
eliminated from the range computation.

10



ke:s9

e3:s7e5:s8

ce:s8

e7:s8

r3:s8r5:s8

e0:u4

eq:s6

te:s10

de:s9

di:u1 

x

+

3

+

5

+

7
x

>> 4

U

628

+

15

x

mux

+

LUT

ths

16

>

-

e1:s5

px:u8

le:s9

th:u4

Figure 5: Floyd-Steinberg Diffusion with bit sizes

control of a multiplexer, and yields the expected range for the e1 variable. The
fact that each error is split four ways, with coefficients summing up to one
and regularly spread through time in the diffusion buffer, is then automatically
captured by naive interval analysis.

One should note that the Finite State Machine represented by code (9) has
over 24400 states. All methods based on systematic state explorations are thus
doomed. The same happens with almost all current video processing algorithms:
due to large internal data buffers, the number of states is just too big to handle,
and more abstract memory models are mandatory.

Yet, the general question of range analysis is undecidable. So, all attempts
to solve it must contain a time-out, which admits failure of convergence.

The ASTREE [1] system9 automatically and correctly analyzes (a C version
of) code (9), for all 17 variables, and without any manual annotation. So, this
weakness in our experimental system (relying on ASTREE to provide critical
range assertions) can be removed, through more work/cooperation.

9we thank our colleagues at ENS for helping us experiment with ASTREE

11



Nevertheless, source guidance through MA asserting the range of a few
peculiar variables remains a mandatory feature in all systems, such as ours.

>
0:u4

-

di:u1

th:u4

16di:u4

ths
e0:u4

+
px:u8

0:u1

+

2e:s6

+

3e:s6

:s5

0:u3

8e:s8

+

7e:s8

:s9

0:u2

+

4e:s7

+

5e:s7

:s7

628

-

te:s10

eq:s6
e:s5e:s5

+

de:s9

ce:s9 :s9

Figure 6: Floyd-Steinberg Diffusion Circuit Schemas

3.2 Hardware Synthesis

The bit level code (9) is further simplified, constant multipliers are eliminated,
and each resulting block is mapped to the available FPGA technology.

software hardware operator
te = px+Z(ke) te[0..9] = px[0..7]+Z(ce[0..8]) u8+Z(s9) : s10
th = ths[te&15] th[0..3] = ths[te[0..3]] rom(u4) : u4
di = th<(te À 4) d[0..5] = th[0..3]−te[4..9] di=d[5] u4−s6 : u1
e1 = (teÀ4)-16*di e1[0..3] = te[4..7] s5

e1[4] = te[8]⊕di[0]⊕ 1 u1⊕u1 : u1
e3 = (e1¿1)+e1 e3[0] = e1[0] s7

e3[1..6] = e1[0..4]+e1[1..4] s5+s3 : s6
e5 = (e1¿2)+e1 e5[0..1] = e1[0..1] s8

e5[2..7] = e1[0..4]+e1[2..4] s5+s2 : s6
e7 = (e1¿3)-e1 e7[0..7] = e8[0..7]-e1[0..4] s8-s5 : s8

e8[0..3] = 0 e8[4..7] = e1[0..3] s8
s1 = Z(e1) s1[0..4] = Z(e1[0..4]) Z(s5) : s5
s5 = Z(e5+s1) s5[0..7] = Z(e5[0..7]+s1[0..4]) Z(s8+s5) : s8
ce = Zl(e3+s5) ce[0..8] = Zl(e3[0..6]+s5[0..7]) Zl(s7+s8) : s9
ke = e7+ce+(te&15) ke[0..8] =e7[0..7]+ec[0..7]+te[0..3] s8+s8+s4 : s9

The synthesis of the Floyd-Steinberg algorithm on a Virtex-II (xc2v2000)
[21] yields a design running at 68.9MHz. It is unfolded 4 times in space to allow
for parallel processing of all 4 color channels of a CYMK image.

The design, compiled for processing 720x576 (standard PAL resolution) im-
ages, consumes 306 Virtex-II slices and four RAM blocks, used to implement the
diffusion buffer. The compiled design processes 68.9Mdots/second. Altogether,

12



this amounts to printing well over two full A4 sheets per second at 1200 dpi
resolution.

4 Conclusion

Beyond the two dithering examples presented here, over a dozen other leading-
edge video applications from [13, 15, 19] have been so implemented [14].

These specific applications were chosen because of their computational needs,
and structure as finite synchronous Kahn networks. Our compiler does not
attempt to compile into hardware source code which is not of this constrained
form.

For this selected set of data-flow applications, the methodology has proved
effective in that the circuits compiled from the high-level software specification
are all very efficient : their performance is no worse than twice that of the
best-known independent implementation.

The only way to achieve efficiency is through good source code. No com-
piler can ever repair a poorly conceived design! The hardware compiler is a
tool to help the experienced designer specify concisely and safely the required
implementation choices/constraints.

The process is fully automatic from the source code. All generated designs
may not be efficient in the above strong sense. Yet, they are all correct by
construction.

Exact Range Analysis is a key component of the compiler, and so is tech-
nology mapping. If either of these components fails to be very efficient, the
compiler as a whole will not generate efficient designs.

Neither of these two key components is Turing computable. Even in se-
lected decidable sub-cases, many hard combinatorial problems can be naturally
encoded as range-analysis or technology-mapping problems.

Hence, source guidance in the form of MA or other is a mandatory feature
in all such general purpose hardware compiler.

At the same time, advanced techniques exist for range analysis [1] and tech-
nology mapping [14] which can speed-up the design process in very substantial
ways.

Finally, we are keen to observe here that the very same source code leads
to both the best compiled software version and the best hardware version of the
same application. This has been observed many times before [17, 19, 18, 13, 15].
Some amount of source guidance, in part specific to software and in part to
hardware, is usually necessary to achieve success on both fronts. Yet altogether,
this entails just a few MA. Most improvements to the algorithm are beneficial
to both hardware and software, and they are naturally reflected in a unique way
within the source code.

Acknowledgements This work has benefited from many contributions by
Marc Pouzet.

13



References

[1] P. Cousot & al. The astrie static analyzer. Ecole Normale Supérieure,
2005 http://www.astree.ens.fr/.

[2] A. W. Appel and J. Palsberg. Modern Compiler Implementation in Java.
Cambridge University Press, 2002.

[3] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: hardware design
in haskell. Proceedings of the third ACM SIGPLAN, 1998.

[4] Koen Claessen. The lava home page.

[5] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadek. Efficiently
computing static single assignment form and the control dependence graph.
ACM Trans. on Programming Languages and Systems, A 13(4):451–490,
March 1991.

[6] B. Draper, W. Najjar, W. Bvhm, J. Hammes, R. Rinker, C. Ross,
M. Chawathe, and Josi Bins. Compiling and optimizing image process-
ing algorithms for fpgas. Department of Computer Science, Colorado State
University, 80523, June 2000
http://www.cs.ucr.edu/~najjar/papers/camp00.pdf.

[7] R. W. Floyd and L. Steinberg. An adaptive algorithm for spatial gray scale.
SID 75, Int. Symp. Dig. Tech. Papers, 36, 1975.

[8] A. Frey, G. Berry, P. Bertin, F. Bourdoncle, and Jean Vuillemin. The jazz
home page. 1998
http://www.exalead.com/jazz/index.html.

[9] INRIA. The caml home page. 1985
http://caml.inria.fr/index.fr.html.

[10] Gilles Kahn. The semantics of a simple language for parallel programming.
Information Processing 74: Proceedings of the IFIP Congress 74, North-
Holland:471–475, 1974.

[11] Gilles Kahn and David B. MacQueen. Coroutines and networks of parallel
processes. Information Processing 77: Proceedings of the IFIP Congress
77, North-Holland:993–998, 1977.

[12] CE Leiserson and JB Saxe. Retiming synchronous circuitry -. Algorithmica,
1991.

[13] A. Marshall, J. Vuillemin, T. Stansfield, I. Kostarnov, and B. L. Hutch-
ings. A re-configurable arithmetic array for multimedia applications. In
Proceedings of the 1999 ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pages 135–143, 1999.

14



[14] J.B. Note. Compilation automatique de logiciel en circuit reconfigurable
efficace. These de Doctorat, Ecole Normale Supérieure, 2007.

[15] J.B. Note, M. Shand, and J. Vuillemin. Realtime video pixel matching. In
International Conference on Field Programmable Logic and Applications,
pages 507–512, 2006.

[16] M. Shand. Programmation de la carte pci pamette. Ecole Normale
Suphrieure, 2005
http://www.di.ens.fr/AlgorithmiqueMaterielle.html.

[17] M. Shand and J. Vuillemin. Fast implementation of RSA cryptography. In
11-th IEEE Symposium on Computer Arithmetic, 1993.

[18] J. Vuillemin. Re-configurable systems: Past and next 10 years. In Vector
and Parallel Processing - VECPAR’98, volume 1573 of L.N.C.S., pages
334–354. Springer-Verlag, 1998. (invited talk).

[19] J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, and P. Boucard.
Programmable active memories: the coming of age. IEEE Trans. on VLSI,
4, NO.1:56–69, March 1996.

[20] Philip Wadler. Monads for functional programming. In Advanced Func-
tional Programming, First International Spring School on Advanced Func-
tional Programming Techniques-Tutorial Text, pages 24–52, London, UK,
1995. Springer-Verlag.

[21] Xilinx. Virtex-2 Platform FPGA User Guide (UG002 version 2.0), 2005
http://www.xilinx.com/bvdocs/userguides/ug002.pdf.

[22] Xilinx. Xilinx ISE 8 software manuals, 2006
http://toolbox.xilinx.com/docsan/xilinx82/books/manuals.pdf.

15


