
Digital Algebra and Circuits

Jean Vuillemin

Ecole Normale Supérieure, 45 rue d’Ulm, 75005 Paris France.

Abstract. Digital numbers D are the world’s most popular data rep-
resentation: nearly all texts, sounds and images are coded somewhere in
time and space by binary sequences. The mathematical construction of
the fixed-point D ' Z2 and floating-point D′ ' Q2 digital numbers is a
dual to the classical constructions of the real numbers R.
The domain D′ contains the binary integers N and Z, as well as Q.
The arithmetic operations in D′ are the usual ones when restricted to
integers or rational numbers. Similarly, the polynomial operations in D′

are the usual ones when applied to finite binary polynomials F2[z] or
their quotients F2(z). Finally, the set operations in D′ are the usual
ones over finite or infinite subsets of N.
The resulting algebraic structure is rich, and we identify over a dozen
rings, fields and Boolean algebras in D′. Each structure is well-known
in its own right. The unique nature of D′ is to combine all into a single
algebraic structure, where operations of different nature happily mix.
The two’s complement formula −x = 1 + ¬x is an example. Digital
algebra is concerned with the relations between a dozen operators. Digital
synchronous circuits are built from a simple subset of these operators:
three Boolean gates and the unit-delay z.
Digital analysis is simpler and more intuitive than analysis in R. The
computable digital functions D 7→ D are continuous: each output bit
depends upon finitely many input bits. Infinite circuits compute causal
functions: present output depends upon past inputs. Sequential functions
are equivalently computed by FSM and by finite circuits.
The ν-transform is an infinite binary truth-table for causal functions.
The ν-transform provides a natural one-to-one correspondence between
algebraic digital numbers and sequential functions. Questions about se-
quential functions are transformed by ν into questions about algebraic
digital numbers, where the whole of digital algebra applies.
An algebraic digital number is finitely represented by a unique minimal
regular binary tree RBT. The inverse transform of the RBT is the mini-
mal deterministic FSM for computing the (reversed) sequential function.
An algebraic digital number is finitely represented by a unique minimal
up-polynomial MUP of which it is root. The MUP is smaller than the
RBT. It is exponentially smaller than the minimal deterministic FSM
for a shift-register circuit.
The net-list of a circuit is transformed by ν into the isomorphic truth-
list: a system of equations over algebraic numbers. Circuit examples show
how the truth-list is cast to normal form - either RBT or MUP - through
a sequence of simple identities from digital algebra.
This contribution is dedicated to Zohar Manna on his 64-th birthday.



1 Introduction

Let us operate a digital circuit and probe some internal signal s. The observed
value is a bit st ∈ B = {0 1} at all real time t ∈ R ≥ 0. In a digital synchronous
DS circuit, signals can only change at integer time: st = sn where n = btc ∈ N.
Signal s is a digital number s ∈ D presented by the indefinite N ∈ N sequence
s = s0 · · · sN · · · of bits sN ∈ B.

1.1 Digital numbers

Digital numbers D ' Z2 include all natural numbers N, integers Z and rational
numbers Z(2) ' Q ∩D with an odd denominator. But 1

2 /∈ D is not a digital
number. The floating-point digital numbers D′ = 〈D, 1

2 〉 ' Q2 contain D and
all rational numbers Q.

Hensel invents/discovers the p-adic integers Zp and numbers Qp near 1900.
Such numbers extend the arithmetic properties of Z and Q through an indefinite
expansion in base p ∈ N+2. Ostrowski’s theorem [8] states that every field which
extends the rational field 〈Q, , + − × /〉 and preserves the norm over Q must be
isomorphic to either R, or to Qp for some prime number p.

The distance in Qp is ultra-metric and the ultra-metric inequality implies
the classical triangle inequality. Properties of the real numbers which are derived
from the triangle inequality hold for the p-adic numbers, with exactly the same
proof. Stronger properties often result. For example [8], an infinite sum s =

∑
sN

of numbers sN ∈ D′ converges s ∈ D′ if and only if the general term goes to
0 = limN→∞ ‖sN‖. The following corollary is useful.

Lemma 1. The infinite sum s =
∑

2NsN converges to a digital number s ∈ D
for all sequences of digital numbers sN ∈ D.

Digital numbers support integer arithmetics: 〈D′, , +,−,⊗, /〉 is isomorphic
to the field Q2 of 2-adic numbers.

Digital numbers support binary polynomial arithmetics: 〈D′, ,⊕ ⊗ ®〉 is
isomorphic to the field F2((z)) of Laurent formal power series over F2.

The last two structures generalize to every base p where p > 1 is a prime
number. The characteristic property of base p = 2 is to also support logical
operations: 〈D, ,¬ ∩ ∪〉 is a Boolean algebra isomorphic to the subsets of N.

1.2 Digital synchronous circuits

The relevance of 2-adic integers Z2 to computer arithmetics [9] and to DS cir-
cuits [11] has long been known. Example 1 is a point in case: the Minus cir-
cuit computes Hensel’s opposite y = −x. The input x =

∑
2NxN is bit-serial :

bit xN is presented on an input pin during cycle N. The output y =
∑

2NyN

is also bit-serial. Both digital numbers are related by x + y = 0, where +
is the sum in D. Equality x + y = 0 states that, for all N ∈ N the sum of
the two integers x0···N−1 =

∑
k<N

2kxk and y0···N−1 =
∑

k<N
2kyk is such that

x0···N−1 + y0···N−1 = 0 (mod 2N). At all cycles, the sum is correct so far.



Example 1 (Minus). Let circuit y = minus(x) be defined by the net-list

r = z(x ∪ r), y = x⊕ r.

The binary values rN, yN ∈ B of r, y are computed at cycle N from the input
bits xN, xN−1 ∈ B1 by rN = xN−1 ∪ rN−1 and yN = xN ⊕ rN. Replacing for gate
definitions leads to rN = xN−1 + rN−1 − xN−1rN−1 and yN = xN + rN − 2xNrN,
an equivalent system expressed with integer operations. Let x =

∑
2NxN and

y =
∑

2NyN be the corresponding digital numbers, and similarly of r and p =
x∩ r. Substituting in the definitions yields r = 2(x + r− p) and y = x + r− 2p.
Subtract y − r = x + r − 2p− 2(x + r − p) and simplify to find y = −x.

The Minus circuit from example 1 has three gates: one register z (also known as
up-shift, unit-time-delay, synchronous flip-flop and times 2) and two memory-
less gates ∪ for OR and ⊕ for XOR. Addition + of digital numbers can similarly
be computed by a finite circuit with six gates. Both products - with carries for
×, and without carries for ⊗ - can also be computed by bit-serial circuits [11].
However, both circuits are infinite!

1.3 Digital functions

A digital function f ∈ D 7→ D is continuous if each output bit depends upon
finitely many input bits.

A digital function is causal f ∈ D c→ D if each output bit only depends
upon the previous input bits. Equivalently, f is represented by an infinite binary
decision tree where each node tests an input bit and each edge carries an output
bit. Equivalently, f is computed by some infinite DS circuit [11].

The truth table F = νf ∈ 4D is the infinite binary sequence of output bits
gathered by traversing the decision tree for f ∈ D c→ D in hierarchical order.
Conversely, each table F ∈ 4D defines a unique function f = ν−F ∈ D c→
D. The ν-transform is (almost) a Boolean algebra isomorphism between causal
functions and digital numbers.

A causal function is sequential if f ∈ D s→ D is computable by a finite
circuit. Equivalently, f is computable by a finite state machine. Equivalently,
the language recognized by f is regular. These equivalent characterizations of
sequentiality are well known [7].

The classical methods for verifying memory-less circuits use BDDs [3]. The
BDD data-structure is a Strong Normal Form SNF: every Boolean function in
the net-list has a unique representation; testing node equality reduces to testing
a pointer equality, in constant time.

The equivalent SNF for sequential circuits is the minimal deterministic Mealy
mdFSM [7]. The limits come from size: the number of states in the mdFSM grows
exponentially with the number of registers in the circuit.

1 by convention x−1 = r−1 = 0 for negative indices



1.4 Algebraic digital numbers

A new characterization [4, 12] of sequential functions is provided: the ν-transform
of a sequential function f ∈ D s→ D is an algebraic digital number νf ∈ A.

The net-list of a circuit is ν-transformed - equation for equation - into the
truth-list, an equivalent system of equations over digital numbers. Properties of
sequential functions ν-transform to properties of algebraic digital numbers.

A first SNF for algebraic numbers is provided by regular binary trees RBT.
The RBT is closely related to the ν-transform of the mdFSM for the input-
reversed function. Both share the same size problem. The RBT representation
which follows - since N ⊂ Z ⊂ Z(2) ⊂ A - for integers and (some) rational
numbers is smaller than the usual representation by finite ultimately periodic
binary sequences.

A second SNF for an algebraic number y ∈ A is provided by the minimal
polynomial with root y - plus a few bits to lock that root. A third SNF is the
minimal up-polynomial MUP with root y. An up-polynomial is a special form
of polynomial where squaring is the only operation available. The up-degree of
MUP is smaller than the degree of the minimal polynomial.

The MUP of y ∈ A can be derived from the truth-list of a circuit, by equiv-
alent rewriting through the rich algebraic properties of field D′. The MUP is
smaller than the RBT. The shift-register example shows that it can be exponen-
tially smaller.

2 Digital algebra

2.1 Digital numbers

Definition 1. A digital number d ∈ D is isomorphically represented by:

1. the infinite binary B
d
N ∈ B sequence B

d
0··· = B

d
0 · B

d
1··· ∈ B∞;

2. the integer d(N) = dN = B
d
N predicate d() ∈ N 7→ B;

3. the set d{} = {N : 1 = dN} of natural numbers d{} ∈ 2N;
4. the binary d(z) =

∑
zNdN series d(z) ∈ Zz;

5. the 2-adic d(2) =
∑

2NdN integer d(2) ∈ Z2.

Note that the real number d(1/2) =
∑

dN2−N ∈ R is not characteristic of d ∈ D.
Indeed, the digital sequences a = 1(0)∞ and b = 0(1)∞ both map to the same
real number a(1/2) = b(1/2) = 1 while a(2) = 1 and b(2) = −2 are different.

The infinite binary representation of a natural number N is ultimately zero.
For example: 7 ' 1110∞ ' 1 + z + z2 ' {0, 1, 2}.

The infinite binary representation of an integer Z is ultimately constant. For
example: −4 ' 001∞ ' z2

1−z ' {n : n > 1}.
The infinite binary representation in Z(2) = Q ∩ D is ultimately periodic.

For example: −2/3 ' (01)∞ ' z
1−z2 ' 1 + 2N.



2.2 Digital operations

An operator over D is defined for each representation by isomorphism

D ' B∞ ' N 7→ B ' 2N ' Z2 ' Zz.

Logical operations

– NOT: ¬a = [N 7→ 1− aN].
– AND: a ∩ b = [N 7→ aNbN].
– OR: a ∪ b = [N 7→ aN + bN − aNbN].
– XOR: a⊕ b = [N 7→ aN + bN − 2aNbN].

Arithmetic operations The infinite sums below converge in D by lemma 1.

– Opposite: −a =
∑−aN2N = 1 + ¬a.

– Sum: a + b =
∑

(aN + bN)2N.
– Product: a× b =

∑
2NpN where pN =

∑
i+j=N

aibj .
– Convolution: a⊗ b =

∑
2NcN where cN =

⊕
i+j=N

aibj .

The N-th power of a ∈ D is defined by a0× = 1 and by a(1+N)× = a× aN×. The
convolution power is defined by a0⊗ = 1 and by a(1+N)⊗ = a⊗ aN⊗.

Shifts, sampling and shuffle

– Up-shift: za = [N 7→ aN−1] where a−1 = 0; let zba = b + za for b ∈ B.
– Down-shift: z−a = [N 7→ aN+1].
– Down-sample: ↓ a = [N 7→ a2N] and ↓′ a = [N 7→ a1+2N].
– Up-power: ↑ a = [2N 7→ aN, 1 + 2N 7→ 0].
– Shuffle: a¯ b = [2N 7→ aN, 1 + 2N 7→ bN].

The N-th up-power of a ∈ D is defined by ↑0 a = a and by ↑1+N a =↑↑N a.
It is related to the convolution power by ↑N a = a2N⊗ = a(z2N

).
The N-th sample of a ∈ D is defined by ↓1 a = a, by ↓2N a =↓N↓ a and by

↓1+2N a =↓N↓′ a.

Combined operations Let

e ∈ 〈0 1 a b, ¬ z z− ↓ ↓′ ↑, ∩ ∪ ⊕ ⊗ + − × ¯〉

denote an expression which is formed from the constants 0,1, variables a, b ∈
D, the 6 unary operators between both commas, and the remaining 8 binary
operators. The digital value e ∈ D of the expression is uniquely defined from the
input values a, b ∈ D by composing the digital operators defined in the preceding
section.

Digital algebra considers the relations between the sixteen operators above.



2.3 Digital rings

Proposition 1. Digital algebra 〈D, ¬, ∩ ∪ ⊕ ⊗ +−×〉 combines the following
classical algebraic structures.

1. 〈D,¬, ∪ ∩〉 is isomorphic to the Boolean Algebra 2N formed by sets of
natural numbers. 〈D, ,⊕ ∩〉 is isomorphic to the corresponding Boolean ring,
where D = D ∩ D and 0 = D⊕ D.

2. 〈D, , ⊕ ⊗〉 is isomorphic to the ring Zz = F2((z)) ∩D of binary series.
3. 〈D,−, + ×〉 is isomorphic to the ring Z2 of 2-adic integers.

Since za = 2⊗ a = 2× a and ↑ a = a⊗ a = a(z2), the properties of up-shift and
up-power follow from those of convolution.

Down-shift is inverse a = z−za to the left of up-shift z, but not to the right
since a− a0 = zz−a.

Proposition 2. Digital algebra 〈D, ¬ z z− ↓ ↓′ ↑, ∩ ∪ ⊕ ⊗ + − × ¯〉 contains
the following chain of sub-algebra F2 ⊂ N ⊂ Z ⊂ Z(2) ⊂ A ⊂ C ⊂ D.

1. A property of digital operators - excluding {¬−} - is true over D if and only
if it holds over natural numbers N.

2. A property of digital operators - excluding {↑ ⊗¯} - is true over D if and
only if it holds over the integers Z.

3. A property of digital operators is true over D if and only if it holds over the
rational digital numbers Z(2) = Q ∩D.

4. Similarly for the algebraic digital numbers A = Az ∩D.
5. Similarly for the computable digital numbers C.
6. A property of digital operators - excluding ¬ - is true over D if and only if

it holds over the floating-point digital numbers D′.

Shuffle and down-sampling are related by a = (↓ a) ¯ (↓′ a). There results an
isomorphism D ' D¯D between digital numbers and pairs of digital numbers,
and similarly for natural N ' N ¯ N, rational Z(2) ' Z(2) ¯ Z(2), algebraic
A ' A¯A and computable C ' C ¯ C digital numbers.

Finally note that set inclusion ⊂ defines a partial order on D. The lexico-
graphic order defined by a ≺ b ⇔ ‖a‖ < ‖b‖ or ‖a‖ = ‖b‖ and z−a ≺ z−b is a
total order on D.

2.4 Floating point digital numbers

The floating-point digital numbers D′ result from adding the constant 1
2 to D,

removing the logical negation ¬, and closing under all remaining operations.
A non-zero floating-point digital number D ∈ D′ is uniquely [8] represented

by D = 2vm where exponent v ∈ Z is an integer and mantissa m ∈ 1 + 2D is an
odd m0 = 1 digital number.

The rational number ‖D‖ = 2−v is the norm of q 6= 0 and ‖0‖ = 0. The corre-
sponding distance ‖D−D

′‖ = ‖D⊕D
′‖ is ultra-metric ‖D + D

′‖ ≤ max(‖D‖, ‖D
′‖).

The ultra-metric inequality implies the triangle inequality: ‖D+D
′‖ ≤ ‖D‖+‖D

′‖.



Every operator ¦ ∈ 〈z ↓ ↓′ ↑, ∩ ∪ ⊕ ⊗ + − × ¯〉 over D is extended to an
operator ¦′ over D′ by 2vm ¦′ 2v′m′ = 2u(2v−um ¦ 2v′−um′) for u = min(v, v′).

A non-zero number s = 2v(1+2m) has inverses with respect to both multiply
and convolve:

– 1/s = 2−vm′ with m′ =
∑

2NmN× such that (1/s)× s = 1;
– 1® s = 2−vm′′ with m′′ =

⊕
2NmN⊗ such that (1® s)⊗ s = 1.

The corresponding divisions are a/b = (1/a)× b and a® b = (1® a)⊗ b.
There are two classes of algebraic numbers in D′, one A2 for integer opera-

tions {+ − × /} and the other Az for polynomial operations {⊕ ⊗ ®}.
Definition 2. Let D ∈ D′ be a floating-point digital number.

A2 Number D is 2-algebraic D ∈ A2 if it is root 0 = Q(D) of a polynomial
Q(y) =

∑
k≤d qk × yk× with rational coefficients qk ∈ Q.

Az Number D is z-algebraic D ∈ Az if it is root 0 = Q(D) of a polynomial
Q(y) =

⊕
k≤d qk ⊗ yk⊗ with rational coefficients qk ∈ F2(z).

Either polynomial Q is non-trivial: qd 6= 0 for d > 0.

We are exclusively concerned here with field Az.

2.5 Digital fields

Proposition 3. Floating-point digital numbers D′ include five fields:

1. 〈D′, , + − × /〉 is isomorphic to the field Q2 of 2-adic numbers.
2. The field Q of rational numbers is a sub-field of A2.
3. 〈D′, , ⊕ ⊗ ®〉 is isomorphic to the field F2((z)) of binary Laurent series.
4. The field Az of algebraic series over F2(z) is a sub-field of F2((z)).
5. The field F2(z) of polynomial fractions is a sub-field of Az.

3 Digital functions

A digital function f ∈ D 7→ D maps x =
∑

2NxN ∈ D to y = f(x) =
∑

2NyN.
Let fN be defined by fN(x) = yN ∈ B for x ∈ D. Function f =

∑
2NfN is an

infinite sum of digital predicates fN ∈ D 7→ B.

3.1 Continuity and computability

A function f ∈ D 7→ D is continuous if 0 = lim ‖x−x′‖ ⇒ 0 = lim ‖f(x)−f(x′)‖
for all x, x′ ∈ D. This is the same definition as continuity over the reals R.

A predicate h ∈ D 7→ B is continuous if and only if h(x) = g(x0 · · ·xm−1) for
some Boolean function g ∈ Bm 7→ B and m ∈ N. By contrast, a real predicate
h ∈ R 7→ B is continuous if and only if it is trivial: h(x) = 0 or h(x) = 1.

A digital function f =
∑

2NfN is continuous if and only if all fN ∈ D 7→ B
are continuous. This is equivalent [11] to the fact that each output bit only



depends upon finitely many input bits. In other words, a function is continuous
if and only if it is uniformly-continuous [8]. By contrast, the sum s = a +R b =∑

2−NsN of two real binary numbers a =
∑

2−NaN and b =
∑

2−NbN is a
continuous operation with respect to the norm on R, but it is not continuous
with respect to the 2-adic norm: bit s0 of the sum over R can depend upon an
arbitrary number of bits in a and b, while bit s0 of the sum over Z2 is a0 ⊕ b0.

A digital function f =
∑

2NfN is computable if it is continuous and [N 7→ fN]
is a computable sequence of Boolean functions. In other words, there is a finite
program for computing y = fN(x) in a finite amount of time, over all integers N

and computable digital inputs x ∈ C. All the digital functions defined here are
computable except +R.

3.2 Causality

Physics demands that the function of a circuit be strictly causal : present output
values only depend upon past input values. In the ideal mathematical model of
DS circuits, Boolean gates have zero delay and the function is weakly causal :
present output values only depend upon past and present input values.

Proposition 4. A digital function is causal f ∈ D c→ D if and only if the
following equivalent [11] characterizations apply.

– f is computed by a node in some infinite DS circuit.
– ‖f(x)− f(x′)‖ ≤ ‖x− x′‖ for all digital numbers x, x′ ∈ D.
– f(x) =

∑
2NfN(x0 · · ·xN) where fN ∈ BN+1 7→ B.

3.3 Sequentiality

Physics also demands that circuits be finite.

Proposition 5. A causal function is sequential f ∈ D s→ D if and only if the
following equivalent characterizations apply.

– f is causal and computable with bounded memory.
– f is computed by a node in some finite DS circuit.
– f is computed by some Mealy FSM.

Proposition 6. The following are two SNFs for f ∈ D s→ D.

– The minimal deterministic Mealy mdFSM(f). It is isomorphic to the set
{f(a + 2ix)÷ 2i : a < 2i} of suffixes of f . Let s = states f ∈ N+ 1 denote
the common size.

– The minimal memory circuit MMC(f) contains m = dlog2(s)e registers and
its Boolean logic is derived from mdFSM.

No DS circuit with m− 1 registers computes f .



3.4 Characterization of sequential functions

Definition 3. Let f(x) =
∑

2NfN(x0 · · ·xN) be a causal function.
The ν-transform of f is the digital number F = νf ∈ 4D defined by

F (k) = fl−2(B
k
l−2 · · · Bk

0) ∈ B

if the binary representation of k =
∑

2N
B

k
N has length l = dlog2(k + 1)e ≥ 2,

and by F (0) = F (1) = 0 otherwise.

The ν-transform is an infinite truth-table which gathers all output bits of f for
all inputs in order νf = 00f0(2)f0(3)f1(4)f1(6)f1(5)f1(7)f2(8)f2(12) · · ·
Proposition 7. The ν-transform is an isomorphism 4D ' ν(D c→ D) between
causal functions D c→ D and multiple of 4 digital numbers 4D. The related
ν′(f) = (νf)÷ 4 is a Boolean algebra isomorphism:

ν′(¬f) = ¬ν′f, ν′(f ⊕ g) = ν′f ⊕ ν′g,
ν′(f ∩ g) = ν′f ∩ ν′g, ν′(f ∪ g) = ν′f ∪ ν′g.

The transform of the identity f(x) = x is the rational number ν(x) =
00(01)∞ = z3

1−z2 = −8/3 and similarly for ν(0) = 0 and ν(−1) = z2

1−z = −4.
The transform of 2f is quadratic: ν(2f) = F ¯ F = 3 ↑ F for F = νf .

The theory of p-automatic sequences originates with Cobham [6]. The the-
orem of Christol&al [4], [5] identifies p-automatic sequences with p-algebraic
numbers, i.e. Laurent series in Fp((z)) which are algebraic over the field Fp(z).

In terms of causal functions rather than automata, the 2-automatic sequence2

of f ∈ D c→ D is the digital number

αf = f0(0)f1(1)f2(2)f2(3)f3(4)f3(6)f3(5)f3(7)f4(8)f4(12) · · ·
Unlike the ν-transform, this correspondence is not one-to-one: the identity func-
tion i(x) = x and the constant function c(x) = −2 have equal α(i) = α(c) = −2
2-automatic sequences. Yet, they are close enough so that one [12] can de-
rive from Christol’s theorem that the ν-transform of a sequential function is
2-algebraic. In addition, proposition 7 yields an isomorphism which is character-
istic of the base p = 2.

Theorem 1. The ν-transform is an isomorphism 4A ' ν(D s→ D) between
sequential functions D s→ D and algebraic numbers 4A = Az ∩ 4D.

4 Digital synchronous circuits

4.1 Net-list

A DS circuit is described by its net-list L ∈ C(−1 x, z, ∩ ⊕ ∪)3. The net-list is
a finite or infinite sequence of definitions vN = EN, one for each net V =

⋃
vN in

2 using the ”lecture directe” in [5]
3 Without loss in size, we replace NOT by the equivalent ¬a = −1⊕ a.



the circuit. Through topological sort [10], we may freely assume that expression
EN ∈ {x, zvN′ , ¬vN0 , vN0 ∩ vN1 , vN0 ⊕ vN1 , vN0 ∪ vN1} is such that N0 < N and
N1 < N. The input of a Boolean operation is defined before it is used. It is thus
impossible to introduce combinational cycles within DS circuits. No restriction
applies to the input of a register vN = zvN′ , except that vN′ ∈ V must be defined
somewhere in the net-list. The register equation introduces a feed-back cycle
when N

′ ≥ N. By construction, all feed-back cycles within a DS circuit must
contain at least one register z.

4.2 Truth-list

By proposition 7, the net-list L ∈ C(−1 x, z, ∩ ⊕ ∪) of a circuit is transformed
- equation for equation - by ν into the truth-list νL ∈ C(−4 −8

3 , ,¯ ∩ ⊕∪).
The truth-list is a system of equations over digital numbers, built from ratio-

nal constants, shuffle and logical operators. This system has a unique solution
which is the ν-transform of the function of each net v in the net-list. By theorem
1 the solution of a finite system is algebraic ν(v) ∈ 4A for every v ∈ L.

Example 2. The net-list y = x ⊕ zy of a single bit binary counter ν-transforms
to the truth-list Y = X ⊕ (Y ¯ Y ) where Y = ν(y) and X = ν(x) = z3

1−z2 .

This is equivalent to Y (z) = z3

1−z2 ⊕ (1 + z)Y (z2) and series Y (z) ∈ A is root

0 = P (Y, z) of the polynomial P (y, z) = z3

1−z2 +y+(1+z)y2 ∈ F2(z)[y]. Number
Y = [N 7→ YN] is the logical NOT of the Thue-Morse sequence [1] minus 1:

Y0 = Y1 = 0, Y2N = YN and Y1+2N = 1− YN.

4.3 Transformed circuit analysis

The common practice in testing circuits is to add some sequential logic which is
specific of the property under test, and to observe the output y from this test
logic. One so reduces testing to deciding if y = 0 or not. Circuit simulation can
establish that y 6= 0 when that is the case, but y = 0 requires symbolic algebra
to be proved. Symbolic algebra can also prove that y 6= 0, and sometimes faster
than simulation.

Testing if y = 0 in a circuit given by a net-list L is ν-transformed to testing
if Y = 0 in the truth-list νL. A problem on n = |L| sequential functions is
transformed into a problem of the same size n on algebraic numbers.

We gain because the algebraic structure of the transform domain A is richer
than that of the original D s→ D.

– No loss in size arises for memory-less logic, since ν is (almost) a Boolean
algebra isomorphism.

– No loss arises for the mdFSM, since the RBT is simply related in size.
– No loss and possibly significant size gain are achieved by the MUP.



4.4 Two examples

Let us illustrate the previous points with the minus circuit from example 1:

net-list : x = input; r = zu; u = x ∪ r; y = x⊕ r.
truth-list : X = 0¯−2; R = U ¯ U ; U = X ∪R; Y = X ⊕R.

(1)

The constants 0 = 0 ¯ 0, −1 = −1 ¯ −1, 1 = 1 ¯ 0, −2 = −2 ¯ −1 and
−4 = −2 ¯ −2 are well-known. The aim of normalization is to eliminate all
Boolean definitions from the truth-list, and replace by shuffle definitions.

Lemma 2. Let g ∈ B2 7→ B be a Boolean function. Then, for all a, b, c, d ∈ D:

f(a, b)¯ f(c, d) = f(a¯ c, b¯ d).

So, we can replace the Boolean definitions for U and Y in (1) by the equivalent:

X = 0¯−2; R = U ¯ U ; U = X ∪R; Y = X ⊕R.
V = U ⊕−2; U = U ¯−2; Y = U ¯ V.

(2)

Note that the variables X and R are no longer used. In exchange, a new variable
V is added. Its Boolean definition is in turn replaced by a shuffle definition, and
we finally obtain the RBT for minus:

V = V ¯ 1; U = U ¯−2; Y = U ¯ V. (3)

Rewriting U = U ¯ −2 = z3

1−z2 + ↑ U yield the minimal up-polynomial PU =
z3

1−z2 + y+ ↑ y The only root is U . Rewriting Y = U ¯ V = z3

1−z2 + (1 + z) ↑ U
gives an expression in U . Elimination of U through 0 = PU (U) yield the MUP
for the output PY = q + y + 1

1−z ↑ y. The rational coefficient q is equivalently

represented by q = 0001(01011010)∞ = z+z2+z3

(1−z)5 = 40/17. The representation of
q by RBT has 6 nodes: q = q1 ¯ q2; q1 = q3 ¯ q3; q2 = q4 ¯ q5; q3 = −2 ¯ 0;
q4 = 0¯−1; q5 = 1¯−1.

Polynomial PY has two roots and we locate Y by Y0 = 0. This is sufficient
since PY has exactly one even root.

Our second example is a n bit shift-register with net-list

s0 = x; s1 = zs0; · · · sn = zsn−1.

– The number of states in the mdFSM for sn is 2n.
– The RBT for Sn = νsn has n + 1 nodes.
– The MUP for Sn = νsn is Pn(y) = qn + y for qn = 22n

(22n−1)

1−22n+1 rational. The

length of the binary representation of qn = 02n+1
(02n

12n

)∞ is 2n+2. The
RBT representation of qn has n + 1 nodes.

This example provides a strong argument for representing the rational coeffi-
cients of the MUP by the RBT, rather than by an ultimately periodic binary
sequence, or by quotient of integers.



5 Algebraic digital numbers

Through this last section, we use the symbols +,× from integer arithmetics to
actually represent the polynomial operations ⊕,⊗. This is all right since all,
from here on, takes place in the field Qz = F2((z)) of binary Laurent series.

Definition 4. A digital series s ∈ D′ ' Qz is algebraic4 s ∈ Az if it is root5

0 =
∑

k≤d pksk of a polynomial P ∈ F2[z,y] with coefficients pk ∈ F2[z] and
pd 6= 0 for d = degy(P ) > 0.

Equivalently, s is root 0 =
∑

k≤d qksk of a monic qd = 1 polynomial Q = P/pd ∈
F2(z)[y] with rational coefficients qk(z) = pk(z)/pd(z) ∈ F2(z).

5.1 Minimal polynomial

Definition 5. The algebraic degree dm = deg(s) of s ∈ Az is the least degree
dm = min{degy(Q) : 0 = Q(s), Q 6= 0} among polynomials with root s.

The dimension of the vector space L = F2(z)〈1 s, ⊗〉 generated over F2(z) by
the convolution powers of s is finite and equal to dm: L = F2(z)[1, s, · · · sdm−1].

The minimal polynomial of s is the unique monic polynomial Q ∈ F2(z)[y]
with root 0 = Q(s) and minimal degree dm = deg(s). Uniqueness of Q follows
by contradiction: a common root 0 = Q(s) = Q′(s) to different Q 6= Q′ monic
qd = 1 polynomials with equal degree d must also be root of Q⊕Q′ - a non-trivial
polynomial of degree < d.

The minimal polynomial of νf ∈ 4A yields a SNF for sequential function
f ∈ D s→ D. Yet, this representation is not simply related to any of the previous.

5.2 Minimal up-polynomial

A more economical representation arises by replacing convolution powers sN by
up-powers ↑N s = s2N

= s(z2N

). It follows that ↑N (s⊕ s′) = (↑N s)⊕ (↑N s′) is
linear, and similarly for ↑N (s⊗ s′) = (↑N s)⊗ (↑N s′).

Proposition 8. The minimal up-polynomial P ∈ F2(z)[y] of s ∈ A is the
unique P (y) = p0 + p1y + p2 ↑ y + · · · + pd+1 ↑d y with root 0 = P (s) and
minimal up-degree d ∈ N which is unitary p1 = 1. The up-degree d = deg2(s)
of P is smaller d < dm than the minimal degree dm = deg(s), while dm ≤ 2d.

Uniqueness of the MUP follows by contradiction, as above. The unitary condi-
tions p1 = 1 and pd 6= 0 are dual to the former monic conditions p0 6= 0 and
pd = 1.

For example, the Baum-Sweet series [2] has a minimal polynomial 1+zy+y3

of degree 3, and a minimal up-polynomial y + z ↑ y+ ↑2 y of up-degree 2. The
root a =

∑
z24N

of z + y+ ↑4 y has up-degree 4 = deg2(a) while 16 = deg(a).
4 we should really say z-algebraic, to distinguish from A2
5 we should really write 0 =

⊕
k≤d

pk ⊗ sk⊗



Root location By the fundamental theorem of Algebra, an up-polynomial of
up-degree d may have up to 2d roots in Qz. For example, P (y) = z + y+ ↑ y
has two roots f and 1 + f ; the Fredhom [5] series f =

∑
z2N

is the standard
root.

Proposition 9. Let P (y) = p0 +y +
∑

1≤i≤d pi ↑i y = y + Q(↑ y) be a unitary
up-polynomial. Consider the sN ∈ F2(z) defined by s0 = 0 and sN+1 = Q(↑ sN).
P has a root if and only if s =

∑
sN converges to some s ∈ Qz. Series s is the

standard root of P and 0 = P (s). Every root 0 = P (r) of P can be uniquely
written as r = n2−v + s′, where v ∈ N and n ∈ N is the least integer such that
s′ is the standard root of P ′(y) = P (y) + P (n2−v).

For example, the standard root of y + z ↑ y+ ↑2 y is zero. The other root is the
Baum-Sweet series b = 1+ s where s is the standard root of y+z+z ↑ y+ ↑2 y.

Comparison The size of the MUP is smaller than that of the RBT.

Proposition 10. Let y ∈ A be an algebraic digital number.

1. The minimal up-polynomial 0 = P (y) of y has up-degree d = log2(degy(P )).
2. The vector space D = F2(z)〈1 y, ↓ ↓′〉 generated over F2(z) by 1, y and sam-

pling is equal that U = F2(z)〈1 y, ↑〉 generated by up-powers. The common
finite dimension is equal to d + 1.

3. The sampling set S = 〈y, ↓ ↓′〉 of y is finite of size s. Size s is greater than
or equal to d.
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