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Abstract

The Binary Decision Diagram BDD, the Binary Moment Diagram
BMD and the Minimal Deterministic Automaton MDA are three canoni-
cal representations for Boolean functions. Exact expression a(i) and w(z)
are provided for the average and worst size BDD over B — B, and they
are proved equal to those for the average and worst size BMD. The ex-
pressions a(i) and w(i) for MDA are just slightly bigger since
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The significant differences between worst and average sizes are shown
located on levels ¢ and ¢+ 1: the critical depth ¢ = |r| is the integer part

of the root r € R of i = r + 2". The analysis shows that the average to
worst size ratios L?) and i(z.)) oscillate between

w( w(

1_2ie = 0.81606--- and 1 as ¢ +— ooc.
Successive minima are found for ¢ = n + 2" and n € N, where the gain
between average and worst sizes is about 18%. Yet, such numbers are
far in between: the gain far less than 1%, with probability one over the
integers. The BDD/BMD /MDA sizes of a random function with a random
number i of inputs are all equivalent to those of the worst size structure
a(t) ~a(i) ~ w(i) ~ w(i).

1 Introduction

The MDA, BDD and BMD are classical [1, 2, 3] strong normal forms for repre-
senting Boolean functions, and they are key to modern circuit verification.

This paper provides an exact analysis for the worst and average size of these
three structures. The worst case analysis relates to counting arguments which
are well known for circuits [6]. Our contribution lies in the exact and asymptotic
analysis of the average sizes.!
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The example function is defined by the expression E = z{z9 + z123, with 2}, =1 — x4

Graphs of MDA3(E), BDD3(E) and BM D3(E).

BDD3(E) = {0,1,z1,2}, 222,21 Uma, E},
BMD3(E) = {0,1,z1,2,, 222}, E}.

Figure 1: Example MDA, BDD and BMD.

2 Boolean Functions and Canonical Forms

Let B; = BY — B denote the set formed by the 3; = |B;| = 22" Boolean
functions having ¢ € IN inputs and a single output. An abstract Boolean function
f¢ = [e] € B, is represented by some concrete expression (a.k.a. circuit net-list)

eeEi: <Oa1a$1a"'7xi7_'aﬁaua@>

composed from 0, 1, inputs T = x; ---x; and say, the logical not, and, or, zor.
In turn, each expression e € E; denotes a unique function f¢(Z) = [e] € B;.
The Boolean value f¢(b) = [e._;] € B = {0,1} is computed by substituting
b=b---b € B for T =, ---x; in e and by simplifying, to either 0 or 1.

Let e € E; be some Boolean expression with ¢ inputs, and f¢ = [e] € B; be
the denoted Boolean function. For ¢ > 0 and b € B, the partial substitutions
ex,=b Project f¢ on two prefix functions with ¢ — 1 inputs:

vi=b = [€z,=b] € Bi_1.
A function f € B, is thus uniquely expressed by Shannon’s prefix decomposition:
f=2ifr,=1 + (1 — ;) fa,=0
The MDA for f € B; can be constructed as follows:

1. Recursively apply Shannon’s prefix decomposition down to the constant
functions 0,1 € By; the result is a complete binary decision tree of depth
i, whose 2! leaves are labelled by the 2¢ bits: f(b) € B for b € B".

2. Systematically share the nodes which represent equal Boolean functions,
at all levels p for 1 < p < in the decision tree.



The resulting MDA data structure is a directed acyclic graph in which: all paths
from the root to a leaf have the same length ¢; distinct nodes e # €’ € E, at
depth p represent distinct Boolean functions: f€(b) = 1— f ¢ (b) for some b € BP.

The prefix closure of f € B, is the set M DA;(f) of Boolean functions which
label nodes in the MDA for f. It is recursively defined by:

MDAy(f) = {f}for f=0and f =1,
1 >0: MDAZ(f) = {f} @] MDAifl(fzi:()) @] MDAifl(fxizl).

The partial derivative of f € B; with respect to variable x; is defined by

of of
or (fri=0 @ fz,=1), so that (&ri

=0) & (f = foi=0 = fai=1)-

Condition 8879 = 0 detects when g is independent of input bit x,. We let
p

B,={g€B,: aa—i # 0} denote the 3, = |B}| = 8, — f,—1 functions in B,
which effectively depend upon input bit z,,.

The BDD for f € B; may be constructed from the MDA, by simplifying
away all nodes g ¢ B; with are independent of x,. It is recursively defined by:

BDDo(f) = {f},

9L —0: BDDi(f) = BDD;_1(fr,—o),
% #0: BDDi(f) = {f}UBDD; 1(fs,—0) UBDD;_1(fu,=1)-

A dual of Shannon’s decomposition is the Reed-Muller decomposition:

_ of
f = fl‘i:O 697:18_%-

The BMD for f € B; is constructed by recursively applying Reed-Muller’s
decomposition and by systematically sharing all common sub-expressions:

BMDo(f) = {f},

5L =0: BMD;(f) = BMD; 1(fs=0),
2L #0: BMDi(f) = {f}UBMD; 1(fs,—0) UBMD; 1(5L).

3 Worst Case Analysis

In defining the size of our structures, it is convenient to only count internal
nodes and to exclude the two leaf nodes 0,1 € By, as in the tables in Figure 2.

Definition 1 Let the worst size MDA, BDD, BMD over f € B; be:

wmda(i) = max{|MDA;(f)|: f € B},
W) = max{|BDD;(f)|: f € Bi},
WwPmd(i) = max{|BMD;(f)|: f € B;}.



]l 2 3 4Jw@] [\l 2 3 4w
1 |1 1 1 |1 1
2 12 1 3 2 12 1 3
312 2 1 5 314 2 1 7
4 12 4 2 1 9 4 14 4 2 1 11
5 12 8 4 2 17 5 14 8 4 2 19
6 |2 12 8 4| 29 6 |4 16 8 4| 35
712 12 16 8 | 45 714 16 16 8 | 51
8 |2 12 32 16| 77 8 |4 16 32 16| 83
Table for w, (i) and w(i). Table for @, (i) and w(i).

Figure 2: Worst Size tables.

The analysis for i € N relates to the unique root 7 = 7(i) € R > 0 of?
i=r 42 (1)

The critical depth ¢ = c(i) € N of i is the integer part ¢ = [r] of 7.

3.1 Exact Analysis

In the worst case structures of depth i € N, the nodes above ¢+1 form a complete
binary tree. The nodes beneath ¢ enumerate all the Boolean functions in B, -
in a redundant way within the MDA, non-redundant within the BDD/BMD.

Proposition 1 The worst BDD and BMD over f € B; have equal sizes
w(i) = W) = Whmd(i) = 217¢ + 2% — 3 (2)
and ¢ = ¢(1) is the critical depth of i. The worst MDA has the related size
w(i) = W (i) = w(i) + B, (3)

for 5;’ = Zo<p§j Bp-

Proof: Let W, (i) count the nodes at depth p in the worst size M DA;, so that
w(i) = >, Wy(i). There are 2¢=P nodes at depth p in a complete binary decision
tree of depth i. In the worst case, each node represents a different Boolean
function and wy, (i) = 2°~P. This is true for as long as there are enough functions
to choose from, namely 2¢7P < Bp. Otherwise, the worst case W,(i) = () takes
place when each Boolean function in B, is represented by some node at depth
pin MDA;. In summary

Wp(i) = min(2°7P, 5p).
2The root of (1) is related to that z = L(y) of Lambert’s transcendental equation ze® =y
by r =i — ——2— - function L is called LambertW by [5].

EL(ln(z)zi)
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Figure 3: Graphs of %:)), “;‘” and %Egngi —"“2),2")

The number of nodes at depth p in the worst BDD,; or BM D; is then
wy(i) = min(2°7°F, B,),
since 61', = 3, — Bp—1 counts there the Boolean functions in B;.

The sign of 207 — j3, is equal to the sign of d, =i — p — 2P and to the sign
of p — r since d, = p — r + 2P7". The following equivalence

2P <B) & (dp>0) & (p>r) & (2P < 3)

is simply derived for p > 0. Substituting in the above expressions gives us:

. Op ifp <,
wp(i) = 2ifp ifp>r,
. Tifp <,
and wy(i) = 2?51’ i p>r
Summing up w(i) = > wy (i) and W(i) = Y w,(7) yield (2,3). Q.E.D.

3.2 Asymptotic Analysis

One classical [6] asymptotic equivalent to w(z) is 2%, yet Figure 3 indicates that
iw(7)

5~ has no limit for i — oo.

the ratio

Proposition 2 For i large enough, the size w(i) of worst MDA is equivalent

to that w(i) of worst BDD/BMD: 1 =1lim; 28

The ratios between worst-size and 27 (or B, = 22" for r + 2" = i) oscillate:

1= H}E)}Qf wﬁ(:) and likewise for W;El), wé:) and 2@251);

2 = lim sup w(i)

i—00 T

and likewise for the above ratios.

The average ratio is half way between the limiting values:

1
3 = lim - w(n) and likewise for the above ratios.

2 =00 1 1<n<i ,Br(n)




Proof: Expression (3) gives the equivalence

(0
SRR

whose limit is sharply 1 for ¢, ¢ — oo.
Let f = r — ¢ be the fractional part of » = r(¢). From (2), we derive that

w(i)+3=2"°4 6. =[.(2/ + ﬁcl_ﬂ) = B.9(2f —1,1/8.) where
glt,z) =1+t+2a"

gl

1 _1+0(6c_1)—1+0(—;(i))

o~

w

Function g decreases from ¢(0,2) = 2 t0 gmin = g(ts, ) as t increases from 0
to ty; g then increases from g, to its maximum g(1,z) = 2+ z as t goes from

tm to 1. The minimum is reached at z'+ log% =1and gmin =140 (%).

Since limg, 0 g(1,2) = 2 and lim,, ¢ g(t,, ) = 1, we conclude that

1= limi%fg(tn,:cn) and 2 = limsup g(t,, z,)

Tnt—> Tp—0

over all real sequences t,, € [0, 1], hence the claimed limits for M = g(t, x).
Tw(i )

Since w(i) ~ w(i), the same limits apply to - (z and to ~5— as
. 2t 2t log (i)
, =20 = — 1+0 :
B = 71+0(—>)

nu2}’("n)’ Z}r((t?) ’ nw(n)} all Tim; o 7 Zl<n<z E(n) have

a limit equal to L. The value L = % is obtained for ¢ — oo, from the finite sum
over integers which have critical depth ¢:

Similarly for E(n) € {g,}((nz ,

1 nw(n 1 . B 1
1120 ) 27(1)=1+262(1+(C+d)2 )(1+2 d)=1+§+0(1/0).
c(n)=c d<2¢

The analysis confirms the intuition from Figure 3: in the limit, the ratio “;S”
tends to the piece-wise-linear pseudo-periodic function po (i) = #, where
¢ € N is the critical integer such that C(c) =c+2°<i<C(c+1). Q.E.D.

4 Average Case Analysis

Definition 2 Let the average size MDA, BDD, BMD over f € B; be:

Ame(i) = @Z\MDA Pl

feB;

AP(G) = i Z\BDD Ol
' feB;
1

Abmd(i) ﬂl

> [BMDi(f)l.

feB;



gw| 1 2 3 4---Joalg)| |gw|[ 1 2 3 4---Talg)
1 1 1 1 0.5 0.5
2 |17 1 2.75 2 109 0.8 1.6
3 127 19 1 5.7 3 |14 15 09 3.8
4 136 3.6 2 1 10.2 4 |18 27 19 10 | 74
5 |40 65 40 20 | 174 5 |20 48 3.7 20 |135
6 |40 103 7.9 4.0 | 29.2 6 |20 77 74 40 |24.1
7 140 140 155 8.0 | 485 7 120 105 146 8.0 | 42.
8 4.0 157 30.1 16.0 | 80.9 8 |20 11.8 283 16.0 | 73.
Table for @,(¢) and a(q). Table for a,(q) and a(q).

Figure 4: Average size tables.

Let A7) count the nodes at depth p in A™% (i) = o Amda (i), and similarly
for BDD and BMD.

The average analysis is related to that of hashing [4]. Let N = [ny---ny] be
some sequence of k integers chosen at random in {0---m — 1}. The probability
that an integer j such that 0 < j < m belongs to N is

Pr(j e N) =1-(1— ) =h(- k). (4)

The hash function to analyze here is h(x,y) =1 — (1 — z)Y.

4.1 Exact Analysis
Proposition 3 The average BDD and BMD have the same size at depth p:

ap(i) = Ay (i) = Ay"(i) = Byh(p, yp) (5)

foralll <p <i; here, ), = Blp and y, = 2'7P. The size of the average MDA is

ap(i) = ApP(i) = Bph(zp, yp). (6)

Proof: The probability that some Boolean function g € B, is g € MDA,(f)
among the 277 prefixes of a random f € B; amounts to h(xp,y,) by (4). The
average number of nodes at depth p in MDA;(f) is the sum @, (3) = Bph(zp, Yp)
of these probabilities over B,. Summing over B}, yields a,(i) = §,h(z),y,) for
BDD;(f) and as well for BM D;(f). Q.E.D.

4.2 Asymptotic Analysis

The limit (if any) of the hash function h(z,y) =1 — (1 — z)¥ for  — 0 and
y — oo depends on that (if any) of the product p = zy: h(z,y) — 0 if p — 0;
h(z,y) — 1 if p— oo; finally h(z,y) —1— % ifzy—peR > 0.

D



Lemma 1 Let i € N have critical depth ¢ = |r(i)]; let z, = 5—111 < 1 and

Yp = 2P > 1. The number h(xp,yp) = 1 — (1 —x,)% =1 — ¥ 10801=22) equaqls

1—0x.41 ifl<p<g
B 1—e ¥ — Oz, ifp=c¢
h(ap, yp) = pyp(1 — 22 (1= 8))  ifp=c+1;
Zp(yp — 0) ife+1<p<i.

Proof: Throughout this paper, the reader should see 6,, whenever she/he/it
reads the letter . The invisible index n is the number of occurrences of 6
before this point in the text. Each variable 6,, represents a real number such
that 0 < 0,, < 1, and no relation is assumed beyond that. The usage of 6 is
restricted to a single occurrence per real-valued expression.

By (1), the sign of d, =i —p — 2P is equal to the sign of r — p since

dy = logy(z,1p) = (r — p) + (27 — 27).
e The condition p < ¢ & p <r —1 & d, > 2P implies that
1 — e¥r log(1—=yp) =1 e_xpyp/(l""g) =1 ee_xpyp/2 =1 9mc+1;

indeed, z,y,/2 = 24p=1 > 2¢F1 follows from dp—1>2°"1 > c+1 which is
true for ¢ > 2. A computer verification confirms the expression for ¢ < 2.

e The condition p=c&r—-—1<p<r & 0<d, <2° implies that
eYelog(1—zc) e—wcycﬁ-%wiyc = e Ve (1 4 gxiyc) = e %Yo 4 g,
since g:cgyc = dec*zc < 1/2 and z.y. < e®e¥e.

e The condition p > c & p>r & d, <0< zpy, <1 implies that

LN

L e =1, = a1 - 1 -

Condition p > c+ 1< p>r+1<d,+1 < —2°"! finally entails

h(xp, yp) = Tpyp — H(xpyp)Q = zpYp — Oy

since Y, < 2p—1 implies that (z,y,)* < 27, = . Q.E.D.

4.3 Average versus Worst Sizes

The tables in Figures 2 and 4 indicate that the average and worst cases have
almost equal sizes, except near the critical depth ¢ = ¢(i). Indeed, Lemma 1
implies that the differences wy (i) — a, (i) and W, (i) — @,(¢) are infinitesimals
unless p = c or p = ¢+ 1. In other words, the average size structure is the same
as the worst size structure at all levels, except sometimes at depths ¢ or ¢ + 1.
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Figure 5: Graphs of p(i) = g((?) and p(i) = 20
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The difference between worst and average size is maximized when the number
i of inputs is of the critical form i = n+ 2™, for n € N. In this critical case, the
ratio between worst and average size quickly approaches 1 — % = 0.8160- - - for
a maximal gain of 18%. Yet, it follows from (10) that this ratio is greater than
0.999 for almost all i € N: on average, the gain is thus far less than 1%.

Proposition 4 For i large enough, the average BDD, BMD and MDA all
have the same relative size:

f

gy 30
1 o i»1—>ooa,(l)

The average to worst size ratios p(i) = Z((?) and p(i) =

; (7)

g((?) are such that:

1 = limsupp(i) = limsup p(3), (8)
00 =00
1
—5 = liminf p(i) = liminf p(7), )
e 100 =00
1 1
1= lim - Y p(n)=lim - > p(n). (10)
i—00 1 1<n<i =00 1 1<n<i

Proof: Let ¢ = c(i) be the crital depth, so that i = ¢+ d+ 2% and 0 < d < 2°.
We split the sum @(i) = >°,_.p(i) + @c(i) + Tet1(d) o5y 1 @p(i) and replace
each term @, (i) = Byh(zp, yp) by its equivalent from Lemma 1 to find that

ali) = w()—03i)— i (11)

0

7. (12)

where 0(i) = Bcefzd 4 2%473(1 — 5

Since 0 = lim;— oo % and 1 = lim; %, it follows from (11) that

limsupp(i) = 1—liminf & =1 —liminf @,

00 00 ’U}(’L) i—o00 W Z)



liminfp(i) = 1- limsup @ =1 —limsup M

i 00 oo W(1) oo W(7)
The ratio % can be expressed in terms of x = ﬁi and z = 2% by:

0(1) ez Oxz
it (13)

For z < 1 fixed, function k(z,z) is uni-modal in the interval 1 < z < %: it is
exponentially decreasing from k(z,1) = % + 0z to some infinitesimal ky,;p, =
k(x,z;) = O(zlog(z)) in the interval 1 < z < z, = O(log(x)). It is (almost
linearly) increasing from Ky to k(z,2) < & < k(z,1) in 2z, <z < 1 hence

0 = liminf M and l = lim sup M
oo w(1) e oo W(1)

By a similar evaluation through Lemma 1, the average BDD/BMD has size

a(i) = w(i)—6(i) — 0i
where (i) = Ble 2" +2273(1 — g) =0(i) — fe_1e?

d

. - . _od
Equality 3}((1)) = i((’)) iy “’u}(el Lo s —0/8._1 implies that the limits as i — oo

w(z

are equal to the above for (z), and (8,9) are proved. Limit (7) follows from:

a(i) _w(i) —6(i) —0i _ . fe- 1(9+e’2)_ 1
o~ wm o T e s %G

The limit (10) is established by proving that 0 = lim.,o 27°5(c) for the sum

S@= Y det+d+2°) S ke 2%).

)-

1<d<2e w(e+d+2°) 1<d<2e
We evaluate S(c) by (13) to find that
d __ Ze
0< S(c <21+2d Z 29 = 0154+ + (20, — 3) < 1
1<d<2e
and the convergence of 27¢5(¢) to 0 is exponentially fast. Q.E.D.

References

[1] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. on Computers, 35:8:677-691, 1986.

10



[2] R. E. Bryant. Symbolic boolean manipulations with ordered binary decision
diagrams. ACM Comp. Surveys, 24:293-318, 1992.

[3] R. E. Bryant and Y.-A. Chen. Verification of arithmetic functions with
binary moment diagrams. Design Automation Conf., pages 535-541, 1995.

[4] D. E. Knuth. The Art of Computer Programming, vol. 3, Sorting and Search-
ing. Addison Wesley, 1971.

[5] MapleSoft. Maple 9 Guide. Waterloo Maple Inc., 2003.

[6] I. Wegener. The Complezity of Boolean Functions. John Wiley and Sons
Ltd, 1987.

11



