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Abstract

The Binary Decision Diagram BDD, the Binary Moment Diagram
BMD and the Minimal Deterministic Automaton MDA are three canoni-
cal representations for Boolean functions. Exact expression a(i) and w(i)
are provided for the average and worst size BDD over Bi �→ B, and they
are proved equal to those for the average and worst size BMD. The ex-
pressions a(i) and w(i) for MDA are just slightly bigger since

1 = lim
i�→∞

a(i)

a(i)
= lim

i�→∞
w(i)

w(i)
.

The significant differences between worst and average sizes are shown
located on levels c and c + 1: the critical depth c = �r� is the integer part
of the root r ∈ R of i = r + 2r. The analysis shows that the average to
worst size ratios a(i)

w(i)
and a(i)

w(i)
oscillate between

1 − 1

2e
= 0.81606 · · · and 1 as i �→ ∞.

Successive minima are found for i = n + 2n and n ∈ N, where the gain
between average and worst sizes is about 18%. Yet, such numbers are
far in between: the gain far less than 1%, with probability one over the
integers. The BDD/BMD/MDA sizes of a random function with a random
number i of inputs are all equivalent to those of the worst size structure
a(i) � a(i) � w(i) � w(i).

1 Introduction

The MDA, BDD and BMD are classical [1, 2, 3] strong normal forms for repre-
senting Boolean functions, and they are key to modern circuit verification.

This paper provides an exact analysis for the worst and average size of these
three structures. The worst case analysis relates to counting arguments which
are well known for circuits [6]. Our contribution lies in the exact and asymptotic
analysis of the average sizes.1

∗Ecole Normale Supérieure, 45 rue d’Ulm, 75005 Paris France.
1Bryant’s publication [1] on BDDs is reputed to be the most often quoted in Computer

Science. Thus, we expect that the present analysis of the random BDD may have already
been published, for whole or in part. We will happily retract/amend/acknowledge our claims,
based on all prior-art provided by our kind readers.
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The example function is defined by the expression E = x′
1x2 + x1x3, with x′

k = 1 − xk.
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Graphs of MDA3(E), BDD3(E) and BMD3(E).

BDD3(E) = {0, 1, x1, x
′
1, x2x

′
1, x1 ∪ x2, E},

BMD3(E) = {0, 1, x1, x
′
1, x2x

′
1, E}.

Figure 1: Example MDA, BDD and BMD.

2 Boolean Functions and Canonical Forms

Let Bi = Bi �→ B denote the set formed by the βi = |Bi| = 22i

Boolean
functions having i ∈ N inputs and a single output. An abstract Boolean function
fe = [[e]] ∈ Bi is represented by some concrete expression (a.k.a. circuit net-list)

e ∈ Ei = 〈0, 1, x1, · · · , xi,¬,∩,∪,⊕〉
composed from 0, 1, inputs x = x1 · · ·xi and say, the logical not, and, or, xor.
In turn, each expression e ∈ Ei denotes a unique function fe(x) = [[e]] ∈ Bi.
The Boolean value fe(b) = [[ex=b]] ∈ B = {0, 1} is computed by substituting
b = b1 · · · bi ∈ Bi for x = x1 · · ·xi in e and by simplifying, to either 0 or 1.

Let e ∈ Ei be some Boolean expression with i inputs, and fe = [[e]] ∈ Bi be
the denoted Boolean function. For i > 0 and b ∈ B, the partial substitutions
exi=b project fe on two prefix functions with i − 1 inputs:

fe
xi=b = [[exi=b]] ∈ Bi−1.

A function f ∈ Bi is thus uniquely expressed by Shannon’s prefix decomposition:

f = xifxi=1 + (1 − xi)fxi=0.

The MDA for f ∈ Bi can be constructed as follows:

1. Recursively apply Shannon’s prefix decomposition down to the constant
functions 0, 1 ∈ B0; the result is a complete binary decision tree of depth
i, whose 2i leaves are labelled by the 2i bits: f(b) ∈ B for b ∈ Bi.

2. Systematically share the nodes which represent equal Boolean functions,
at all levels p for 1 ≤ p ≤ i in the decision tree.

2



The resulting MDA data structure is a directed acyclic graph in which: all paths
from the root to a leaf have the same length i; distinct nodes e 
= e′ ∈ Ep at
depth p represent distinct Boolean functions: fe(b) = 1−fe′

(b) for some b ∈ Bp.
The prefix closure of f ∈ Bi is the set MDAi(f) of Boolean functions which

label nodes in the MDA for f . It is recursively defined by:

MDA0(f) = {f} for f = 0 and f = 1,
i > 0 : MDAi(f) = {f} ∪ MDAi−1(fxi=0) ∪ MDAi−1(fxi=1).

The partial derivative of f ∈ Bi with respect to variable xi is defined by

∂f

∂xi
= (fxi=0 ⊕ fxi=1), so that (

∂f

∂xi
= 0) ⇔ (f = fxi=0 = fxi=1).

Condition ∂g
∂xp

= 0 detects when g is independent of input bit xp. We let

B′
p = {g ∈ Bp : ∂g

∂xp

= 0} denote the β′

p = |B′
p| = βp − βp−1 functions in Bp

which effectively depend upon input bit xp.
The BDD for f ∈ Bi may be constructed from the MDA, by simplifying

away all nodes g /∈ B′
p with are independent of xp. It is recursively defined by:

BDD0(f) = {f},
∂f
∂xi

= 0 : BDDi(f) = BDDi−1(fxi=0),
∂f
∂xi


= 0 : BDDi(f) = {f} ∪ BDDi−1(fxi=0) ∪ BDDi−1(fxi=1).

A dual of Shannon’s decomposition is the Reed-Muller decomposition:

f = fxi=0 ⊕ xi
∂f

∂xi
.

The BMD for f ∈ Bi is constructed by recursively applying Reed-Muller’s
decomposition and by systematically sharing all common sub-expressions:

BMD0(f) = {f},
∂f
∂xi

= 0 : BMDi(f) = BMDi−1(fxi=0),
∂f
∂xi


= 0 : BMDi(f) = {f} ∪ BMDi−1(fxi=0) ∪ BMDi−1( ∂f
∂xi

).

3 Worst Case Analysis

In defining the size of our structures, it is convenient to only count internal
nodes and to exclude the two leaf nodes 0, 1 ∈ B0, as in the tables in Figure 2.

Definition 1 Let the worst size MDA, BDD, BMD over f ∈ Bi be:

Wmda(i) = max{|MDAi(f)| : f ∈ Bi},
W bdd(i) = max{|BDDi(f)| : f ∈ Bi},
W bmd(i) = max{|BMDi(f)| : f ∈ Bi}.
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i\p 1 2 3 4 w(i)
1 1 1
2 2 1 3
3 2 2 1 5
4 2 4 2 1 9
5 2 8 4 2 17
6 2 12 8 4 29
7 2 12 16 8 45
8 2 12 32 16 77
Table for wp(i) and w(i).

i\p 1 2 3 4 w(i)
1 1 1
2 2 1 3
3 4 2 1 7
4 4 4 2 1 11
5 4 8 4 2 19
6 4 16 8 4 35
7 4 16 16 8 51
8 4 16 32 16 83
Table for wp(i) and w(i).

Figure 2: Worst Size tables.

The analysis for i ∈ N relates to the unique root r = r(i) ∈ R ≥ 0 of2

i = r + 2r. (1)

The critical depth c = c(i) ∈ N of i is the integer part c = r� of r.

3.1 Exact Analysis

In the worst case structures of depth i ∈ N, the nodes above c+1 form a complete
binary tree. The nodes beneath c enumerate all the Boolean functions in Bc -
in a redundant way within the MDA, non-redundant within the BDD/BMD.

Proposition 1 The worst BDD and BMD over f ∈ Bi have equal sizes

w(i) = W bdd(i) = W bmd(i) = 2i−c + 22c − 3 (2)

and c = c(i) is the critical depth of i. The worst MDA has the related size

w(i) = Wmda(i) = w(i) + β′′
c−1 (3)

for β′′
j =

∑
0<p≤j βp.

Proof: Let wp(i) count the nodes at depth p in the worst size MDAi, so that
w(i) =

∑
p wp(i). There are 2i−p nodes at depth p in a complete binary decision

tree of depth i. In the worst case, each node represents a different Boolean
function and wp(i) = 2i−p. This is true for as long as there are enough functions
to choose from, namely 2i−p ≤ βp. Otherwise, the worst case wp(i) = βp takes
place when each Boolean function in Bp is represented by some node at depth
p in MDAi. In summary

wp(i) = min(2i−p, βp).

2The root of (1) is related to that x = L(y) of Lambert’s transcendental equation xex = y

by r = i − 2i

e
L(ln(2)2i)

- function L is called LambertW by [5].
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Figure 3: Graphs of w(i)
βr(i)

, iw(i)
2i and 1

i

∑
1≤n≤i

nw(n)
2n .

The number of nodes at depth p in the worst BDDi or BMDi is then

wp(i) = min(2i−p, β′
p),

since β′
p = βp − βp−1 counts there the Boolean functions in B′

p.
The sign of 2i−p − βp is equal to the sign of dp = i − p − 2p and to the sign

of p − r since dp = p − r + 2p−r. The following equivalence

(2i−p < βp) ⇔ (dp > 0) ⇔ (p > r) ⇔ (2i−p < β′
p)

is simply derived for p > 0. Substituting in the above expressions gives us:

wp(i) =
{

βp if p ≤ r,
2i−p if p > r,

and wp(i) =
{

β′
p if p ≤ r,

2i−p if p > r.

Summing up w(i) =
∑

wp(i) and w(i) =
∑

wp(i) yield (2,3). Q.E.D.

3.2 Asymptotic Analysis

One classical [6] asymptotic equivalent to w(i) is 2i

i ; yet Figure 3 indicates that
the ratio iw(i)

2i has no limit for i �→ ∞.

Proposition 2 For i large enough, the size w(i) of worst MDA is equivalent
to that w(i) of worst BDD/BMD: 1 = limi�→∞

w(i)
w(i) .

The ratios between worst-size and 2i

i (or βr = 22r

for r + 2r = i) oscillate:

1 = lim inf
i�→∞

w(i)
βr

and likewise for
iw(i)

2i
,

w(i)
βr

and
iw(i)

2i
;

2 = lim sup
i�→∞

w(i)
βr

and likewise for the above ratios.

The average ratio is half way between the limiting values:

3
2

= lim
i�→∞

1
i

∑
1≤n≤i

w(n)
βr(n)

and likewise for the above ratios.
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Proof: Expression (3) gives the equivalence

w(i)
w(i)

= 1 +
β′′

c−1

w(i)
= 1 + O(

1
βc−1

) = 1 + O(
1√
w(i)

)

whose limit is sharply 1 for i, c �→ ∞.
Let f = r − c be the fractional part of r = r(i). From (2), we derive that

w(i) + 3 = 2i−c + βc = βr(2f + β1−2f

c ) = βrg(2f − 1, 1/βc) where

g(t, x) = 1 + t + xt.

Function g decreases from g(0, x) = 2 to gmin = g(tx, x) as t increases from 0
to tx; g then increases from gmin to its maximum g(1, x) = 2 + x as t goes from
tm to 1. The minimum is reached at xtx log 1

x = 1 and gmin = 1 + O
(

log log 1
x

log 1
x

)
.

Since limx�→0 g(1, x) = 2 and limx�→0 g(tx, x) = 1, we conclude that

1 = lim inf
xn �→0

g(tn, xn) and 2 = lim sup
xn �→0

g(tn, xn)

over all real sequences tn ∈ [0, 1], hence the claimed limits for w(i)
βr

= g(t, x).

Since w(i) � w(i), the same limits apply to w(i)
βr

and to iw(i)
2i as

βr = 22r

=
2i

i − r
=

2i

i
(1 + O(

log(i)
i

)).

Similarly for E(n) ∈ { w(n)
βr(n)

, nw(n)
2n , w(n)

βr(n)
, nw(n)

2n }, all limi�→∞ 1
i

∑
1≤n≤i E(n) have

a limit equal to L. The value L = 3
2 is obtained for c �→ ∞, from the finite sum

over integers which have critical depth c:

1
1 + 2c

∑
c(n)=c

nw(n)
2n

=
1

1 + 2c

∑
d≤2c

(1 + (c + d)2−c)(1 + 2−d) = 1 +
1
2

+ O(1/c).

The analysis confirms the intuition from Figure 3: in the limit, the ratio iw(i)
2i

tends to the piece-wise-linear pseudo-periodic function ρ∞(i) = i
c+2c , where

c ∈ N is the critical integer such that C(c) = c + 2c ≤ i < C(c + 1). Q.E.D.

4 Average Case Analysis

Definition 2 Let the average size MDA, BDD, BMD over f ∈ Bi be:

Amda(i) =
1
βi

∑
f∈Bi

|MDAi(f)|,

Abdd(i) =
1
βi

∑
f∈Bi

|BDDi(f)|,

Abmd(i) =
1
βi

∑
f∈Bi

|BMDi(f)|.
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q\p 1 2 3 4 · · · oa(q)
1 1 1
2 1.7 1 2.75
3 2.7 1.9 1 5.7
4 3.6 3.6 2 1 10.2
5 4.0 6.5 4.0 2.0 17.4
6 4.0 10.3 7.9 4.0 29.2
7 4.0 14.0 15.5 8.0 48.5
8 4.0 15.7 30.1 16.0 80.9

Table for ap(q) and a(q).

q\p 1 2 3 4 · · · a(q)
1 0.5 0.5
2 0.9 0.8 1.6
3 1.4 1.5 0.9 3.8
4 1.8 2.7 1.9 1.0 7.4
5 2.0 4.8 3.7 2.0 13.5
6 2.0 7.7 7.4 4.0 24.1
7 2.0 10.5 14.6 8.0 42.
8 2.0 11.8 28.3 16.0 73.

Table for ap(q) and a(q).

Figure 4: Average size tables.

Let Amda
p (i) count the nodes at depth p in Amda(i) =

∑
p Amda

p (i), and similarly
for BDD and BMD.

The average analysis is related to that of hashing [4]. Let N = [n1 · · ·nk] be
some sequence of k integers chosen at random in {0 · · ·m− 1}. The probability
that an integer j such that 0 ≤ j < m belongs to N is

Pr(j ∈ N ) = 1 − (1 − 1
m

)k = h(
1
m

, k). (4)

The hash function to analyze here is h(x, y) = 1 − (1 − x)y.

4.1 Exact Analysis

Proposition 3 The average BDD and BMD have the same size at depth p:

ap(i) = Abdd
p (i) = Abmd

p (i) = β′
ph(xp, yp) (5)

for all 1 ≤ p ≤ i; here, xp = 1
βp

and yp = 2i−p. The size of the average MDA is

ap(i) = Amda
p (i) = βph(xp, yp). (6)

Proof: The probability that some Boolean function g ∈ Bp is g ∈ MDAi(f)
among the 2i−p prefixes of a random f ∈ Bi amounts to h(xp, yp) by (4). The
average number of nodes at depth p in MDAi(f) is the sum ap(i) = βph(xp, yp)
of these probabilities over Bp. Summing over B′

p yields ap(i) = β′
ph(xp, yp) for

BDDi(f) and as well for BMDi(f). Q.E.D.

4.2 Asymptotic Analysis

The limit (if any) of the hash function h(x, y) = 1 − (1 − x)y for x �→ 0 and
y �→ ∞ depends on that (if any) of the product p = xy: h(x, y) �→ 0 if p �→ 0;
h(x, y) �→ 1 if p �→ ∞; finally h(x, y) �→ 1 − 1

ep if xy �→ p ∈ R > 0.
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Lemma 1 Let i ∈ N have critical depth c = r(i)�; let xp = 1
βp

< 1 and

yp = 2i−p ≥ 1. The number h(xp, yp) = 1− (1− xp)yp = 1− eyp log(1−xp) equals

h(xp, yp) =




1 − θxc+1 if 1 ≤ p < c;
1 − e−xpyp − θxp if p = c;

xpyp(1 − xpyp

2 (1 − θ
6 )) if p = c + 1;

xp(yp − θ) if c + 1 < p ≤ i.

Proof: Throughout this paper, the reader should see θn whenever she/he/it
reads the letter θ. The invisible index n is the number of occurrences of θ
before this point in the text. Each variable θn represents a real number such
that 0 < θn < 1, and no relation is assumed beyond that. The usage of θ is
restricted to a single occurrence per real-valued expression.

By (1), the sign of dp = i − p − 2p is equal to the sign of r − p since

dp = log2(xpyp) = (r − p) + (2r − 2p).

• The condition p < c ⇔ p ≤ r − 1 ⇔ dp > 2p implies that

1 − eyp log(1−xp) = 1 − e−xpyp/(1+θ) = 1 − θe−xpyp/2 = 1 − θxc+1;

indeed, xpyp/2 = 2dp−1 > 2c+1 follows from dp−1 ≥ 2c−1 > c+1 which is
true for c > 2. A computer verification confirms the expression for c ≤ 2.

• The condition p = c ⇔ r − 1 < p ≤ r ⇔ 0 ≤ dp ≤ 2c implies that

eyc log(1−xc) = e−xcyc+
θ
2 x2

cyc = e−xcyc(1 + θx2
cyc) = e−xcyc + θxc

since θ
2x2

cyc = θ
22dc−2c

< 1/2 and xcyc < excyc .

• The condition p > c ⇔ p > r ⇔ dp < 0 ⇔ xpyp < 1 implies that

1 − e−xpyp+θxp = 1 − e−xpyp − θxp = xpyp(1 − xpyp

2
(1 − θ

6
)).

Condition p > c + 1 ⇔ p > r + 1 ⇔ dp + 1 < −2p−1 finally entails

h(xp, yp) = xpyp − θ(xpyp)2 = xpyp − θxp

since xpyp < xp−1 implies that (xpyp)2 < x2
p−1 = xp. Q.E.D.

4.3 Average versus Worst Sizes

The tables in Figures 2 and 4 indicate that the average and worst cases have
almost equal sizes, except near the critical depth c = c(i). Indeed, Lemma 1
implies that the differences wp(i) − ap(i) and wp(i) − ap(i) are infinitesimals
unless p = c or p = c + 1. In other words, the average size structure is the same
as the worst size structure at all levels, except sometimes at depths c or c + 1.
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Figure 5: Graphs of ρ(i) = a(i)
w(i) and ρ(i) = a(i)

w(i) .

The difference between worst and average size is maximized when the number
i of inputs is of the critical form i = n + 2n, for n ∈ N. In this critical case, the
ratio between worst and average size quickly approaches 1− 1

2e = 0.8160 · · · for
a maximal gain of 18%. Yet, it follows from (10) that this ratio is greater than
0.999 for almost all i ∈ N: on average, the gain is thus far less than 1%.

Proposition 4 For i large enough, the average BDD, BMD and MDA all
have the same relative size:

1 = lim
i�→∞

a(i)
a(i)

, (7)

The average to worst size ratios ρ(i) = a(i)
w(i) and ρ(i) = a(i)

w(i) are such that:

1 = lim sup
i�→∞

ρ(i) = lim sup
i�→∞

ρ(i), (8)

1 − 1
2e

= lim inf
i�→∞

ρ(i) = lim inf
i�→∞

ρ(i), (9)

1 = lim
i�→∞

1
i

∑
1≤n≤i

ρ(n) = lim
i�→∞

1
i

∑
1≤n≤i

ρ(n). (10)

Proof: Let c = c(i) be the crital depth, so that i = c + d + 2c and 0 ≤ d ≤ 2c.
We split the sum a(i) =

∑
p<c ap(i) + ac(i) + ac+1(i)

∑
p>c+1 ap(i) and replace

each term ap(i) = βph(xp, yp) by its equivalent from Lemma 1 to find that

a(i) = w(i) − δ(i) − θi (11)

where δ(i) = βce
−2d

+ 22d−3(1 − θ

6
). (12)

Since 0 = limi�→∞ θi
w(i) and 1 = limi�→∞

w(i)
w(i) , it follows from (11) that

lim sup
i�→∞

ρ(i) = 1 − lim inf
i�→∞

δ(i)
w(i)

= 1 − lim inf
i�→∞

δ(i)
w(i)

,

9



lim inf
i�→∞

ρ(i) = 1 − lim sup
i�→∞

δ(i)
w(i)

= 1 − lim sup
i�→∞

δ(i)
w(i)

.

The ratio δ(i)
w(i) can be expressed in terms of x = 1

βc
and z = 2d by:

δ(i)
w(i)

= k(x, z) =
e−z

1 + z
+

xz

8
(1 − θxz

3
). (13)

For x < 1 fixed, function k(x, z) is uni-modal in the interval 1 ≤ z ≤ 1
x : it is

exponentially decreasing from k(x, 1) = 1
2e + θx to some infinitesimal kmin =

k(x, zx) = O(x log(x)) in the interval 1 ≤ z ≤ zx = O(log(x)). It is (almost
linearly) increasing from kmin to k(x, 1

x ) < 1
8 < k(x, 1) in zx ≤ z ≤ 1

x , hence

0 = lim inf
i�→∞

δ(i)
w(i)

and
1
e

= lim sup
i�→∞

δ(i)
w(i)

.

By a similar evaluation through Lemma 1, the average BDD/BMD has size

a(i) = w(i) − δ(i) − θi

where δ(i) = β′
ce

−2d

+ 22d−3(1 − θ

6
) = δ(i) − βc−1e

−2d

.

Equality δ(i)
w(i) = δ(i)

w(i) − βc−1e−2d

w(i) = δ(i)
w(i) −θ/βc−1 implies that the limits as i �→ ∞

are equal to the above for δ(i)
w(i) , and (8,9) are proved. Limit (7) follows from:

a(i)
a(i)

=
w(i) − δ(i) − θi

w(i) − δ(i)
= 1 +

βc−1(θ + e−2d

)
w(i) − δ(i)

= 1 + O(
1

βc−1
).

The limit (10) is established by proving that 0 = limc �→∞ 2−cS(c) for the sum

S(c) =
∑

1≤d≤2c

δ(c + d + 2c)
w(c + d + 2c)

=
∑

1≤d≤2c

k(xc, 2d).

We evaluate S(c) by (13) to find that

0 < S(c) <
∑

d

e−2d

1 + 2d
+

xc

8

∑
1≤d≤2c

2d = 0.154 · · · + xc

8
(2βc − 3) < 1

and the convergence of 2−cS(c) to 0 is exponentially fast. Q.E.D.
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