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Abstract Photographs taken in low-light conditions are of-
ten blurry as a result of camera shake, i.e. a motion of the
camera while its shutter is open. Most existing deblurring
methods model the observed blurry image as the convolution
of a sharp image with a uniform blur kernel. However, we
show that blur from camera shake is in general mostly due
to the 3D rotation of the camera, resulting in a blur that can
be significantly non-uniform across the image. We propose
a new parametrized geometric model of the blurring process
in terms of the rotational motion of the camera during expo-
sure. This model is able to capture non-uniform blur in an
image due to camera shake using a single global descriptor,
and can be substituted into existing deblurring algorithms
with only small modifications. To demonstrate its effective-
ness, we apply this model to two deblurring problems; first,
the case where a single blurry image is available, for which
we examine both an approximate marginalization approach
and a maximum a posteriori approach, and second, the case
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where a sharp but noisy image of the scene is available in
addition to the blurry image. We show that our approach
makes it possible to model and remove a wider class of blurs
than previous approaches, including uniform blur as a spe-
cial case, and demonstrate its effectiveness with experiments
on synthetic and real images.

Keywords Motion blur · Blind deconvolution · Camera
shake · Non-uniform/spatially-varying blur

1 Introduction

Everybody is familiar with camera shake, since the re-
sulting blur spoils many photos taken in low-light condi-
tions. While significant progress has been made recently to-
wards removing this blur from images, almost all current
approaches to this problem model the blurred image as the
convolution of a sharp image with a spatially uniform filter
(Chan and Wong 1998; Fergus et al. 2006; Shan et al. 2007;
Yuan et al. 2007a). However, real camera shake, which we
show can be (mostly) attributed to the rotation of the camera
during exposure, does not in general cause uniform blur, as
illustrated by Fig. 1.

In this paper we propose a geometrically motivated
model of non-uniform image blur due to camera shake. By
showing that such blur can be mainly attributed to the rota-
tion (as opposed to translation) of the camera during expo-
sure, we develop a global descriptor for such parametrically
non-uniform blur, derived from the geometry of camera ro-
tations about a fixed center. Our descriptor can be seen as
a generalization of a convolution kernel, and as such our
model includes uniform blur as a special case. We demon-
strate the effectiveness of our model by using it to replace
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Fig. 1 Modeling non-uniform blur in a shaken image. The blurry im-
age (a) clearly exhibits blur which is non-uniform, as highlighted at dif-
ferent locations in the image. Using the model proposed in this paper,
we can describe this blur using a single global descriptor (b), which
in this case has been estimated from the blurry image itself, simply
by modifying existing algorithms for blind deblurring (see Sect. 3 for
a complete explanation). Close-ups of different parts of the image (c)
show the variation in the shape of the blur, which can be accurately
reproduced using our model, as shown by the local point spread func-
tions generated from it. As can be seen in (d) and the close-ups in (e),
different parts of the image, blurred in different ways, can be deblurred
to recover a sharp image

the uniform blur model in three existing approaches to cam-
era shake removal, and show quantitative and qualitative
improvements in the results.

Specifically, we consider the problems of “blind” deblur-
ring, where only a single blurry image is available, and the
case where an additional sharp but noisy image of the same
scene is available. To approach these two problems, we ap-
ply our model within the frameworks proposed by Miskin
and MacKay (2000) and Fergus et al. (2006), and by Cho
and Lee (2009) for the blind case, and Yuan et al. (2007a)
for the case of a noisy/blurry image pair.

1.1 Related Work

The problem of modeling non-uniform blur is not new, and
previous approaches to this problem are diverse, as are the
many possible causes of such blurs. Much of the previous
work has relied on the local uniformity of the blur, for ex-
ample, modeling blur due to moving objects as piecewise
uniform (Levin 2006; Cho et al. 2007; Chakrabarti et al.
2010), or approximating a continuously varying blur by a
spatially varying combination of localized uniform blurs
(Nagy and O’Leary 1998; Vio et al. 2005; Hirsch et al.
2010; Tai et al. 2010a). Models of non-uniform blur that
do not rely on assumptions of local uniformity have been
applied under various constrained motion models (Shan
et al. 2007; Sawchuk 1974; Klein and Drummond 2005;
Tai et al. 2010b), and while (as in this work) global mod-
els are used to describe these continuously varying blurs,
the constraints are often restrictive.

Recent work has investigated the automatic estimation of
global descriptors for the non-uniform blur caused by cam-
era shake. Joshi et al. (2010) use inertial measurement sen-
sors to estimate the motion of the camera over the course
of the exposure. This information can then be used to effec-
tively deblur the captured image. Gupta et al. (2010) propose
a model similar to ours, where the blur-causing motions are
approximated using image-plane translations and rotations,
as opposed to the 3D camera rotations used in this work.
Levin et al. (2009) note that the assumption of uniform blur
made by most algorithms is often violated, but do not ad-
dress this fact.

If the point spread function (PSF) for each pixel in an
image is known, the problem of recovering a sharp im-
age is generally referred to as non-blind deconvolution, for
which standard techniques such as the Wiener filter (for
uniform blur) or the Richardson-Lucy algorithm (for gen-
eral blur) exist (Richardson 1972; Lucy 1974; Banham and
Katsaggelos 1997; Puetter et al. 2005). Sophisticated algo-
rithms for non-blind deconvolution have recently been pro-
posed (Dabov et al. 2008; Shan et al. 2008; Yuan et al. 2008;
Couzinie-Devy et al. 2011), but their application has gen-
erally been limited to the case of uniform blur. Note how-
ever that Tai et al. (2009) propose a modified version of
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the Richardson-Lucy algorithm for deblurring scenes under
general projective motion, where the temporal sequence of
projective transformations which caused the blur is known.

The task of recovering a sharp image when the pixels’
PSFs are unknown, so-called blind deblurring, is a difficult
problem. Existing approaches for uniform blur, where a sin-
gle PSF, or “blur kernel”, describes the blur everywhere typ-
ically proceed by first estimating this kernel, then applying a
non-blind deconvolution algorithm to estimate the sharp im-
age. For uniform blur, Fergus et al. (2006) estimate the ker-
nel by first applying the variational algorithm of Miskin and
MacKay (2000) to approximate the posterior for the kernel
and sharp image with a simpler distribution. This distribu-
tion is chosen such that it is then trivial to estimate the ker-
nel by marginalizing over all possible sharp images. Many
different maximum a posteriori (MAP) formulations have
also been proposed, such as those of Shan et al. (2008), Cho
and Lee (2009), Cai et al. (2009), and Xu and Jia (2010).
These algorithms typically use an alternation scheme, up-
dating the estimate of the blur kernel at one step, and of
the sharp image at the next. The algorithm proposed by
Gupta et al. (2010) for their non-uniform blur model also
follows this paradigm. To simplify the deblurring problem,
others have considered using additional information in the
form of additional blurry images (Rav-Acha and Peleg 2005;
Chen et al. 2008), or a sharp but noisy image of the same
scene (Yuan et al. 2007a; Lim and Silverstein 2008).

The rest of this paper is organized as follows. Section 2
presents our geometric model. Section 3 presents a discrete
version of this model. In Sect. 4, we demonstrate its appli-
cation within two existing algorithms for deblurring a sin-
gle blurry image, both an approximate marginalization ap-
proach and a maximum a posteriori (MAP) approach, and
in Sect. 5 we compare the results obtained these two algo-
rithms. In Sect. 6 we examine a second deblurring problem,
where a sharp but noisy image of the same scene is available,
in addition to the blurry image. In Sect. 7 we describe some
of the implementation details for the presented algorithms,
and in Sect. 8 we conclude with a discussion of some limi-
tations of our work and potential future research directions.

2 Geometric Model

To motivate our approach, let us begin by noting that the blur
in a “shaken” image is caused by the motion of the camera
during the exposure, i.e.changes in the pose of the camera.
The pose of a camera can be split into two components: po-
sition and orientation, and in this section, we argue that in
most cases of camera shake, the changes in orientation (ro-
tations) of the camera during exposure have a significantly
larger effect than the changes in position (translations). Con-
sider the simplified case shown in Fig. 2 of a scene point P ,

Fig. 2 Blur due to translation or rotation of the camera. In this simpli-
fied example, we consider capturing a blurry image by either (a) trans-
lating the camera through a distance X parallel to the image plane, or
(b) rotating the camera through an angle θ about its optical center. We
consider the scene point P at a distance D from the camera, whose
image is blurred by δ pixels as a result of either of the two motions. In
most cases, for a given blur size δ the rotation θ constitutes a signifi-
cantly smaller motion of the photographer’s hands than the translation
X (see text for details)

at a distance D from the camera, being imaged at the cen-
ter of the camera’s retina. During the exposure the image of
the point is blurred through a distance δ pixels, either by (a)
translating the camera through a distance X parallel to the
image plane, or (b) rotating the camera through an angle θ

about its optical center. By simple trigonometry, we can see
that in the case of translation the camera must move by

X = δ

F
D, (1)

where F is the camera’s focal length, while for the rotation,
the camera must move through an angle

θ = tan−1
(

δ

F

)
. (2)

If we make the common assumption that the camera’s fo-
cal length F is approximately equal to the width of the sen-
sor, say 1000 pixels, then to cause a blur of δ = 10 pixels by
translating the camera, we can see from (1) that X = 1

100D.
Thus the required translation grows with the subject’s dis-
tance from the camera, and for a subject just 1 metre away,
we must move the camera by X = 1 cm to cause the blur.
When photographing a subject 30 metres away, such as
a large landmark, we would have to move the camera by
30 cm!

To cause the same amount of blur by rotating the camera,
on the other hand, we can see from (2) that we would need to
rotate the camera by θ = tan−1( 1

100 ) ≈ 0.6◦, independent of
the subject’s distance from the camera. To put this in terms
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Fig. 3 Our coordinate frame with respect to initial camera orienta-
tion, and the paths followed by image points under single-axis rota-
tions. We define our coordinate frame (a) to have its origin at the
camera’s optical center, with the X- and Y -axes aligned with those
of the camera’s sensor, and the Z-axis parallel to the camera’s opti-
cal axis. Under single-axis rotations of the camera, for example about
its Y -axis (b), or its Z-axis (c), the paths traced by points in the im-

age are visibly curved and non-uniform across the image. This non-
uniformity remains true for general camera shakes (d), which do not
follow such simple single-axis rotations, but rather take arbitrary paths
through camera pose space. The focal length of the camera in this sim-
ulation is equal to the width of the image, the principal point is at the
image’s center, and the pixels are assumed to be square

of the motion of the photographer’s hands, then for example
if the camera body is 10 cm wide, such a rotation could be
caused by moving one hand just 1 mm forwards or back-
wards relative to the other. Provided the subject is more than
1 metre from the camera, this motion is at least an order of
magnitude smaller than for a translation of the camera.

In reality, both the position and orientation of the cam-
era vary simultaneously during the exposure. However, if
we assume that the camera only undergoes small changes in
position (translations), then following the discussion above,
we can assert that the variations in the camera’s orienta-
tion (rotations) are the only significant cause of blur. We do
this from now on, and ignore the translational component
of camera motion. We consider all rotations to occur about
the camera’s optical center, and although this may not be
the case, we note that rotations about a different center can
be written as rotations about the optical center, plus transla-
tions.

2.1 Motion Blur and Homographies

Assuming that the scene being photographed is static, it is
well known that rotations of a camera about its optical cen-
ter induce projective transformations of the image being ob-
served, assuming a pinhole camera model. That is to say
that, excluding boundary effects, the image at one camera
orientation is related to the image at any other by a 2D pro-
jective transformation, or homography. For an uncalibrated
camera, this is a general 8-parameter homography, but for a
camera with known internal parameters, the homography H
is given by

H = KRK−1, (3)

where the 3 × 3 matrices R and K are, respectively, a ro-
tation matrix describing the motion of the camera, and the

camera’s internal calibration matrix (Hartley and Zisserman
2004).

The matrix R has only 3 parameters. We adopt here
the “angle-axis” parameterization, in which a rotation is
described by the angle θ moved about an axis a (a unit-
norm 3-vector). This can be summarized in a single vector
θ = θa = (θX, θY , θZ)�. R is then given by the matrix expo-
nential

Rθ = e[θ]×, where (4)

[θ ]× =
⎡
⎣ 0 −θZ θY

θZ 0 −θX

−θY θX 0

⎤
⎦ . (5)

We fix our 3D coordinate frame to have its origin at the cam-
era’s optical center. The axes are aligned with the camera’s
initial orientation, such that the XY -plane is aligned with
the camera sensor’s coordinate frame and the Z-axis is par-
allel to the camera’s optical axis, as shown in Fig. 3(a). In
this configuration, θX describes the “pitch” of the camera,
θY the “yaw”, and θZ the “roll”, or in-plane rotation, of the
camera.

In this work, we assume that the calibration matrix K is
known and takes the standard form

K =
⎡
⎣F 0 x0

0 F y0

0 0 1

⎤
⎦ . (6)

This corresponds to a camera whose sensor has square pix-
els, and whose optical axis intersects the sensor at (x0, y0),
referred to as the principal point. Section 2.3 describes how
we estimate K in practice.

Having defined the type of image transformation we ex-
pect, we now assume that when the shutter of the camera
opens, there is a sharp image f : R

2 → R of a static scene



Int J Comput Vis

that we would like to capture. The camera’s sensor accu-
mulates photons while the shutter is open, and outputs an
observed image g : R

2 → R. In the ideal pinhole case, each
point on the sensor sees a single scene point throughout the
exposure, giving us a sharp image. However if, while the
shutter is open, the camera undergoes a sequence of rota-
tions Rt , the sensor is exposed to a sequence of projectively
transformed versions of the sharp image f . For each point
on the sensor (a point in the observed blurry image g), de-
noted by the homogeneous vector x, we can trace the se-
quence of points x′

t in the ideal sharp image f which were
visible there during the exposure:

x′
t ∼ Htx, (7)

where Ht is the homography induced by the rotation Rt , and
∼ denotes equality up to scale. The observed image g is then
the integral over the exposure time T of all the projectively-
transformed versions of f , plus some observation noise ε:

g(x) =
∫ T

0
f (Htx) dt + ε, (8)

where, with a slight abuse of notation, we use g(x) to de-
note the value of g at the 2D image point represented by the
homogeneous vector x, and similarly for f .

According to this model, the apparent motion of scene
points may vary significantly across the image. Figure 3
demonstrates this, showing the paths followed by points in
an image under rotations about either the Y - or Z-axis of
the camera. Under the (in-plane) Z-axis rotation, the paths
vary significantly across the image. Under the (out-of-plane)
rotation about the Y -axis, the paths, while varying consider-
ably less, are still non-uniform. It should be noted that the
degree of non-uniformity of this out-of-plane motion is de-
pendent on the focal length of the camera, decreasing as the
focal length increases. However, it is typical for consumer
cameras to have focal lengths of the same order as their sen-
sor width, as is the case in Fig. 3. In addition, it is common
for camera shake to include an in-plane rotational motion.
From this, it is clear that modeling camera shake as a convo-
lution with a spatially invariant kernel is insufficient to fully
describe its effects (see also Fig. 1).

In general, a blurry image has no temporal information
associated with it, so it is convenient to replace the temporal
integral in (8) by a weighted integral over a set of camera
orientations:

g(x) =
∫

f (Hθ x)w(θ) dθ + ε, (9)

where the weight function w(θ) encodes the camera’s tra-
jectory in a time-agnostic fashion. The weight will be zero
everywhere except along the camera’s trajectory, while the
value of the function along that trajectory corresponds (in-
versely) to the camera’s rotational speed, i.e.if the camera

moves slowly through a certain orientation, the weight will
be large there, and vice versa.

2.2 Uniform Blur as a Special Case

One consequence of our model for camera shake is that it
includes uniform blur as a special case, and thus gives the
conditions under which a uniform blur model is applicable.
From the definition of the matrix exponential, eA = I +A+
1
2!A

2 + · · · , we can see that if θZ = 0 and θX , θY are small,
(4) can be approximated by discarding the 2nd and higher
order terms:

Rθ ≈
⎡
⎣ 1 0 θY

0 1 −θX

−θY θX 1

⎤
⎦ . (10)

Combining this with (3) and (6), it can be shown that as
F → ∞,

Hθ →
⎡
⎣1 0 FθY

0 1 −FθX

0 0 1

⎤
⎦ , (11)

which simply amounts to a translation in the image plane
of (FθY ,−FθX)�. Noting that for typical camera shakes,
θX and θY will indeed be small, we can see that if the focal
length of the camera is large and there is no in-plane rota-
tion, a uniform blur model may be sufficient to describe the
blur.

2.3 Camera Calibration

In order to compute the homography in (3) that is induced
by a particular rotation of the camera, we need to know
the camera’s calibration matrix K, as given by (6). To es-
timate K, we recover the pixel size and focal length of the
camera from the image’s EXIF tags, and assume that the
principal point is at the center of the image. Note that this
assumes the image has not been cropped or resized before-
hand, as these operations will generally invalidate the EXIF
information.

The radial distortion present in many consumer-grade
digital cameras can represent a significant deviation from
the pinhole camera model. Rather than incorporating the
distortion explicitly into our model, we pre-process images
with the commercially available PTLENS tool,1 which uses
a database of lens and camera parameters to correct for the
distortion.

A second distortion present in many digital images
comes from the fact that the pixel values stored in, for ex-
ample, a jpeg file, do not correspond linearly to the scene

1http://epaperpress.com/ptlens/.

http://epaperpress.com/ptlens/
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radiance. Most cameras apply a compression curve before
storing the values, sometimes referred to as “gamma correc-
tion”. Where possible we avoid this problem by using raw
camera output images, such that the pixel values correspond
linearly to scene radiance. In other cases, where the com-
pression curve is known (e.g.having been calibrated), we
preprocess the blurry images with the inverse of this curve
to recover the linear values, and where it is unknown, we
apply a generic sRGB curve.

3 Restoration Model

So far, our model has been defined in terms of the continuous
functions f and g, and the weight function w. Real cameras
are equipped with a discrete set of pixels, and output an ob-
served blurry image g ∈ R

N , where N = H × W pixels for
an image with H rows and W columns. We consider g to
be generated by a sharp image f ∈ R

N and a set of weights
w ∈ R

K , whose size K = NX × NY × NZ is controlled by
the number of rotation steps about each axis that we con-
sider. The set of weights w forms a global descriptor for the
camera shake blur in an image, and by analogy with convo-
lutional blur, we refer to w as the blur kernel. Figure 1(b)
shows a visualization of w, where the cuboidal volume of
size NX × NY × NZ is shown, with the yellow points inside
representing the non-zero elements of w in 3D. The kernel
has also been projected onto the 3 back faces of the cuboid to
aid visualization, with white corresponding to a large value,
and black corresponding to zero.

Each element wk corresponds to a camera orientation θk ,
and consequently to a homography Hk , so that in the discrete
setting, the blurry image g is modeled as a weighted sum of
a set of projectively transformed versions of f:

g =
∑

k

wkCkf + ε, (12)

where Ck is the N × N matrix which applies homography
Hk to the sharp image f. The matrix Ck is very sparse. For
example, if bilinear interpolation is used when transforming
the image, each row has only 4 non-zero elements. Expand-
ing (12), we obtain the discrete analog of (9):

gi =
∑

k

wk

(∑
j

Cijkfj

)
+ ε, (13)

where i and j index the pixels of the observed image and
the sharp image, respectively. Appendix B describes how
to calculate the coefficients Cijk . For an observed pixel gi

with coordinate vector xi , the sum
∑

j Cijkfj interpolates
the point Hkxi in the sharp image. Figure 4 shows an exam-
ple of this, where a blurry pixel g5, with homogeneous coor-
dinate vector x5, is mapped under a homography Hk to the

Fig. 4 Interpolation of sub-pixel locations in the sharp image. In gen-
eral, a homography Hk will not map a pixel (e.g. x5) in the blurry
image g to a single pixel in the sharp image x. Instead, the value of f
at the point Hkx5 is interpolated as a weighted sum of nearby pixels.
Using bilinear interpolation, the value of f at Hkx5 will be interpolated
from the pixels f7, f8, f10, and f11

point Hkx5 in the sharp image. The value of f at the point
Hkx5 is then interpolated as a weighted sum of the pixels
of f.

Due to the bilinear form of (13), note that when either the
blur kernel or the sharp image is known, the blurry image is
linear in the remaining unknowns, i.e.

g = Af + ε, or (14)

g = Bw + ε, (15)

where Aij = ∑
k Cijkwk , and Bik = ∑

j Cijkfj . In the first

form, A ∈ R
N×N is a large sparse matrix, whose rows each

contain a local blur filter acting on f to generate a blurry
pixel. In the second form, when the sharp image is known,
each column of B ∈ R

N×K contains a projectively trans-
formed copy of the sharp image. We will use each of these
forms in the following.

3.1 Comparison to Other Non-uniform Blur Models

Concurrently with our proposal of this model for camera
shake blur, several other authors have proposed global mod-
els of non-uniform blur. In common with our model, they
generally model the blurry image as a sum of transformed
versions of the sharp image. Tai et al. (2011) model the
blur process using a temporally-ordered sequence of homo-
graphies, which is known in advance, for example by us-
ing additional hardware attached to the camera. Joshi et al.
(2010) also recover a temporally ordered sequence of homo-
graphies by using inertial measurement sensors attached to
the camera to recover the camera’s path through 6D (rotation
and translation) pose space, and assuming that the scene can
be modelled as a single fronto-parallel plane (although the
authors note that the blur is generally independent of depth
for objects further than 1 metre from the camera). Gupta
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et al. (2010) propose a model which is similar in spirit to our
own, recovering a set of weights over a 3D parameter space
which describes transformations of the sharp image. How-
ever, they consider image plane translations and rotations,
rather than the camera pose-induced homographies used in
this work.

3.2 Application to Existing Deblurring Algorithms

The fact that (13) is bilinear in the sharp image and blur
kernel is the key feature that allows our model to be ap-
plied within existing deblurring algorithms previously ap-
plied only to uniform blur. Since convolution is also a bilin-
ear operation on the sharp image and the blur kernel, it can
often be replaced with the general bilinear form in (13) with-
out significant modification to the algorithm. The remainder
of the paper demonstrates this, first in Sects. 4 and 5 for the
problem of single-image deblurring, and second in Sect. 6
for the case where a sharp but noisy image of the scene is
also available.

It should be noted that an important case where our model
cannot easily be substituted in place of convolution is when
an algorithm relies on the ability to work in the frequency
domain. When taking the Fourier transform, convolution be-
comes an element-wise multiplication of the frequency com-
ponents of the image and kernel, however this is not the case
for the more general bilinear form in our model.

The aim of deblurring algorithms is to recover an esti-
mate f̂ of the true sharp image f. Generally, the approach
taken is to also estimate the blur kernel ŵ such that to-
gether, f̂ and ŵ are able to accurately reconstruct the ob-
served blurry image g. We denote this reconstruction as
ĝ(f̂, ŵ), where, under our model, a blurry pixel is recon-
structed as:

ĝi =
∑

k

ŵk

(∑
j

Cijkf̂j

)
. (16)

The problem of finding the sharp image and blur kernel that
best reconstruct the observed image is in general ill-posed,
since we have fewer equations than parameters. In fact, for a
given g, there are an infinite number of (f̂, ŵ) pairs that can
reconstruct g equally well. To obtain a useful solution, it is
thus necessary to add some regularization and/or constraints
on both the sharp image and the kernel.

Successful algorithms for deblurring camera shake gen-
erally share the same two pieces of prior information about
the blur kernel being estimated, which we mention here.
First, all its elements are non-negative, since the image for-
mation process is additive, with sensor elements accumu-
lating photons. This constraint is equally applicable to our
model, since each kernel element wk corresponds to a cam-
era orientation, so that if that if the camera passed through

orientation θk during the exposure, wk will be positive, and
if not, wk = 0.

The second, and arguably more important fact to observe
about a blur kernel for camera shake is that it should be
sparse, i.e. contain relatively few non-zero elements. This
sparsity prior has been a prominent feature of previous cam-
era shake removal algorithms, and has also been leveraged
for the alignment of blurred/non-blurred images (Yuan et al.
2007b). Fergus et al. (2006) encourage sparsity by placing
a mixture of exponentials prior on the kernel values, while
Cho and Lee (2009) and Yuan et al. (2007a) proceed by
thresholding the estimated kernel values such that most of
the kernel is set to zero. In a contrasting approach, Cai et al.
(2009) choose to construct the blur kernel as a linear combi-
nation of a predefined set of “curvelets”, and place the spar-
sity prior on the coefficients of the curvelets, rather than on
the kernel elements directly. This sparsity prior is intuitively
applicable to blur kernels for our model too, since the cam-
era follows a path θ(t) through the space of camera orienta-
tions, and thus will only pass through a small subset of all
possible orientations while the shutter is open.

Many different image priors/regularizers have been pro-
posed for image reconstruction tasks such as deblurring, de-
noising, and super-resolution, often based on the statistics
of natural images. The most commonly used priors for de-
blurring are those which encourage the image’s response to
a set of derivative filters to follow heavy-tailed distributions,
e.g. Fergus et al. (2006), Shan et al. (2008), Krishnan and
Fergus (2009), which have been shown to be effective at
suppressing noise while preserving sharp edges in the re-
constructed images. When substituting our blur model into
the algorithms in Sects. 4 and 6, we use the image regular-
izers suggested in the original works. In order to compare
the final results of the two methods for single-image deblur-
ring, shown in Sect. 5, we use the algorithm of Krishnan and
Fergus (2009), adapted for our non-uniform blur model.

4 Single-Image Deblurring

In this section, we examine the case where we have only a
single blurry input image g from which to estimate f̂. We
substitute our model into two successful algorithms for uni-
form blur, allowing them to handle non-uniform blur: those
of Fergus et al. (2006) and Cho and Lee (2009). As dis-
cussed in the previous section, good priors for f and w are
necessary for blind deblurring to be successful, so both ap-
proaches take the posterior distribution for f and w as their
starting point:

p(f,w|g) ∝ p(g|f,w)p(f)p(w), (17)
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where the likelihood is derived from an assumption of
isotropic Gaussian noise:

p(g|f,w) ∝
∏
i

exp

(
− (ĝi(f,w) − gi)

2

2σ 2

)
, (18)

where σ is the standard deviation of the noise, and the
individual priors used by the two algorithms will be dis-
cussed in the following sections. Both of the algorithms are
mainly concerned with estimating the blur kernel ŵ, and
after the termination of this process, a final non-blind im-
age reconstruction step is performed using the estimate of
ŵ to produce the deblurred output f̂. To estimate the ker-
nel, Fergus et al. (2006) use the variational inference ap-
proach of Miskin and MacKay (2000) to perform approxi-
mate marginalization of the posterior over f, while Cho and
Lee (2009) use alternating optimizations to maximize the
posterior over both f and w.

4.1 The Marginalization Approach

In this section we adapt the algorithm proposed by Fergus
et al. (2006) for blind deconvolution of a single image. The
algorithm is based on the variational inference approach of
Miskin and MacKay (2000), originally designed for simul-
taneous deblurring and source separation of cartoon images.
We show that the convolutional blur model in the original
algorithm can be replaced with our non-uniform blur model,
leading to new update equations for the optimization pro-
cess, and we show in Sect. 5 that doing so improves the de-
blurred results.

The algorithm proposed by Miskin and MacKay (2000)
attempts to approximate the posterior distribution for both
the kernel and the sharp image p(f,w|g) by a simpler, fac-
torized distribution using a variational method. The factor-
ized form of this distribution means that it is straightforward
to marginalize over the sharp image in order to produce an
estimate ŵ of the kernel. Fergus et al. (2006) successfully
adapted this algorithm to the removal of camera shake blur
from photographs by applying it in the gradient domain,
within a multiscale framework. They use a prior on the ker-
nel which assumes that each element wk is independent, and
follows a mixture of exponential distributions with mixture
weights πd and decay parameters λd :

p(w) =
∏
k

D∑
d=1

πd exp(−λdwk). (19)

By working in the gradient domain, the latent variable fj

for the intensity of a pixel is replaced by the x and y deriva-
tives f x

j and f
y
j at that pixel, which are treated as separate

variables. Fergus et al. use a prior on the sharp image which
assumes that the derivatives for all pixels are independent

and follow a mixture of zero-mean Gaussians with mixture
weights πc and variances vc:

p
(
fx

) =
∏
j

C∑
c=1

πc exp

(
−f x

j
2

2vc

)
, (20)

and likewise for the y derivatives. For simplicity, within the
context of this algorithm, we use f to denote the concatena-
tion of the derivative images fx and fy , and use j to index
over this, i.e.j ∈ {1, . . . ,2N}. Fergus et al. learn the param-
eters πd , λd , πc and vc from real data, and we use the val-
ues provided by them directly. Finally, to free the user from
manually tuning the noise variance σ 2, the inverse variance
βσ = σ−2 is also considered as a latent variable.

Following Miskin and MacKay (2000), we collect the la-
tent variables f, w, and βσ into an “ensemble” Θ . The aim
is to find the factorized distribution

q(Θ) = q(βσ )
∏
j

q(fj )
∏
k

q(wk) (21)

that best approximates the true posterior p(Θ|g), by min-
imizing the following cost function (Miskin and MacKay
2000, (10)) over both the form and the parameters of q(Θ):

CKL =
∫

q(Θ)

[
ln

q(Θ)

p(Θ)
− lnp(g|Θ)

]
dΘ . (22)

Minimizing this cost function is equivalent to minimizing
the Kullback-Leibler divergence between the posterior and
the approximating distribution (Bishop 2006), and this is
tackled by first using the calculus of variations to derive the
optimal forms of q(fj ), q(wk) and q(βσ ), then iteratively
optimizing their parameters. For our blur model, the optimal
q(Θ) has the same form as in Miskin and MacKay (2000).
However the equations for the optimal parameter values dif-
fer significantly and we have calculated these afresh (the
derivation is provided in the supplementary material). For
our non-uniform blur model, we find the following optimal
values for the parameters, cf. (Miskin and MacKay 2000,
(46)–(49)):

w
(2)
k = 〈βσ 〉

∑
i

〈(∑
j

Cijkfj

)2〉
q(f)

, (23)

w
(1)
k w

(2)
k = 〈βσ 〉

∑
i

(
gi

∑
j

Cijk〈fj 〉q(fj )

−
∑
k′ 
=k

〈(∑
j

Cijkfj

)(∑
j

Cijk′fj

)〉
q(f)

× 〈wk′ 〉q(wk′ )

)
, (24)
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f
(2)
j = 〈βσ 〉

∑
i

〈(∑
k

Cijkwk

)2〉
q(w)

, (25)

f
(1)
j f

(2)
j = 〈βσ 〉

∑
i

(
gi

∑
k

Cijk〈wk〉q(wk)

−
∑
j ′ 
=j

〈fj ′ 〉q(fj ′ )

×
〈(∑

k

Cij ′kwk

)(∑
k

Cijkwk

)〉
q(w)

)
, (26)

where w
(1)
k and w

(2)
k are the parameters of q(wk), f

(1)
j

and f
(2)
j are the parameters of q(fj ), q(f) = ∏

j q(fj ),
q(w) = ∏

k q(wk), and 〈·〉q represents the expectation with
respect to the distribution q . Note that in this context, the
latent image pixels fj , kernel elements wk , and noise preci-
sion βσ are random variables. Note also that these equations
cannot be implemented directly in this form, as they involve
expectations over combinations of random variables. How-
ever, they may be rewritten in terms of the mean and vari-
ance of individual variables, and we provide these expanded
versions in Appendix A. Having found the optimal q(Θ),
the expectation of q(w) is taken to be the optimal blur ker-
nel, i.e., ŵ = 〈w〉q(w). Fergus et al. choose to discard the la-
tent image distribution q(f), although as shown in Fig. 6 (d),
this may in fact provide a useful estimate of the sharp image.

4.2 The Maximum a Posteriori Approach

Cho and Lee (2009) proposed an effective single image de-
blurring algorithm, optimized for speed on uniform blurs.
Again, we show that this algorithm can be readily adapted
to handle non-uniform blur, substituting our model in place
of convolution. The algorithm can be considered to perform
alternating maximum a posteriori estimation of the blur ker-
nel, using Gaussian priors on the kernel elements and on
the latent image gradients. Simply performing an alternat-
ing optimization of f and w using these priors would almost
certainly not produce any reasonable result, however the in-
troduction of non-linear filtering and thresholding steps into
the process encourages the algorithm to find a latent image
with sparse gradients and a blur kernel with sparse non-zero
elements, such as discussed in Sect. 3.2. The algorithm pro-
ceeds by iterating over three main steps, of which we give a
brief overview here.

The first step takes the current estimate f̂ of the sharp
image and aims to predict strong edges, which are useful
for the kernel estimation step, by applying a bilateral filter
(Tomasi and Manduchi 1998) followed by a shock filter (Os-
her and Rudin 1990). The derivatives of this filtered image
are computed, then thresholded to produce sparse gradient
maps {px,py} which contain only the most salient edges.

The threshold is chosen so as to retain only a small number
of non-zero gradients, while ensuring that all orientations
are well-represented.

In the second step, the gradient maps are used to estimate
the blur kernel by minimizing the energy function

Ew(w) =
∑

(p∗,g∗)
ω∗‖ĝ(p∗,w) − g∗‖2

2 + β‖w‖2
2, (27)

where the weights ω∗ ∈ {ω1,ω2} weight each partial deriva-
tive, (p∗,g∗) varies among {(px,Dxg), (py,Dyg), (Dxpx,

Dxxg), (Dypy,Dyyg), ( 1
2 (Dxpy + Dypx),Dxyg)}, and β is

the regularization weight. Since ĝ(p∗,w) is linear in w, this
is simply a linear least squares problem, which can be solved
efficiently using a conjugate gradient method. Having found
the kernel that minimizes (27), the values are thresholded,
such that any element whose value is smaller than 1

20 the
largest element’s value is set to zero. This encourages spar-
sity in the kernel, and ensures that all the elements are posi-
tive, as discussed in Sect. 3.2.

In the third step, the current estimate of the blur kernel
ŵ is used to deconvolve the blurry image and obtain an im-
proved estimate of the sharp image. This is performed by
minimizing the energy function

Ef(f) =
∑
D∗

ω∗‖ĝ(D∗f, ŵ) − D∗g‖2
2 + α‖∇f‖2

2, (28)

where α is the regularization weight, and now, the partial
derivatives include the zeroth order: D∗ ∈ {I,Dx,Dy,Dxx,

Dxy,Dyy}, where I is the identity, and ω∗ ∈ {ω0,ω1,ω2}.
The use of the partial derivatives D∗ in the data terms of (27)
and (28), as suggested by Shan et al. (2008), has the effect of
improving the conditioning and regularizing the solutions.

These steps are applied iteratively, working from coarse
to fine in a multi-scale framework. The iterative process gen-
erally converges quickly at each scale, and 7 iterations are
typically sufficient. For the parameters ω0, ω1, ω2, α, and β ,
we use the values given by Cho and Lee (2009). Although
we are not able to take full advantage of the speed optimiza-
tions proposed by Cho and Lee, due to their use of Fourier
transforms to compute convolutions, the algorithm is gen-
erally able to estimate a blur kernel in a much shorter time
than the marginalization algorithm of Sect. 4.1.

4.2.1 Modification for Non-uniform Blur

When applying our model within this algorithm, we must
take into account some important differences between our
3D kernels and 2D convolution kernels. First, we note that
the point spread function (PSF) of a single pixel does not
uniquely determine the full 3D kernel, i.e. for every PSF
there are many different kernels that could explain it. This
can be seen by considering a vertical blur at the left or right-
hand side of the image. Such a blur could be explained either
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by a rotation of the camera about its X axis, a rotation about
its Z axis, or some combination of the two. Thus we must
ensure that the pixels used to estimate the kernel (the non-
zeroes in {px,py}) do not only come from a small region of
the image, in order for the kernel estimation step to be well-
conditioned. To achieve this, we simply subdivide the image
into 3 × 3 regions, and apply the gradient thresholding step
independently on each. This ensures that we retain a set of
gradients that are well distributed over both orientation and
location.

A second observation is that our 3D kernels contain a cer-
tain degree of redundancy, arising largely from the in-plane
rotation of the camera. As can be seen in Fig. 3, a rotation
of the camera about its Z-axis causes a very small displace-
ment for pixels towards the center of the image. Thus, in
the kernel estimation step, the information provided by these
pixels will be ambiguous with respect to this component of
the camera’s motion. Only pixels near the edge of the im-
age will be able to provide detailed information concerning
this motion. While the spatial binning mentioned above goes
some way to ensuring that these pixels from the edge of the
image are present in {px,py}, they may be greatly outnum-
bered by pixels from the interior. As a result, the kernels
recovered by minimizing (27) with our model generally con-
tain many non-zeros spread smoothly throughout, and do not
produce good deblurred outputs (see Fig. 9).

If instead of the �2 regularization in (27), we apply �1

regularization combined with non-negativity constraints, the
optimization is encouraged to find a sparse kernel and is
more likely to choose between ambiguous camera orienta-
tions, as opposed to spreading non-zero values across all of
them. This type of �1 kernel regularization was previously
applied by Shan et al. (2008) for uniform blur. In our case,
the energy function becomes

Ew(w) =
∑

(p∗,g∗)
ω∗‖ĝ(p∗,w) − g∗‖2

2 + β
∑

k

wk

s.t. ∀k = 1, . . . ,K, wk ≥ 0. (29)

This is an instance of the lasso problem (Tibshirani 1996),
for which efficient optimization algorithms exist (Efron et al.
2004; Kim et al. 2007; Mairal et al. 2010). The different re-
sults obtained using �2 and �1 regularization are discussed in
Sect. 5. With the use of the �1 regularization, we found that
the best results were obtained with a lower value of β than
that given by Cho and Lee, and for the results in this paper
using �1 regularization, we set β = 0.1. In the remainder of
the paper, we refer to the original algorithm of Cho and Lee
as MAP-�2, and our �1-regularized version as MAP-�1.

4.3 Image Reconstruction

Having estimated the blur kernel ŵ for the blurry image,
we wish to invert (14) in order to estimate the sharp im-
age f̂. This process is often referred to as deconvolution, and

while many algorithms exist for this process (Banham and
Katsaggelos 1997; Puetter et al. 2005; Dabov et al. 2008),
they are often applicable only to uniform blur, since they
typically rely on convolutions or the ability to work in the
Fourier domain.

For the results of single-image deblurring in Sect. 5, we
have adapted the deconvolution algorithm of Krishnan and
Fergus (2009), which performs MAP estimation of the sharp
image using a hyper-Laplacian prior on the image gradients.
Specifically, it attempts to maximize the following posterior
over f:

p(f|g,w) ∝ p(g|f,w)p(f), (30)

with the prior

p(f) =
∏
j

exp
(−λ|f x

j |p)
exp

(−λ|f y
j |p)

, (31)

where the exponent p is chosen to be less than one, to en-
courage sparsity on the sharp image gradients. In this work
we use p = 0.5. We refer the reader to the original work for
full details, but note that the algorithm is easily adapted to
non-uniform blur since it involves repeated minimizations
of quadratic cost functions of the form

E(f) = ‖Af − g‖2
2 + α‖Dxf − vx‖2

2 + α‖Dyf − vy‖2
2, (32)

where vx and vy are intermediate variables of the opti-
mization scheme, used to decouple the exact form of the
prior from the main image reconstruction step. For our non-
uniform blur model, we use the conjugate gradient algorithm
to minimize this cost function.

Another method frequently used for deconvolution is the
Richardson-Lucy algorithm (Richardson 1972; Lucy 1974).
Although originally proposed for convolutional blur, this al-
gorithm can equally be used to invert general linear sys-
tems (Lee and Seung 2001). Using the notation of (14) for a
known blur, the algorithm iteratively improves the estimate
f̂ using the following update equation:

f̂ ← f̂ � (
A�(g � Af̂)

)
, (33)

where g is the observed blurry image, and the matrix A de-
pends on the estimated non-uniform blur. Here, � represents
the element-wise product and � the element-wise division
of two vectors. We have found that for images containing
saturated regions (pixels where the signal is clipped and
the linear model is no longer valid), such as in Fig. 1, the
Richardson-Lucy algorithm gives better results, with fewer
artifacts around saturated regions such as the bright street-
lights.
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5 Single-Image Deblurring Results

We show in this section results of single-image deblurring
using the algorithms described in Sect. 4, with comparisons
to results obtained with the original algorithms of Fergus
et al. (2006) and Cho and Lee (2009) on both synthetic and
real data. Implementation details are discussed in Sect. 7.

Figure 1 shows a result on a real camera shake blur, us-
ing the MAP-�1 algorithm to estimate the kernel, and the
Richardson-Lucy algorithm to perform the final deblurring.
The blurry image has many saturated regions (e.g. the bright
street lights), and in such cases we found the Richardson-
Lucy algorithm to produce significantly better results than
any least-squares based algorithms, such as that of Krishnan
and Fergus (2009).

Figures 5 and 6 show blind deblurring results on images
blurred by real camera shake. Our model, used in both the

Fig. 5 Blind deblurring of real camera shake, example 1. The result
of blind deblurring on a real camera shake image (a), captured with
a shutter speed of 1

2 second, using both the marginalization algorithm
of Fergus et al. and the MAP approach of Cho and Lee with both the
uniform and non-uniform blur models. Also shown in (b) are some of
the local PSFs generated from the blur kernel in (d) at various points
in the image. The marginalization approach, when using our model (d)
recovers a useful kernel and a good deblurred image, but when using
the uniform model (c) does not. Using the MAP approach, the uniform
model (e) finds a reasonable approximation to the non-uniform blur,
which is valid on the left side of the image. However, on the right side,
the error in the kernel leaves diagonal streaks on the deblurred output.
Using our non-uniform model (f), however, avoids this problem. The
blur kernels for our model in (d) and (f) cover ±1.3◦ along each dimen-
sion. We encourage the reader to examine the figures in more detail in
the digital version of the paper

marginalization and MAP algorithms, is able to capture and
remove the blur, while the original algorithms of Fergus
et al. and Cho and Lee, using a uniform blur model, fail
to find meaningful kernels or good deblurred results. This is
explained by both the wide field of view, and the fact that
the kernels estimated using our algorithm exhibit significant
in-plane rotation.

In Fig. 6(d), we also demonstrate the use of the varia-
tional marginalization algorithm of Fergus et al. to produce
the deblurred output, as opposed to the Richardson-Lucy al-
gorithm used in Fig. 6(c). Although, for computational sim-
plicity, the kernel estimation step uses a grayscale image, at
the convergence of this process the distributions q(w) and
q(βσ ) for the kernel and noise variance can be fixed. The
variational algorithm can then be run again to estimate q(fc)
for each color channel c separately. In the final step, each
color channel can be reconstructed from q(fc) using Pois-
son reconstruction (Pérez et al. 2003), before matching the
color histogram to that of the blurry image. As can be seen, a
good deblurred image is produced, underlining the fact that
our blur model is valid throughout the image, and that the
kernel produced provides a good description of the true non-
uniform blur in the image.

Figure 7 shows a third result of single-image deblurring,
using the MAP algorithm. While the uniform blur kernel
provides a reasonable estimate of the true blur, and allows
us to resolve some of the text on the book’s cover, the use of
our non-uniform blur model provides a clear improvement,
and permits almost all of the text to be read.

Figure 8 shows results for blind deblurring of synthet-
ically blurred images using the two methods, and demon-
strates two important points: first, small out-of-plane (e.g.
Y -axis) components of a blur are sufficiently uniform that
the two models both perform well, although the rotational
model performs better. Second, our approach is the only one
capable of removing in-plane (Z-axis) blurs, which cannot
be represented as convolutions. In this case, and also for the
largest out-of-plane blurs, we are able to recover a good
sharp image, whereas the uniform approach breaks down
due to the blur’s non-uniformity. The MAP and marginaliza-
tion algorithms exhibit similar performance across the dif-
ferent blur sizes and noise levels, although as demonstrated
by the displayed kernels, the MAP-�1 approach tends to find
sparser, less contiguous kernels than the marginalization ap-
proach.

Figure 9 shows the failure of the MAP algorithm to pro-
duce a good result (using the blurry image from Fig. 6(a))
when using the original �2 regularization proposed by Cho
and Lee (2009) with our non-uniform blur model. As dis-
cussed in Sect. 4.2.1, the kernel produced is highly non-
sparse despite the thresholding step, and the deconvolved
output correspondingly exhibits many artifacts compared to
the MAP-�1 result in Fig. 6(f).
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Fig. 6 Blind deblurring of real camera shake, example 3. A hand-held
image with camera shake (a), captured with a shutter speed of 1 second,
with the results of blind deblurring using the marginalization algorithm
of Fergus et al. under both a uniform (b) and non-uniform (c–d) blur
model, and the MAP algorithm of Cho and Lee with a uniform (e) and
non-uniform (f) blur model. The variational output (d) is estimated us-
ing the marginalization algorithm for the non-uniform case (calculated

as 〈f〉q(f) then converted from gradients to intensities using Poisson
reconstruction—Pérez et al. 2003). The results using our blur model
show more detail and fewer artifacts than those using the uniform blur
model, as can be seen in the zoomed-in portions shown in the last row.
The rotational blur kernels in (c) and (f) cover ±0.7◦ in θX and θY and
±1.4◦ in θZ

In Fig. 10, we compare our approach to that of Fergus
et al. (2006) on a real, uniformly blurred image, taken from
the dataset of Levin et al. (2009), where the true blur is
known, and also known to be uniform. This demonstrates
the fact that our model includes uniform blur as a special
case; by setting the focal length to be large and applying the
constraint that θZ = 0, we obtain results indistinguishable
from those of Fergus et al. (2006). When we do not apply
the constraint on θZ , our algorithm still produces a good re-
sult, but unsurprisingly does not perform as well, since the
number of kernel elements to be estimated is much larger
(K is increased by a factor of 8).

Figure 11 shows the result of the non-uniform MAP-�1

approach on an image of Joshi et al. (2010). Although the
scene is close to the camera, we are able to obtain a com-
parable result to that of Joshi et al. without considering the
camera’s translational motion. This suggests that our deci-
sion to ignore the camera’s translation is reasonable in prac-
tice.

Besides comparing the results of a given algorithm with
either a uniform or non-uniform blur model, we can also
compare the marginalization and MAP approaches for a
given model. In our experiments, we have observed that the
MAP algorithm is generally more robust to the level of con-
trast in the input image. The parameters of the image prior
provided by Fergus et al. (2006) are learnt from a single im-
age of a street scene, so the application of this prior to an
image with a very different distribution of pixels is liable to
produce poor results. The MAP algorithm however only re-
lies on the ability to predict step edges from a blurry image,
and adapts its threshold for predicting these edges depend-
ing on the contrast of the image. On an image containing
only low-contrast edges then, such as in Fig. 1, the marginal-
ization approach (using the street scene prior) fails to find a
useful kernel, while the MAP approach finds a good kernel,
as demonstrated by the comparison in Fig. 1(c). On the other
hand, as discussed by Cho and Lee (2009), the performance
of the MAP approach is sensitive to the values of the param-
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Fig. 7 Blind deblurring of real camera shake, example 2. The result
of blind deblurring on a real camera shake image (a), captured with
a shutter speed of 1 second, using the MAP approach of Cho and Lee
with both the uniform and non-uniform blur models. Also shown in (b)
are some of the local PSFs generated from the blur kernel in (d) at
various points in the image. In the blurry image, most of the text on
the book cover is too blurred to read. Deblurring the image with the
uniform blur model (c) allows some of the text on the cover of the book
to be read, however, after deblurring with our non-uniform model (d),
all but the smallest text becomes legible. The blur kernel in (d) covers
±0.4◦ in θX and θY , and ±0.9◦ in θZ

eters α and β , which must be manually specified, while the
marginalization approach has almost no parameters to tune.

Convergence Neither of the algorithms can guarantee the
ability to arrive at a globally optimal solution. However, in
practice we have found them both to perform reliably. By
finding a sequence of solutions at increasingly fine resolu-
tions, the large scale structures in the blur kernel and sharp
image are resolved before the fine details. In the case of the
MAP algorithm, each of the individual minimizations over
the sharp image f and the blur kernel w is convex, ensuring

convergence to a local minimum, even though the overall
problem is not jointly convex in both f and w. The gradi-
ent prediction step helps direct the optimizations process to-
wards a desirable minimum by encouraging the sharp image
to contain step edges. In the marginalization algorithm, we
have found that the algorithm converges equally reliably for
both the uniform model and our model in a similar number
of iterations.

Running Time An important difference between the two
approaches is that the MAP algorithm typically takes a much
shorter amount of time to run, since the parameter updates
for the marginalization algorithm, given in (23)–(26), are
computationally expensive. Due to this expense, and the
larger number of iterations required for our model compared
to the uniform model, the marginalization algorithm with
our non-uniform model can take several hours to deblur an
image of several hundred pixels across on a modern work-
station. Deblurring larger images with this method is not
currently practical, whereas the MAP algorithm can deblur
the same images in under an hour.

Limitations Both of these algorithms are capable of re-
moving large blurs—up to around 50 pixels across, for both
uniform and non-uniform blur. For our model, this corre-
sponds to around 3◦–5◦ of rotation around each axis for a
photograph whose width and focal length are both 1000 px.
Since we have assumed that camera translation has a negli-
gible blurring effect, our model (and in general the uniform
model too) is unlikely to produce good results on images
for which this is not true, due to the depth-dependent blur
produced. Another typical failure case for the MAP algo-
rithm comes from the fact that it relies on the ability to pre-
dict sharp step edges from blurry ones, which may not be
the case on images which contain only fine-scale texture, or
where the blur is too large to allow this.

6 Deblurring with Noisy/Blurry Image Pairs

In this section, we apply our model to the case where, in
addition to g, we have a sharp but noisy image fN of the
same scene, as proposed by Yuan et al. (2007a). The mo-
tivation for this is that in low light, blurry images occur at
long shutter speeds, however it is often also possible to use
a short exposure at a high ISO setting to obtain a sharp but
noisy image of the same scene. While the noisy image may
be degraded too badly to allow the direct recovery of a good
sharp image, it can initially be used as a proxy for the sharp
image, allowing us to estimate the blur kernel ŵ by solv-
ing (15). Following this, the kernel is assumed to be known,
and used to deblur g, solving (14). The noisy image can also
be used to improve this deconvolution step, and Yuan et al.
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Fig. 8 Blind deblurring of synthetic single-axis blurs. A sharp image
(top left) with examples of synthetic blur by rotation of the camera
about its Y - and Z-axis, and the kernels and deblurred results for dif-
ferent cases. We compare the results of blind deblurring for two sizes
of blur and three noise levels, and the reconstruction errors are summa-
rized in the table at the top. For each single-axis blur, the table contains
the root-mean-square (RMS) errors between the deblurred results and

the ground-truth sharp image for blurs with a maximum size of 10 or
20 pixels in the image, using our non-uniform model and the uniform
model. In each cell we also show, in parentheses, the ratio between the
RMS error and the corresponding error for that blurry image deblurred
with the ground-truth kernel. Note that to facilitate comparison without
the influence of image priors, the deblurred images were all produced
using the Richardson-Lucy algorithm

Fig. 9 Poor performance of MAP-�2 with non-uniform blur model.
The corresponding blurry image can be seen in Fig. 6. Shown is the es-
timated kernel and deblurred result when using our non-uniform blur
model in the algorithm of Cho and Lee with �2 regularization on the
kernel. As can be seen, the �2 regularization is not sufficient to pro-
duce a good estimate of the kernel, and results in a deblurred output
containing many artifacts

propose a modified version of the Richardson-Lucy algo-
rithm, which uses fN to suppress artifacts in the result.

6.1 Kernel Estimation

As discussed in Sect. 3.2, some prior knowledge must be ap-
plied to recover a good kernel estimate. In their algorithm,
Yuan et al. (2007a) constrain the kernel to have non-negative
elements and unit �1 norm, however they simultaneously
penalize the �2 norm of the kernel, reducing the sparsity-
inducing effect of the constraint. To help find a sparse kernel,
they propose a thresholding scheme which sets some kernel
elements to zero at each iteration. In our approach, we opt
to use the �1 and positivity constraints alone, since they lead
naturally to a sparse kernel (Tibshirani 1996), a fact also ex-
ploited by Shan et al. (2007) for blur kernel estimation.

In order to estimate the blur kernel, we minimize the fol-
lowing energy function:
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Fig. 10 Blind deblurring of a real uniform blur. A real camera shake
blur (a–b) from the dataset of Levin et al. (2009), deblurred using ker-
nels estimated with the marginalization algorithm. We show deblurred
results and kernels for four cases; (c) uniform blur using original algo-
rithm of Fergus et al., (d) our model with a large focal length F and no
in-plane rotation (θZ = 0), (e) our approach with a large focal length F

but with θZ unconstrained, and (f) the ground-truth (uniform) kernel,
provided with the dataset. Note that (d) is indistinguishable from (c),
apart from a translation, and that the kernel in (d), while not perfect,
does have the same diagonal shape as the true blur, with the non-zeros
centered around a single value of θZ

Fig. 11 Blind deblurring of an image from Joshi et al. (2010). A hand-
held image with camera shake (a), from Joshi et al. (2010), with the
deblurred results from the original work (b) and using the MAP-�1
method with our blur model (c). We obtain a comparable result, with-

out the use of additional hardware and without considering the cam-
era’s translation during the exposure, despite the scene being close to
the camera

EN(w) = ‖ĝ(fN,w) − g‖2
2

s.t. ∀ k = 1, . . . ,K, wk ≥ 0 and
∑

k

wk = 1, (34)

where, by analogy with (15), ĝ(fN,w) = BNw, and BN is
the matrix whose columns each contain a projectively trans-
formed copy of fN . Similar to (29), this least-squares for-
mulation with non-negative �1 constraints can be solved ef-
ficiently (Kim et al. 2007; Mairal et al. 2010). Since the en-
ergy function is convex with convex constraints, we can be
sure of reaching the global minimum.

For comparison, we have also implemented this algo-
rithm for uniform blurs, using a matrix BN in (34) whose

columns contained translated versions of fN , rather than pro-
jectively transformed versions.

6.2 Image Reconstruction

Having estimated the blur kernel, Yuan et al. (2007a) pro-
pose several modifications to the Richardson-Lucy (RL) al-
gorithm, which take advantage of the fact that it is possible
to recover much of the low-frequency content of f from a de-
noised version of fN . Images deblurred with the standard RL
algorithm often exhibit “ringing” artifacts—low-frequency
ripples spreading across the image, such as in Fig. 9—but
using the denoised image it is possible to disambiguate the
true low frequencies from these artifacts, and largely remove
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them from the result. Doing this significantly improves the
deblurred results compared to the standard RL algorithm.
We refer the reader to Yuan et al. (2007a) for full details of
the augmented RL algorithm, omitted here for brevity. We
have adapted the algorithm for our non-uniform blur model,
along the same lines as for the standard RL algorithm in
Sect. 4.3.

6.3 Results

In this section, we present results with noisy/blurry image
pairs, and refer the reader to Sect. 7 for implementation de-
tails. Figures 12 and 13 show a comparison between the uni-
form model and ours, using the algorithm described above
to estimate the blur kernels. Having estimated the kernel,
we deblur the blurred images using the augmented RL al-
gorithm of Yuan et al. (2007a). As can be seen from the
deblurred images obtained with the two models, our results
exhibit more detail and fewer artifacts than those using the
uniform blur model.

7 Implementation

The implementation of the variational kernel estimation
method presented in Sect. 4.1 is based on the code made
available by Miskin and MacKay (2000) and by Fergus et al.
(2006).2 We have modified the algorithm to use our blur
model and replaced the parameter update equations with the
corresponding versions derived for our bilinear blur model
in (23)–(26). A package containing our code is available on-
line.3 The implementation of the image reconstruction algo-
rithm of Krishnan and Fergus (2009) is also based on MAT-
LAB code made available online by the authors.4 The imple-
mentations of the Richardson-Lucy algorithm, the algorithm
of Cho and Lee (2009), and the augmented RL algorithm of
Yuan et al. (2007a) are our own, and we use these imple-
mentations for both uniform and non-uniform blur models
when comparing results. A binary executable for Cho and
Lee’s algorithm is available, however we did not observe an
improvement in the results obtained, and thus use our own
implementation to permit a fairer comparison between the
results from the uniform and non-uniform blur models.

7.1 Sampling the Set of Rotations

One important detail to consider is how finely to discretize
the orientation parameter θ . Undersampling the set of ori-
entations will affect our ability to accurately reconstruct the

2http://cs.nyu.edu/~fergus/research/deblur.html.
3http://www.di.ens.fr/willow/research/deblurring/.
4http://cs.nyu.edu/~dilip/research/fast-deconvolution/.

Fig. 12 Deblurring real camera shake blur using a noisy/blurry im-
age pair. A noisy image (a) and a blurry image (b) captured with a
hand-held camera, with the estimated kernels (c–d) and deblurred re-
sults (f–g) for the uniform and non-uniform blur models. Also shown
for illustration are a selection of the local PSFs generated by the rota-
tional kernel (e). As can be seen in the close-ups (h–k), our result (k)
contains more details and fewer artifacts than when using the uniform
blur model (j), and reveals features not visible in either the noisy or the
blurry image. The non-uniform kernel in (d) covers ±3◦ along each di-
mension. We encourage the reader to examine the images in the digital
version of the paper

http://cs.nyu.edu/~fergus/research/deblur.html
http://www.di.ens.fr/willow/research/deblurring/
http://cs.nyu.edu/~dilip/research/fast-deconvolution/
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Fig. 13 Deblurring real camera shake blur using a noisy/blurry image
pair. A noisy image (a) and blurry image (b) captured with a hand-held
camera, shown with the estimated kernels (c–d) and deblurred im-
ages (e–f) for the uniform and non-uniform blur models. Note in the
close-up that the result using our model (j) has sharper edges and fewer
artifacts than that using the uniform model (i). The non-uniform kernel
in (d) covers ±3◦ along each dimension

blurred image, but sampling it too finely will lead to unnec-
essary calculations. Since the kernel is defined over the 3
parameters θX , θY and θZ , doubling the sampling resolution
increases the number of kernel elements by a factor of 8.
In practice, we have found that a good choice of grid spac-
ing is that which corresponds to a maximum displacement
of 1 pixel in the image. Since we are fundamentally lim-
ited by the resolution of our images, reducing the spacing
further leads to redundant orientations, which are indistin-
guishable from their neighbors. Setting the grid spacing in
terms of pixels also has the advantage that our 3D blur ker-
nels are defined on a grid which allows direct comparison
to the pixel grid of the image. We set the size of our ker-
nel along each dimension in terms of the size of the blur we
need to model, typically a few degrees along each dimension
of θ , e.g. [−5◦,5◦].

7.2 Multiscale Implementation

All of the kernel estimation algorithms presented here are
applied within a multiscale framework, starting with a
coarse representation of image and kernel, and repeatedly

refining the estimated kernel at higher resolutions. In the
case of single-image deblurring, this is essential to avoid
poor local minima, however it is also important for compu-
tational reasons in both the single-image and noisy/blurry
image pair cases. The kernel at the original image resolution
may have thousands or tens of thousands of elements, how-
ever very few of these should have non-zero values. For ex-
ample to solve (34) directly at full resolution would involve
transforming fN for every possible rotation under consider-
ation and storing all the copies simultaneously in BN . This
represents a significant amount of redundant computation,
since most of these copies will correspond to zeros in the
kernel, and furthermore BN may have too many columns to
fit in the computer’s memory. The effect on the computa-
tion and memory requirements for single-image deblurring
is comparable.

Thus, in all of the applications presented in this paper,
we use the solution ŵs at each scale s to constrain the so-
lution at the next scale ŵs+1, by defining an “active region”
where ŵs is non-zero, and constraining the non-zeros at the
next scale to lie within this region. In the example above,
this corresponds to discarding many columns of BN , reduc-
ing both the computation and memory demands of the al-
gorithm. We first build Gaussian pyramids for the blurred
image (and noisy image, if applicable), and at the coarsest
scale s = 0, define the active region to cover the full kernel.
At each scale s, we find the optimal kernel ŵs for that scale.
We then upsample ŵs to the next scale (s + 1) using bilinear
interpolation, find the non-zero elements of this upsampled
kernel, and dilate this region using a 3 × 3 × 3 cube. When
finding the optimal kernel ŵs+1, we fix all elements out-
side the active region to zero. We repeat this process at each
scale, until we have found the optimal kernel at the finest
scale.

7.3 Geometric and Photometric Registration

For the case of noisy/blurry image pairs, the two images are
simply taken one after the other with a hand-held camera,
so they may not be registered with each other. Thus, we es-
timate an approximate registration θ0 between them at the
coarsest scale, using an exhaustive search over a large set
of rotations, for example ±10◦ about all 3 axes using the
same step size as for the blur kernel, and we remove this
mis-registration from the noisy image. When applying the
uniform blur model in this case, we manually estimate the
in-plane rotation to best register the two images, as in Yuan
et al. (2007a).

To compensate for the difference in exposure between the
noisy and blurry images, at each scale s, after computing ŵs

for that scale, we estimate a linear rescaling a by computing
the linear least-squares fit between the pixels of gs and those
of ĝs(ŵs , fN,s), and apply this to the noisy image, i.e. fN ←
afN .
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8 Conclusion

We have proposed a new model for camera shake, derived
from the geometric properties of cameras, and applied it
to two deblurring problems within the frameworks of ex-
isting camera shake removal algorithms. We have validated
the model with experiments on real and synthetic data,
demonstrating superior results compared to the uniform blur
model. The model assumes that the motion of the camera
during exposure is limited to rotations about its optical cen-
ter, and is temporally-agnostic to the distribution over cam-
era orientations. Note, however, that camera rotations that
are off the optical center can be modeled by camera rota-
tions about the optical center together with translation; these
translations should generally be small for rotation centers
that are not far from the optical center. The model is not ap-
plicable for non-static scenes, or nearby scenes with large
camera translations where parallax effects may become sig-
nificant.

In the future, we plan to investigate the use of our general
bilinear model to other non-uniform blurs. We also plan to
investigate means of reducing the computational overhead
of the model, for example with the use of a suitable approx-
imation strategy, such as Hirsch et al. (2010).
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Appendix A: Parameter Update Equations for
Marginalization Algorithm

Equations (23)–(26) cannot be evaluated directly, since they
involve expectations over combinations of variables. For im-
plementation they must be expanded and written in terms of
the mean and variance of individual variables. Here we give
these expansions, which are exactly the parameter updates
computed in our implementation. First, let

vw
k = 〈w2

k〉 − 〈wk〉2, (35)

v
f
j = 〈f 2

j 〉 − 〈fj 〉2, (36)

〈Aij 〉 =
∑

k

Cijk〈wk〉, (37)

〈Bik〉 =
∑
j

Cijk〈fj 〉, (38)

〈ĝi〉 =
∑

k

(∑
j

Cijk〈fj 〉
)

〈wk〉. (39)

Then,

w
(2)
k = 〈βσ 〉

∑
i,j

C2
ijkv

f
j + 〈βσ 〉

∑
i

〈Bik〉2, (40)

w
(1)
k w

(2)
k = 〈βσ 〉

∑
i

〈Bik〉(gi − 〈ĝi〉)

− 〈βσ 〉
∑
i,j

Cijk〈Aij 〉vf
j + 〈wk〉w(2)

k , (41)

f
(2)
j = 〈βσ 〉

∑
i,k

C2
ijkv

w
k + 〈βσ 〉

∑
i

〈Aij 〉2, (42)

f
(1)
j f

(2)
j = 〈βσ 〉

∑
i

〈Aij 〉(gi − 〈ĝi〉)

− 〈βσ 〉
∑
i,k

Cijk〈Bik〉vw
k + 〈fj 〉f (2)

j . (43)

Finally, in evaluating the parameters of the distribution
q(βσ ) for the variance of the noise (Miskin and MacKay
2000, (40)), it is necessary to evaluate the following quan-
tity:

〈(gi − ĝi )
2〉 = (gi − 〈ĝi〉)2 +

∑
j,k

C2
ijkv

f
j vw

k

+
∑
j

〈Aij 〉2v
f
j +

∑
k

〈Bik〉2vw
k . (44)

Appendix B: Computation of Interpolation Coefficients

Here we give details of how the values of Cijk can be cal-
culated if bilinear interpolation is used. Note that these are
standard interpolation weights, and are not specific to this
deblurring application. We consider a pixel gi in the blurry
image which is mapped under a homography Hk to a point
x′ in the sharp image, i.e. Hkxi ∼ (x′, y′,1)�. The point x′
will, in general, be a sub-pixel location, and the value of
the sharp image f at x′ is interpolated from the 4 pixels sur-
rounding x′, using the following weights:

(xj , yj ) Cijk

(�x′�, �y′� )

(�x′�, �y′� + 1)

(�x′� + 1,�y′� )

(�x′� + 1,�y′� + 1)

(�x′� + 1− x′ )(�y′� + 1− y′ )

(�x′� + 1− x′ )( y′ −�y′�)
( x′ −�x′�)(�y′� + 1− y′ )

( x′ −�x′�)( y′ −�y′�)

where � · � takes the integer part of a positive scalar. The cor-
respondence between a pixel fj ’s index j and coordinates
(xj , yj ) can be obtained using, for example, the MATLAB

functions ind2sub / sub2ind.



Int J Comput Vis

References

Banham, M. R., & Katsaggelos, A. K. (1997). Digital image restora-
tion. IEEE Signal Processing Magazine, 14(2), 24–41.

Bishop, C. M. (2006). Pattern recognition and machine learning
(information science and statistics). Berlin: Springer. ISBN
0387310738.

Cai, J.-F., Ji, H., Liu, C., & Shen, Z. (2009). Blind motion deblurring
from a single image using sparse approximation. In Proc. CVPR.

Chakrabarti, A., Zickler, T., & Freeman, W. T. (2010). Analyzing
spatially-varying blur. In Proc. CVPR.

Chan, T. F., & Wong, C.-K. (1998). Total variation blind deconvolution.
IEEE Transactions on Image Processing, 7(3).

Chen, J., Yuan, L., Tang, C.-K., & Quan, L. (2008). Robust dual motion
deblurring. In Proc. CVPR.

Cho, S., & Lee, S. (2009). Fast motion deblurring. ACM Transactions
on Graphics, 28(5), 145:1–145:8 (Proc. SIGGRAPH Asia 2009).

Cho, S., Matsushita, Y., & Lee, S. (2007). Removing non-uniform mo-
tion blur from images. In Proc. ICCV.

Couzinie-Devy, F., Mairal, J., Bach, F., & Ponce, J. (2011). Dictionary
learning for deblurring and digital zoom (submitted). Preprint
HAL: inria-00627402.

Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2008). Image
restoration by sparse 3D transform-domain collaborative filtering.
In SPIE electronic imaging.

Efron, B., Hastie, T., Johnstone, L., & Tibshirani, R. (2004). Least an-
gle regression. Annals of Statistics, 32(2), 407–499.

Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T., & Freeman, W. T.
(2006). Removing camera shake from a single photograph. ACM
Transactions on Graphics, 25(3), 787–794 (Proc. SIGGRAPH
2006).

Gupta, A., Joshi, N., Zitnick, C. L., Cohen, M., & Curless, B. (2010).
Single image deblurring using motion density functions. In Proc.
ECCV.

Hartley, R. I., & Zisserman, A. (2004). Multiple view geometry in com-
puter vision (2nd edn.). Cambridge: CUP. ISBN 0521540518.

Hirsch, M., Sra, S., Schölkopf, B., & Harmeling, S. (2010). Efficient
filter flow for space-variant multiframe blind deconvolution. In
Proc. CVPR.

Joshi, N., Kang, S. B., Zitnick, C. L., & Szeliski, R. (2010). Image
deblurring using inertial measurement sensors. ACM Transactions
on Graphics, 29(4), 30:1–30:9 (Proc. SIGGRAPH 2010).

Kim, S.-J., Koh, K., Lustig, M., Boyd, S., & Gorinevsky, D. (2007). An
interior-point method for large-scale �1-regularized least squares.
IEEE Journal of Selected Topics in Signal Processing, 1(4), 606–
617.

Klein, G., & Drummond, T. (2005). A single-frame visual gyroscope.
In Proc. BMVC.

Krishnan, D., & Fergus, R. (2009). Fast image deconvolution using
hyper-Laplacian priors. In NIPS.

Lee, D. D., & Seung, H. S. (2001). Algorithms for non-negative matrix
factorization. In NIPS.

Levin, A. (2006). Blind motion deblurring using image statistics. In
NIPS.

Levin, A., Weiss, Y., Durand, F., & Freeman, W. T. (2009). Under-
standing and evaluating blind deconvolution algorithms. In Proc.
CVPR.

Lim, S. H., & Silverstein, A. (2008). Estimation and removal of motion
blur by capturing two images with different exposures. Technical
Report HPL-2008-170, HP Laboratories.

Lucy, L. B. (1974). An iterative technique for the rectification of ob-
served distributions. Astronomical Journal, 79(6), 745–754.

Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2010). Online learning
for matrix factorization and sparse coding. Journal of Machine
Learning Research, 11, 19–60.

Miskin, J. W., & MacKay, D. J. C. (2000). Ensemble learning for blind
image separation and deconvolution. In M. Girolani (Ed.), Ad-
vances in independent component analysis. Berlin: Springer.

Nagy, J. G., & O’Leary, D. P. (1998). Restoring images degraded
by spatially variant blur. SIAM Journal on Scientific Computing,
19(4), 1063–1082.

Osher, S., & Rudin, L. I. (1990). Feature oriented image enhancement
using shock filters. SIAM Journal on Numerical Analysis, 27(4),
919–940.

Pérez, P., Gangnet, M., & Blake, A. (2003). Poisson image edit-
ing. ACM Transactions on Graphics, 22(3), 313–318 (Proc. SIG-
GRAPH 2003).

Puetter, R. C., Gosnell, T. R., & Yahil, A. (2005). Digital image recon-
struction: deblurring and denoising. Annual Review of Astronomy
and Astrophysics, 43, 139–194.

Rav-Acha, A., & Peleg, S. (2005). Two motion-blurred images are bet-
ter than one. Pattern Recognition Letters, 26(3).

Richardson, W. H. (1972). Bayesian-based iterative method of image
restoration. Journal of the Optical Society of America, 62(1), 55–
59.

Sawchuk, A. A. (1974). Space-variant image restoration by coordinate
transformations. Journal of the Optical Society of America, 64(2),
138–144.

Shan, Q., Xiong, W., & Jia, J. (2007). Rotational motion deblurring of
a rigid object from a single image. In Proc. ICCV.

Shan, Q., Jia, J., & Agarwala, A. (2008). High-quality motion deblur-
ring from a single image. ACM Transactions on Graphics, 27(3)
(Proc. SIGGRAPH 2008).

Tai, Y.-W., Tan, P., Gao, L., & Brown, M. S. (2009). Richardson-Lucy
deblurring for scenes under projective motion path. Technical re-
port, KAIST.

Tai, Y.-W., Du, H., Brown, M. S., & Lin, S. (2010a). Correction of spa-
tially varying image and video motion blur using a hybrid camera.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
32(6), 1012–1028.

Tai, Y.-W., Kong, N., Lin, S., & Shin, S. Y. (2010b). Coded exposure
imaging for projective motion deblurring. In Proc. CVPR.

Tai, Y.-W., Tan, P., & Brown, M. S. (2011). Richardson-Lucy deblur-
ring for scenes under a projective motion path. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 33(8), 1603–1618.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.
Joutnal of the Royal Statistical Society, Series B, 58(1), 267–288.

Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for gray and
color images. In Proc. ICCV.

Vio, R., Nagy, J., Tenorio, L., & Wamsteker, W. (2005). Multiple image
deblurring with spatially variant PSFs. Astronomy & Astrophysics,
434, 795–800.

Xu, L., & Jia, J. (2010). Two-phase kernel estimation for robust motion
deblurring. In Proc. ECCV.

Yuan, L., Sun, J., Quan, L., & Shum, H.-Y. (2007a). Image deblurring
with blurred/noisy image pairs. ACM Transactions on Graphics,
26(3) (Proc. SIGGRAPH 2007).

Yuan, L., Sun, J., Quan, L., & Shum, H.-Y. (2007b). Blurred/non-
blurred image alignment using sparseness prior. In Proc. ICCV.

Yuan, L., Sun, J., Quan, L., & Shum, H.-Y. (2008). Progressive inter-
scale and intra-scale non-blind image deconvolution. ACM Trans-
actions on Graphics, 27(3) (Proc. SIGGRAPH 2008)


	Non-uniform Deblurring for Shaken Images
	Abstract
	Introduction
	Related Work

	Geometric Model
	Motion Blur and Homographies
	Uniform Blur as a Special Case
	Camera Calibration

	Restoration Model
	Comparison to Other Non-uniform Blur Models
	Application to Existing Deblurring Algorithms

	Single-Image Deblurring
	The Marginalization Approach
	The Maximum a Posteriori Approach
	Modification for Non-uniform Blur

	Image Reconstruction

	Single-Image Deblurring Results
	Convergence
	Running Time
	Limitations

	Deblurring with Noisy/Blurry Image Pairs
	Kernel Estimation
	Image Reconstruction
	Results

	Implementation
	Sampling the Set of Rotations
	Multiscale Implementation
	Geometric and Photometric Registration

	Conclusion
	Acknowledgements
	Appendix A: Parameter Update Equations for Marginalization Algorithm
	Appendix B: Computation of Interpolation Coefficients
	References


