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Figure 1: The goal of this work is to localize a query photograph (left) by finding other images of the same place in a large
geotagged image database (right). We cast the problem as a classification task and learn a classifier for each location in
the database. We develop a non-parametric procedure to calibrate the outputs of the large number of per-location classifiers
without the need for additional positive training data.

Abstract

The aim of this work is to localize a query photograph
by finding other images depicting the same place in a large
geotagged image database. This is a challenging task due
to changes in viewpoint, imaging conditions and the large
size of the image database. The contribution of this work
is two-fold. First, we cast the place recognition problem as
a classification task and use the available geotags to train
a classifier for each location in the database in a similar
manner to per-exemplar SVMs in object recognition. Sec-
ond, as only few positive training examples are available for
each location, we propose a new approach to calibrate all
the per-location SVM classifiers using only the negative ex-
amples. The calibration we propose relies on a significance
measure essentially equivalent to the p-values classically
used in statistical hypothesis testing. Experiments are per-
formed on a database of 25,000 geotagged street view im-
ages of Pittsburgh and demonstrate improved place recog-
nition accuracy of the proposed approach over the previous
work.
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1. Introduction
Visual place recognition [7, 13, 27] is a challenging task

as the query and database images may depict the same 3D
structure (e.g. a building) from a different camera view-
point, under different illumination, or the building can be
partially occluded. In addition, the geotagged database
may be very large. For example, we estimate that Google
street-view of France alone contains more than 60 million
panoramic images.

Similar to other work in large scale place recogni-
tion [7, 13, 27] and image retrieval [20, 21, 28], we build on
the bag-of-visual-words representation [6, 28] and describe
each image by a set of quantized local invariant features,
such as SURF [1] or SIFT [17]. Each image is then repre-
sented by a weighted histogram of visual words, called the
“tf-idf vector” due to the commonly used tf-idf weighting
scheme [28]. The vectors are usually normalized to have
unit L2 norm and the similarity between the query and a
database vector is then measured by their dot product. This
representation has some desirable properties such as robust-
ness to background clutter and partial occlusion. Efficient
retrieval is then achieved using inverted file indexing.

Recent work has looked at different ways to improve
the retrieval accuracy and speed of the bag-of-visual-words
model for image and object retrieval. Examples include: (i)
learning better visual vocabularies from training examples
with matched/non-matched descriptors [19, 23]; (ii) devel-
oping quantization methods less prone to quantization er-
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rors [11, 22] or (iii) combining results from multiple query
images depicting the same scene [4, 5].

While in image retrieval databases are typically unstruc-
tured collections of images, place recognition databases are
usually structured: images have geotags, are localized on a
map and depict a consistent 3D world. Knowing the struc-
ture of the database can lead to significant improvements
in both speed and accuracy of place recognition. Examples
include: (i) building an explicit 3D reconstruction of the
scene [10, 15, 16]; (ii) constructing an image graph [24, 30],
where images are nodes and edges connect close-by images
on the map [29], or (iii) using the geotagged data as a form
of supervision to select local features that characterize a cer-
tain location [13, 27] or re-rank retrieved images [32].

In this work, we also take advantage of geotags as an
available form of supervision and investigate whether the
place recognition problem can be cast as a classification
task. While visual classifiers were investigated for land-
mark recognition [14], where many photographs are avail-
able for each of the landmarks, in this work we wish to train
a classifier for each location on the map in a similar man-
ner to per-exemplar classification in object recognition [18].
This is beneficial as each classifier can learn which features
are discriminative for a particular place. The classifiers are
learnt offline. At query time, the query photograph is local-
ized by transferring the GPS tag of the best scoring location
classifier.

While learning classifiers for each place may be appeal-
ing, calibrating outputs of the individual classifiers is a crit-
ical issue. In object recognition [18], it is addressed in a
separate calibration stage on a held-out set of training data.
This is not possible in the place recognition set-up as only a
small number, typically one to five, of positive training im-
ages are available for each location (e.g. street-view images
viewing the same building facade). To address this issue,
we propose a calibration procedure inspired by the use of p-
values in statistics and based on ranking the score of a query
image amongst scores of other images in the database.

The rest of the paper is organized as follows: Section 2
describes how per-location classifiers are learnt. Section 3
details the classifier calibration procedure. Implementation
details and experimental results are given in Section 4.

2. Per-location classifiers for place recognition
We are given tf-idf vectors dj , one for each database im-

age j. The goal is to learn a score fj for each database
image j, so that, at test time, given the descriptor q of the
query image, we can either retrieve the correct target image
as the image j∗ with the highest score

j∗ = arg max
j

fj(q) (1)

or use these scores to rank candidate images and use geo-

metric verification to try and identify the correct location
in an n-best list. Instead of approaching the problem di-
rectly as a large multiclass classification problem, we tackle
the problem by learning a per-exemplar linear SVM classi-
fier [18] for each database image j. Similar to [13], we use
the available geotags to construct the negative set Nj for
each image j. The negative set is constructed so as to con-
centrate difficult negative examples, i.e. from images that
are far away from the location of image j and at the same
time similar to the target image as measured by the dot prod-
uct between their feature vectors. The details of the con-
struction procedure will be given in section 4. The positive
set Pj is represented by the only positive example, which is
dj itself.

Each SVM classifier produces a score sj which is a priori
not comparable with the score of the other classifiers. A
calibration of these scores will therefore be key to convert
them to comparable scores fj . This calibration problem is
more difficult than usual given that we only have a single
positive example and will be addressed in section 3.

Learning per-location SVM classifiers. Each linear
SVM classifier learns a score sj of the form

sj(q) = wT
j q + bj (2)

where wj is a weight vector re-weighting contributions of
individual visual words and bj is the bias specific for im-
age j. Given the training sets Pj and Nj , the aim is to find
a vector wj and bias bj such that the score difference be-
tween dj and the closest neighbor from its negative set Nj

is maximized. Learning the weight vector wj and bias bj is
formulated as a minimization of the convex objective

Ω(wj , bj) = ||wj ||2 + C1

∑
x∈Pj

h(wT
j x + bj)

+ C2

∑
x∈Nj

h(−wT
j x− bj), (3)

where the first term is the regularizer, the second term is the
loss on the positive training data weighted by scalar parame-
ter C1, and the third term is the loss on the negative training
data weighted by scalar parameter C2. This is a standard
SVM formulation (3), also used in exemplar-SVM [18]. In
our case h is the squared hinge loss, which we found to
work better in our setting than the standard hinge-loss. wj

and bj are learned separately for each database image j in
turn. In our case (details in section 4), we use about 1-5
positive examples, and 200 negative examples. As the di-
mensionality of w is 100, 000 all training data points are
typically support vectors.



Expanding the positive set. A typical geotagged
database may contain several images depicting a particu-
lar location. For example, neighboring street-view panora-
mas depict the same store front from different viewpoints.
However, a specific place is often imaged only in a small
number (2-5) of neighboring panoramas. If such images are
identified, they may provide a few additional positive exam-
ples for the particular place and improve the quality of that
per-location classifier. Moreover, treating them erroneously
as negatives is likely to bias the learnt classifier. We auto-
matically identify such images as geo-graphically close-by
images to the location j. These images can be further ver-
ified using geometric verification [21] and included in the
positive training data for location j. Details are given in
section 4.

3. Non-parametric calibration of the SVM-
scores from negative examples only

Since the classification scores sj are learned indepen-
dently for each location j, they cannot be directly used as
the scores fj from eq. (1). As illustrated in figure 2, for a
given query q, a classifier from an incorrect location (b) can
have a higher score (2) than the classifier from the target lo-
cation (a). Indeed, the SVM score is a signed distance from
the discriminating hyperplane and is a priori not compara-
ble between different classifiers. This issue is addressed by
calibrating scores of the learnt classifiers. The goal of the
calibration is to convert the output of each classifier into a
probability (or in general a “universal” score), which can be
meaningfully compared across classifiers.

Several calibration approaches have been proposed in the
literature (see [9] and references therein for a review). The
most known consists of fitting a logistic regression to the
output of the SVM [25]. This approach, however, has a ma-
jor drawback as it imposes a parametric form (the logistic
a.k.a. sigmoid function) of the likelihood ratio of the two
classes, which typically leads to biased estimates of the cal-
ibrated scores. Another important calibration method is the
isotonic regression [31], which allows for a non-parametric
estimate of the output probability. Unfortunately, the fact
that we have only a single positive example (or only very
few of them, and which are all used for training) essentially
prevents us from using any of these methods. However,
given the availability of negative data, it is easy to estimate
the significance of the score of a test example compared
to the typical score of (plentifully available) negative ex-
amples. Intuitively, we will use a large dataset of negative
examples to calibrate the individual classifiers so that they
reject the same number of negative examples at each level
of the calibrated score. We will expand this idea in detail
and use concepts from hypothesis testing to propose a cali-
bration method.

Calibration via significance levels. In the following, we
view the problem of deciding whether a query image
matches a given location based on the corresponding SVM
score as a hypothesis testing problem. In particular, we ap-
peal to ideas from the traditional frequentist hypothesis test-
ing framework also known as Neyman-Pearson (NP) frame-
work (see e.g. [2], chap. 8).

We define the null hypothesis as H0 =
{the image is a random image} and the alternative as
H1 = {the image matches the particular location}. The NP
framework focuses on the case where the distribution of
the data under H0 is well known, whereas the distribution
under H1 is not accessible or too complicated to model,
which matches perfectly our setting.

In the NP framework, the significance level of a score
is measured by the p-value or equivalently by the value of
the cumulative density function (cdf) of the distribution of
the negatives at a given score value. The cdf is the function
F0 defined by F0(s) = P(S0 ≤ s), where S0 is the ran-
dom variable corresponding to the scores of negative data
(see figure 3 for an illustration of the relation between the
cdf and the density of the function). The cdf (or the corre-
sponding p-value1) is naturally estimated by the empirical
cumulative density function F̂0, which is computed as:

F̂0(s) =
1

Nc

Nc∑
n=1

1{sn≤s},

where (sn)1≤n≤Nc are the SVM scores associated with Nc

negative examples used for calibration. F̂0(s) is the frac-
tion of the negative examples used for calibration (ideally
held out negative examples) that have a score below a given
value s. Computing F̂0 exactly would require to store all the
SVM scores for all the calibration data for all classifiers, so
in practice, we only keep a fraction of the larger scores. We
also interpolate the empirical cdf between consecutive dat-
apoints so that instead of being a staircase function it is a
continuous piecewise linear function such as illustrated on
figure 2. Given a query, we first compute its SVM score sq
and then compute the calibrated probability f(q) = F̂0(sq).
We obtain a similar calibrated probability fj(q) for each
of the SVMs associated with each of the target locations,
which can now be ranked.

Summary of the calibration procedure. For each place,
keep Nc scores from negative examples (sn)1≤n≤Nc used
for calibration together with the associated cumulative

1The notion most commonly used in statistics is in fact the p-value. The
p-value associated to a score is the quantity α(s) defined by α(s) = 1 −
F0(s); so the more significant the score is, the closer to 1 the cdf value is,
and the closer to 0 the p-value is. To keep the presentation simple, we avoid
the formulation in terms of p-values and we only talk of the probabilistic
calibrated values obtained from the cdf F0.
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Figure 2: An illustration of the proposed normalization of
SVM scores for two different database images. In each plot,
the x-axis shows the raw SVM score. The y-axis shows the
calibrated output. For the given query, the raw SVM score
of image (b) is lower than for image (a), but the calibrated
score of image (b) is higher than for image (a).

probability values F̂0(sn). Given the score of the query sq:
1. Find n such that sn ≤ sq < sn+1

2. Compute the interpolated empirical cdf value

F̂0(sq) ≈ F̂0(sn) +
sq − sn

sn+1 − sn
(F̂0(sn+1)− F̂0(sn)).

Discussion. It should be noted that basing the calibration
only on the negative data has the advantage that we privi-
lege precision over recall, which is justified given the im-
balance of the available training data (much more negatives
than positives). Indeed, since we are learning with a sin-
gle positive example, intuitively, we cannot guarantee that
the learned partition of the space will generalize well to
other positives, whose scores in the test set can potentially
drop significantly (this is indeed what we observe in prac-
tice). By contrast, since we are learning from a compara-
tively large number of negative examples, we can trust the
fact that new negative examples will stay in the half-space
containing the negative training set, so that their scores are
very unlikely to be large. Our method is therefore based on
the fact that we can measure reliably how surprising a high
score would be if it was the score of a negative example.
This exactly means that we can control false positives (type
I error) reasonably well but not false negatives (type II error
or equivalently the power of our test/classifier), exactly as
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Figure 3: A figure showing the relation between (a) the
probability density of the random variable S0 modeling the
scores of the negative examples and (b) the corresponding
cumulative density function F0(s) = P(S0 ≤ s).

in the Neyman-Pearson framework. An additional reason
for not relying on positive examples for the calibration in
our case is that (even if we had sufficiently many of them)
the positive examples that we collect using location and ge-
ometric verification from the geotagged database typically
have illumination conditions that are extremely similar to
each other and not representative of the distribution of test
positives which can have very different illuminations. This
is because of the controlled nature of the capturing process
of geotagged street-level imagery (e.g. Google street-view)
used for experiments in this work. Close-by images are typ-
ically captured at a similar time (e.g. on the same day) and
under similar imaging conditions.

Scheirer et al. [26] propose a method, which is related
to ours, and calibrate SVM scores by computing the cor-
responding cdf value of a Weibull distribution fitted to the
top negative scores. The main difficulty is that the Weibull
model should be fitted only to the tail of the distribution of
the negatives, which is in general difficult to identify. As
a heuristic, Scheirer et al. propose to fit the Weibul model
to false positives (i.e. the negative samples classified incor-
rectly as positives). But in our case, most of the exemplar
SVMs that we are training have 0 false positives in a held
out set, which precludes the application of their method. To
avoid that issue our approach forgoes any parametric form
of the distribution and instead relies directly on a standard
non-parametric estimate of the cumulative density function.

Finally, we should remark that we are not doing here cal-



ibration in the same sense of the word as the calibration
based on logistic regression (or isotonic regression), since
logistic regression estimates a probability of making a cor-
rect prediction by assigning a new data to class 1, while we
are estimating how unlikely it would be for a negative ex-
ample to have such a high score. The calibration with either
methods yields “universal” scores in the sense that they are
comparable from one SVM to another, but the calibrated
values obtained from logistic regression are not comparable
to the values obtained from our approach.

4. Experiments

In this section we first give implementation details, then
describe the experimental datasets and finally compare per-
formance of the proposed approach with several baseline
methods.

Implementation details. All images are described us-
ing the bag-of-visual-words representation [28]. First,
SURF [1] descriptors are extracted. Second, a vocabulary
of 100k visual words is learnt by approximate k-means clus-
tering [21] from a subset of features from 2,000 randomly
selected images. Third, a tf-idf vector is computed for each
image by assigning each descriptor to the nearest cluster
center. Finally, all tf-idf vectors are normalized to have unit
L2 norm.

To learn the classifier for database image j, the positive
and negative training data is constructed as follows. The
negative training set Nj is obtained by: (i) finding the set of
images with geographical distance greater than 200m; (ii)
sorting the images by decreasing value of similarity to im-
age j measured by the dot product between their respective
tf-idf vectors; (iii) taking the top N = 200 ranked images as
the negative set. In other words, the negative training data
consists of the hard negative images, i.e. those that are very
similar to image j but are far away from its geographical
position, hence, cannot have the same visual content.

The positive training set Pj initially consist of the image
j itself and can be expanded by: (i) finding the adjacent
images (e.g. images located within < 20m of image j), (ii)
identifying adjacent images with the same visual content
using geometric verification, and (iii) adding these verified
images to the positive set Pj .

For SVM training we use libsvm [8]. We set the value
of the regularization parameters to C1 = 1 · nP for positive
data and C2 = 10−3 · nN for negative data where nP and
nN denote the number of examples in the positive and the
negative set, respectively. These parameters were found by
cross-validation and work well on various datasets.

The calibration with significance levels is done for each
classifier in turn as follows: (i) given image j and learnt
SVM we construct a set of images consisting of the whole

database without the positive set Pj ; (ii) for this image set,
SVM scores are computed; (iii) empirical cdf F̂0 is esti-
mated from sorted SVM scores.

To use a reasonable amount of memory, for each classi-
fier, we store only the first 1000 largest negative scores (the
number of negative scores stored could be reduced further
using interpolation).

Image dataset. We performed experiments on a database
of Google Streetview images from the Internet. We down-
loaded panoramas from Pittsburgh (U.S.) covering roughly
an area of 1.3 × 1.2 km2. Similar to [3], we generate
for each panorama 12 overlapping perspective views cor-
responding to two different elevation angles to capture both
the street-level scene and the building façades, resulting in
a total of 24 perspective views each with 90◦ FOV and res-
olution of 960 × 720 pixels. This dataset contains 25,000
perspective images.

As a query set with known ground truth GPS positions,
we use the 8999 panoramas from the Google Streetview re-
search dataset, which cover approximately the same area,
but were captured at a different time, and typically depict
the same places from different viewpoints and under dif-
ferent illumination conditions. For each test panorama, we
generate perspective images as described above. Finally,
we randomly select out of all generated perspective views a
subset of 4k images, which is used as a test set to evaluate
the performance of the proposed approach.

Results. We compare the performance of the proposed
approach (SVM p-val) with the following baseline methods:
(a) Training per-location classifiers without any calibration
step (SVM). (b) Calibrating per-location classifiers using
the standard logistic regression2 as in exemplar SVM [18]
(SVM logistic). (c) The standard bag-of-visual words re-
trieval (BOW) [21]. (d) Our implementation of the con-
fuser suppression approach (Conf. supp.) of [13] that, in
each database image, detects and removes features that fre-
quently appear at other far-away locations (using parame-
ters t = 3.5 and w = 70).

For all methods, we implemented a two-stage place
recognition approach. Given a query image, the aim of the
first stage is to efficiently find a small subset (20) of candi-
dates that are likely to depict the same place as the query
image. In the second stage, we search for restricted ho-
mographies between candidates and the query image using
RANSAC [21]. The candidates are finally re-ranked by de-
creasing number of inliers.

Since the ground truth GPS position for each query im-
age is available, we measure the overall recognition perfor-

2The calibration of SVM scores with logistic regression is based on a
subset of 30 hard negatives from Nj and 1-15 available positive examples
from Pj .



Method % correct % correct
init. retrieval with geom. verif.

SVM 00.0 12.7
SVM logistic 03.6 10.3
BOW 32.0 53.1
Conf. supp. [13] 36.5 58.1
SVM p-val 41.9 60.8

Table 1: The percentage of correctly localized test queries
for which the top-ranked database image is within 20 meters
from the ground truth query position. The proposed method
(SVM p-val) outperforms the baseline methods. Results are
shown for the initial retrieval (left column) and after re-
ranking the top 20 retrieved images using geometric veri-
fication. Notice that SVM output without calibration gives
0% of correctly localized queries.

mance by the percentage of query test images for which the
top-ranked database image was located within a distance of
20 meters from the ground truth query location. Results are
summarized in table 1 and clearly demonstrate the bene-
fits of careful calibration of the per-location classifiers. In
addition, the proposed per-location classifier method out-
performs the baseline bag-of-visual-word approach [21] in-
cluding confuser suppression [13].

Examples of correctly and incorrectly localized queries
are shown in figure 4. Figure 5 illustrates the weights learnt
for one database image applied to three different query im-
ages.

Scalability. The linear SVM classifiers trained for each
database image are currently non-sparse, which increases
the computational and memory requirements at query time
compared to the original bag-of-visual-words representa-
tion. For a database of 25,000 images, applying all clas-
sifiers on a query image takes currently on average 1.72s.
The method could be further sped-up by, for example: (i)
reducing the dimensionality of the input vectors [12], or (ii)
enforcing additional sparsity constraints on learnt weight
vectors w.

5. Conclusions
We have shown that place recognition can be cast as a

classification problem and have used geotags as a readily-
available supervision to train an ensemble of classifiers, one
for each location in the database. As only few positive ex-
amples are available for each location, we have proposed
a non-parametric procedure to calibrate the output of each
classifier without the need for additional positive training
data. The results show improved place recognition perfor-
mance over baseline methods and demonstrate that careful
calibration is critical to achieve competitive place recogni-
tion performance. The developed calibration method is not

specific to place recognition and can be useful for other per-
exemplar classification tasks, where only a small number of
positive examples are available [18].
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(a) query image. (b) the top-ranked image retrieved by per-location classifiers (proposed method). (c) the top-ranked
image retrieved by the baseline confuser suppression method [13]. (d) the top-ranked image retrieved by the baseline bag-
of-visual-words method. Bottom two rows: the proposed method is sometimes confused by high-scoring similar repeated
texture patterns on facades.
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Figure 5: A visualization of learnt feature wights for two database images. In each panel: first row: (Right) Target
database image j. (Left) Cumulative density function (or calibrated score) learnt for the SVM scores of the corresponding
classifier fj ; three query images displayed on the second row are represented by their SVM scores and cdf values F0(s),
denoted (a)-(c) on the graph. Third row: A visualization of the contribution of each feature to the SVM score for the
corresponding query image. Red circles represent features with negative weights while green circles correspond to features
with positive weights. The area of each circle is proportional to the contribution of the corresponding feature to the SVM
score. Notice that the correctly localized queries (c) contain more green colored features than queries from other places (b)
and (a). Left panel: Query (b) gets a high score because the building has orange and white stripes similar to the the sun-blinds
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