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Fig. 1 The goal of this work is to localize a query photograph (left top)
by finding other images of the same place in a large geotagged image
database (right column). We cast the problem as a classification task
and learn a classifier for each location in the database. We develop two
procedures to calibrate the outputs of the large number of per-location
classifiers without the need for additional labeled training data
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Abstract The aim of this work is to localize a query pho-
tograph by finding other images depicting the same place
in a large geotagged image database. This is a challenging
task due to changes in viewpoint, imaging conditions and
the large size of the image database. The contribution of this
work is two-fold. First, we cast the place recognition problem
as a classification task and use the available geotags to train
a classifier for each location in the database in a similar man-
ner to per-exemplar SVMs in object recognition. Second, as
only one or a few positive training examples are available for
each location, we propose two methods to calibrate all the
per-location SVM classifiers without the need for additional
positive training data. The first method relies on p-values
from statistical hypothesis testing and uses only the available
negative training data. The second method performs an affine
calibration by appropriately normalizing the learnt classifier
hyperplane and does not need any additional labelled training
data. We test the proposed place recognition method with the
bag-of-visual-words and Fisher vector image representations
suitable for large scale indexing. Experiments are performed
on three datasets: 25,000 and 55,000 geotagged street view
images of Pittsburgh, and the 24/7 Tokyo benchmark con-
taining 76,000 images with varying illumination conditions.
The results show improved place recognition accuracy of
the learnt image representation over direct matching of raw
image descriptors.

Keywords Place recognition - Exemplar SVM -
Geo-localization - Classifier calibration
1 Introduction

Visual place recognition (Cummins and Newman 2009;
Knopp et al. 2010; Schindler et al. 2007) is a challenging task
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as the query and database images may depict the same 3D
structure (e.g. a building) from a different camera viewpoint,
under different illumination, or the building can be partially
occluded. In addition, the geotagged database may be very
large. For example, we estimate that Google Street View
of France alone contains more than 60 million panoramic
images. It is, however, an important problem as automatic,
accurate and fast visual place recognition would have many
practical applications in robotics, augmented reality or nav-
igation.

Similar to other work in large scale place recognition
(Cummins and Newman 2009; Knopp et al. 2010; Schindler
et al. 2007; Torii et al. 2013) and image retrieval (Nister and
Stewenius 2006; Philbin et al. 2007; Sivic and Zisserman
2003; Jégou et al. 2012), we describe each image by a set of
local invariant features (Bay et al. 2006; Lowe (2004)) that
are encoded and aggregated into a fixed-length single vec-
tor descriptor for each image. In particular, in this work we
consider the sparse tf-idf weighted bag-of-visual-words rep-
resentation (Sivic and Zisserman 2003; Philbin et al. 2007)
and the compact Fisher vector descriptors (Jégou et al. 2012).

The resulting vectors are then normalized to have unit Ly
norm and the similarity between the query and a database
vector is measured by their dot product. This representation
has some desirable properties such as robustness to back-
ground clutter and partial occlusion. Efficient retrieval can
then achieved using inverted file indexing (Jegou et al. 2011).

While in image retrieval databases are typically unstruc-
tured collections of images, place recognition databases are
usually structured: images have geotags, are localized on a
map and depict a consistent 3D world. Knowing the struc-
ture of the database can lead to significant improvements
in both speed and accuracy of place recognition. Examples
include: (i) building an explicit 3D reconstruction of the
scene (Irschara et al. 2009; Li et al. 2010; Li et al. 2012);
(i1) constructing an image graph (Cao and Snavely 2013;
Philbin et al. 2010; Turcot and Lowe 2009), where images are
nodes and edges connect close-by images on the map (Torii
et al. 2011), or (iii) using the geotagged data as a form of
supervision to select local features that characterize a certain
location (Knopp et al. 2010; Schindler et al. 2007) or re-rank
retrieved images (Zamir and Shah 2010).

In this work, we also take advantage of geotags as an
available form of supervision and investigate whether the
place recognition problem can be cast as a classification task.
Learning visual classifiers has been investigated for landmark
recognition (Li et al. 2009) where consumer photographs
were clustered into landmark classes based on geo-tags. In
this work we wish to recognize individual street locations
rather than a small number of landmarks, and as a conse-
quence have only a few (1-5) photographs capturing the
same location. In particular, we train a classifier for each
location on the map in a similar manner to per-exemplar
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classification in object recognition (Malisiewicz et al. 2011).
(By location we mean a scene captured by a camera, hence
using our terminology, a camera heading to the north cap-
tures different location than a camera heading to the south,
even though these two cameras share the same GPS loca-
tion. In the following text we use terms place and location
interchangeably.)

This is beneficial as each classifier can learn which fea-
tures are discriminative for a particular place. The classifiers
are learnt offline. At query time, the query photograph is
localized by transferring the GPS tag of the best scoring loca-
tion classifier.

While learning classifiers for each location may be appeal-
ing, calibrating outputs of the individual classifiers is a
critical issue. In object recognition (Malisiewicz et al. 2011),
it is addressed in a separate calibration stage on a held-
out set of training data. This is not possible in the place
recognition set-up as only a small number, typically one
to five, of positive training images are available for each
location (e.g. street view images viewing the same building
facade). To address this issue, we propose two calibration
methods. The first method relies on p-values from statisti-
cal hypothesis testing and uses only the available negative
training data. The second method performs a simple affine
calibration by appropriately normalizing the learnt classi-
fiers and does not need any additional labelled calibration
examples.

2 Related Work

The task of geo-localizing a given input query photograph
has recently received considerable attention. The output can
be a coarse geo-localization on the level of continents and
cities (Doersch et al. 2012; Hays and Efros 2008; Kalogerakis
et al. 2009) or a name of the depicted landmark (Li et al.
2009). In this work we focus on visually recognizing the
“same place” by finding an image in geo-tagged database that
depicts the same building facade or street-corner as shown in
the query (Chen et al. 2011; Cummins and Newman 2009;
Knopp et al. 2010; Schindler et al. 2007; Torii et al. 2013;
Zamir and Shah 2010).

This visual place recognition problem is typically treated
as large-scale instance-level retrieval (Cummins and New-
man 2009; Chen et al. 2011; Knopp et al. 2010; Schindler
et al. 2007; Torii et al. 2013; Zamir and Shah 2010),
where images are represented using local invariant fea-
tures (Lowe 2004) encoded and aggregated into the bag-
of-visual-words (Csurka et al. 2004; Sivic and Zisserman
2003) or Fisher vector (Jégou et al. 2012) representations.
The image database can be further augmented by 3D point
clouds (Klingner et al. 2013), automatically reconstructed
by large-scale structure from motion (SfM) (Agarwal et al.
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2009; Klingner et al. 2013), which enables accurate predic-
tion of query image camera position (Li et al. 2012; Sattler
et al. 2012). In contrast, in this work we investigate learn-
ing a discriminative place-specific image representation. A
similar idea has been recently explored in (Cao and Snavely
2013) who learn a graph-based discriminative representation
for landmark image collections where typically many images
are available for each landmark. In this work, we focus on
street-level images such as Google Street View, which have
greater coverage, but typically only one or a small number
of images are available for each location. To address this
issue we learn a discriminative re-weighting of the descrip-
tor specific to each image in the database using per-exemplar
support vector machine (Malisiewicz et al. 2011).

2.1 Per-Exemplar Support Vector Machines

The exemplar support vector machines (e-SVM) has been
used in a number of visual recognition tasks including
category-level recognition (Malisiewicz et al. 2011), cross-
domain retrieval (Shrivastava et al. 2011), scene pars-
ing (Tighe and Lazebnik 2013) or as an initialization for
more complex discriminative clustering models (Doersch
et al. 2012; Singh et al. 2012). The main idea is to train a
linear support vector machine (SVM) classifier from a sin-
gle positive example (or very few positive examples) and a
large number of negatives. The intuition is that the resulting
weight vector will give a higher weight to the discriminative
dimensions of the positive training data point and will down
weight dimensions that are non-discriminative with respect
to the negative training data.

The exemplar support vector machine can be learnt at
query time where the weight vector is used as a new query
image representation (Shrivastava et al. 2011). However, this
requires training a new classifier afresh for each query that
is computationally very demanding. In this work, similar
to (Malisiewicz et al. 2011) who learn per-exemplar object
category representation, we learn per-exemplar classifiers
for each place in the database off-line. A key advantage
is that each per-exemplar classifier is trained independently
and hence the learning can be heavily parallelized. The per-
exemplar training brings, however, also an important draw-
back. As each classifier is trained independently a careful
calibration of the resulting classifier scores is required (Mal-
isiewicz et al. 2011).

2.2 Calibrating Classifier Scores

Several calibration approaches have been proposed in the lit-
erature (see Gebel and Weihs (2007) and references therein
for a review). The most known consists of fitting a logis-
tic regression to the output of the SVM (Platt 1999). This
approach, however, has a major drawback as it imposes a

parametric form (the logistic a.k.a. sigmoid function) of the
likelihood ratio of the two classes, which typically leads to
biased estimates of the calibrated scores. Another important
calibration method is the isotonic regression (Zadrozny and
Elkan 2002), which allows for a non-parametric estimate of
the output probability. Unfortunately, the fact that we have
only a single positive example (or only very few of them
which are almost identical, and which are all used for train-
ing) essentially prevents us from using any of these methods.
To address these issues, we develop two classifier calibration
methods that do not need additional labelled positive exam-
ples. Related to ours is also the recent work of Scheirer et
al. (Scheirer et al. 2012) who develop a classifier calibration
method for face attribute similarity search. Their method (dis-
cussed in more detail in Sect. 4) also does not require labelled
positive examples but, in contrast to us, uses a parametric
model (the Weibull distribution) for the scores of negative
examples.

2.3 Linear Discriminant Analysis and Whitening

Our work is also related to linear discriminative transforma-
tions of feature space that have shown good performance in
object recognition (Gharbi et al. 2012; Hariharan et al. 2012)
and 2D-3D alignment (Aubry et al. 2014; Aubry et al. 2014).
While conceptually the idea of finding a discriminative pro-
jection of the original feature space is similar to our work,
the main difference is in the used loss function. While we use
hinge loss (Scholkopf and Smola 2002) to train the new dis-
criminative representation of each place, (Aubry et al. 2014;
Gharbi et al. 2012; Hariharan et al. 2012) use the Euclidean
loss. The advantage of using the Euclidean loss is that the dis-
criminative projection can be computed in closed form. The
resulting projection is tightly related to Linear Discriminant
Analysis and whitening the feature space (Aubry et al. 2014;
Gharbi et al. 2012; Hariharan et al. 2012). Such whitened rep-
resentations have shown promise for image retrieval (Jégou
and Chum 2012) or matching HOG (Dalal and Triggs 2005)
descriptors (Doersch et al. 2013), however, we have found
they do not perform well for place recognition.

2.4 Contributions

This paper has two main contributions. First, we cast the place
recognition problem as a classification task where we use the
available geo-tags as a weak form of supervision to train a
classifier for each location in the database (Sect. 3). These
classifiers are subsequently used for ranking the database
images at query time.

Second, as only one or a few positive training examples are
available for each location, we propose two methods to cali-
brate all the per-location SVM classifiers without the need for
additional positive training data. The first method (Sect. 4)
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relies on p-values from statistical hypothesis testing. The
second method (Sect. 5) performs an affine calibration by
appropriately normalizing the learnt decision hyperplane. We
also describe a memory efficient classifier representation for
the sparse bag-of-visual-word vectors (Sect. 6) and exper-
imentally demonstrate benefits of the proposed approach
(Sects. 7 and 8).

3 Per-Location Classifiers for Place Recognition

We are given an image descriptor X;, one for each data-
base image j. This representation can be a sparse tf-idf
weighted bag-of-visual-words vector (Sivic and Zisserman
2003) or a dense compact descriptor such as the Fisher vector
(FV) (Jégou et al. 2012). The goal is to learn a score function
f;j for each database image j, so that, at test time, given the
descriptor q of the query image, we can either retrieve the
correct target image as the image j* with the highest score

Jj* = arg max f;(q) (D
J

or use these scores to rank candidate images and use geomet-
ric verification to identify the correct location in an n-best
list. Instead of approaching the problem directly as a large
multiclass classification problem, we tackle the problem
by learning a per-exemplar linear SVM classifier (Mal-
isiewicz et al. 2011) for each database image j. Similar to
(Knopp et al. 2010), we use the available geotags to con-
struct the negative set \V; for each image j. The negative set
is constructed so as to concentrate difficult negative exam-
ples, i.e. from images that are far away from the location of
image j and similar to the target image as measured by the
dot product between their feature vectors. The details of the
construction procedure will be given in Sect. 7. The positive
set P; is represented by a single positive example , which is
X itself. For some locations the positive set can be expanded,
details of this procedure will be given in 7.3.

Each SVM classifier produces a classification score s;
which is a priori not comparable with the score of the other
classifiers. A calibration of these classification scores will
therefore be key to convert them to comparable scores f;.
This calibration problem is more difficult than usual given
that we only have a single positive example and will be
addressed in Sect. 4.

3.1 Learning Per-Location SVM Classifiers

Each linear SVM classifier generates a classification score
sj of the form

5;(@) =q'w; +b; )
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where w; is a weight vector re-weighting contributions of
individual visual words and b; is the bias specific for image
Jj.Giventhe training sets P; and N/}, the aim is to find a vector
w; and bias b such that the score difference between x; and
the closest neighbor from its negative set \V; is maximized.
Learning the weight vector w; and bias b; is formulated as
a minimization of the convex objective

Qwj, b)) = [IW;II*+C1 D h(Wix+b))

xeP;

+Cy D h(-wix—b)), 3)
xeNj

where the first term is the regularizer, the second term is the
loss on the positive training data weighted by scalar parame-
ter C1, and the third term is the loss on the negative training
data weighted by scalar parameter C5. Thisis a standard SVM
formulation (3), also used in exemplar-SVM (Malisiewicz
etal. 2011). In our case £ is the squared hinge loss, which we
found to work better in our setting than the standard hinge-
loss. Parameters w; and b; are learned separately for each
database image j in turn.

3.2 The Need for Calibrating Classifier Scores

Since the classification scores s; are learned independently
for each location j, they cannot be directly used for place
recognition as in Eq. (1). As illustrated in Fig. 2, for a given
query q, a classifier from an incorrect location (b) can have a
higher score (Eq. (2)) than the classifier from the target loca-
tion (a). Indeed, the SVM score is a signed distance from
the discriminating hyperplane and is a priori not compara-
ble between different classifiers. This issue is addressed by
calibrating scores of the learnt classifiers. The goal of the
calibration is to convert the output of each classifier into a
probability (or in general a “universal” score), which can be
meaningfully compared across classifiers. In the following
two sections we develop two classifier calibration methods
that do not need additional labelled positive examples.

4 Non-parametric Calibration of the SVM-Scores
from Negative Examples Only

In this section we describe a classifier calibration method
that exploits the availability of large amounts of negative
data, i.e. images from other far away locations in the data-
base. In particular, the method estimates the significance of
the classification score of a test example compared to the typ-
ical classification score of the (plentifully available) negative
examples. Intuitively, we will use a large dataset of negative
examples to calibrate the individual classifiers so that they
reject the same number of negative examples at each level of
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the calibrated score. We will expand this idea in detail using
the concepts from hypothesis testing.

4.1 Calibration via Significance Levels

In the following, we view the problem of deciding whether
a query image matches a given location based on the cor-
responding SVM classification score as a hypothesis testing
problem. In particular, we appeal to ideas from the tradi-
tional frequentist hypothesis testing framework also known
as Neyman—Pearson (NP) framework (see e.g. Casella and
Berger (2001), chap. 8).

We define the null hypothesis as Hy = {the image is
a random image} and the alternative as H; = {the image
matches the particular location}. The NP framework focuses
on the case where the distribution of the data under Hy is well
known, whereas the distribution under H; is not accessible
or too complicated to model, which matches perfectly our
setting.

In the NP framework, the significance level of a score
is measured by the p-value or equivalently by the value of
the cumulative density function (cdf) of the distribution of
the negatives at a given score value. The cdf is the func-
tion Fy defined by Fp(s) = P(So < s), where Sy is a
random variable corresponding to the classification scores
of negative data (see Fig. 3 for an illustration of the relation
between the cdf and the density of the function). The cdf (
or the corresponding p value' ) is naturally estimated by the
empirical cumulative density function Fo, whichis computed
as:

N,

~ 1 <

Fo(s) = A E Lis, <s}s @
¢ =1

where (s,)1<n<n, are the SVM classification scores associ-
ated with N, negative examples used for calibration. Note
that no positive examples are involved in the construction
of the cumulative density function. I:“O (s) is the fraction of
the negative examples used for calibration (ideally held out
negative examples) that have a score below a given value s.
Computing Fo exactly would require to store all the SVM
scores for all the calibration data for all classifiers, so in
practice, we only keep a fraction of the larger scores. We
also interpolate the empirical cdf between consecutive dat-
apoints so that instead of being a staircase function it is a
continuous piecewise linear function such as illustrated in

' The notion most commonly used in statistics is in fact the p value.
The p value associated to a score is the quantity a(s) defined by «(s) =
1 — Fo(s); so the more significant the score is, the closer to 1 the cdf
value is, and the closer to O the p-value is. To keep the presentation
simple, we avoid the formulation in terms of p-values and we only talk
of the probabilistic calibrated values obtained from the cdf Fp.
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Fig. 2 An illustration of the proposed normalization of SVM scores
for database images. In each plot, the x axis shows the raw SVM score.
The y axis shows the calibrated output. For the given query, the raw
SVM score of image (b) is lower than for image (a), but the calibrated
score of image (b) is higher than for image (a)
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Fig. 3 Cumulative density function. Illustration of the relation between
a the probability density of the random variable Sy modeling the scores
of the negative examples and b the corresponding cumulative density
function Fo(s) = P(Sp < s).

Fig. 2. Given a query, we first compute its SVM classifica-
tion score s, and then compute the calibrated probability, the
score function f(q) = I:"o (s4). We obtain a similar calibrated
score function f;(g) for each of the SVMs associated with
each of the target locations, which can now be ranked. Two
other examples of score calibration functions are shown in
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Fig. 6 in Sect. 8. Note that while Fig. 2 illustrates only few
points on the cdf, the two plots in Fig. 6 show a complete cdf
that contains on the order of 25k data points. Note also that
the two cumulative density functions in Fig. 6 are similar but
not identical.

4.2 Summary of the calibration procedure

For each trained place-specific classifier s; we construct the
empirical cumulative density function (4) of classification
scores of the negative examples and keep only its top K val-
ues. This can be done offline and the procedure is summarized
in Algorithm 1. At query time, given a query image descriptor
q, we compute the uncalibrated classification score s (q) and
then use the stored cdf values to compute the calibrated score
£ (q). This procedure is performed for each database image
j and is summarized in Algorithm 2. Finally, the best candi-
date database image is selected by equation (1). Alternatively,
candidate database images can be also ranked according to
the calibrated score.

Algorithm 1 P-value calibration: offline stage
Require:

X ...column wise matrix of image descriptors
w;,b; ...learnt SVM weights and biases
Ensure: I:“o j -..calibration functions

1: procedure P- VALUE CALIBRATION

2: N <« database size

X < descriptor matrix of negative examples
forVjel...Ndo

N, < number of negative examples

w < learned SVM weight for image j

b < learned SVM bias for image j

o<~ wX+b

Compute the cdf:

sj < sorted o in descending order

Foj < [Nc...0]/N,

VRN HEW

—_
—_ O

Algorithm 2 P-value calibration: online stage

Require: q ...query image descriptor
w;,b; ...learnt SVM weights and biases
I:”() j --.learnt calibration function
Ensure: fj(q) ...calibrated score

1: procedure CALIBRATING SCORES
2: q < query image descriptor
N <« database size
for Vj € 1... N do // for each database image
w < learned SVM weight for image j
b < learned SVM bias for image j
ﬁo <« ﬁoj // Empirical cdf
s < s;j // Corresponding sorted scores
Sq < q”w + b // compute uncalibrated classifier score
Find n such that s, < s < sy+1
Compute the interpolated empirical cdf value:

Fo(sy) ~ Folsn) + —=2 (Fo(su1) — Folsn)).

Sn+1—Sn

12: filq) = Fo (sq) // output the calibrated score

VRN AW

—_——
—_ o
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4.3 Discussion

It should be noted that basing the calibration only on the neg-
ative data has the advantage that we privilege precision over
recall, which is justified given the imbalance of the available
training data (many more negatives than positives). Indeed,
since we are learning with a single positive example (or a
very few), intuitively, we cannot guarantee that the learned
partition of the space will generalize well to other positives,
whose scores in the test set can potentially drop significantly.
By contrast, since we are learning from a comparatively large
number of negative examples, we can trust the fact that new
negative examples will stay in the half-space containing the
negative training set, so that their scores are very unlikely
to be large. Our method is therefore based on the fact that
we can measure reliably how surprising a high classification
score would be if it was the score of a negative example.
This exactly means that we can control false positives (type
I error) reasonably well but not false negatives (type II error
or equivalently the power of our test/classifier), exactly as in
the Neyman-Pearson framework.

An additional reason for not relying on positive exam-
ples for the calibration in our case is that (even if we had
sufficiently many of them) the positive examples that we
collect using location and geometric verification from the
geotagged database (details in Sect. 7.3) typically have illu-
mination conditions that are extremely similar to each other
and not representative of the distribution of test positives
which can have very different illuminations. This is because
of the controlled nature of the capturing process of geotagged
street-level imagery (e.g. Google Street View) used for exper-
iments in this work. Close-by images are typically captured
at a similar time (e.g. on the same day) and under similar
imaging conditions.

Scheirer et al. (2012) propose a method, which is related
to ours, and calibrate SVM scores by computing the cor-
responding cdf value of a Weibull distribution fitted to the
top negative scores. The main difficulty is that the Weibull
model should be fitted only to the tail of the distribution of
the negatives, which is in general difficult to identify. As a
heuristic, Scheirer et al. propose to fit the Weibul model to
false positives (i.e. the negative samples classified incorrectly
as positives). But in our case, most of the exemplar SVMs
that we are training have zero false positives in a held out set,
which precludes the application of their method.

Finally, we should remark that we are not doing here cali-
bration in the same sense of the word as the calibration based
on logistic regression (or isotonic regression), since logis-
tic regression estimates the probability of making a correct
prediction by assigning a new data to class 1, while we are
estimating how unlikely it would be for a negative example to
have such a high score. The calibration with either methods
yields “universal” scores in the sense that they are compa-
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rable from one SVM to another, but the calibrated values
obtained from logistic regression are not comparable to the
values obtained from our approach.

S Affine Calibration by Normalizing the
Classification Hyperplane

The non-parametric calibration method described in the pre-
vious section has two computational disadvantages, which
make it hard to scale-up to very large datasets. First, the
method requires storing the non-parametric model of the cali-
bration function for each learned classifier. This has memory
complexity of O(NK), where N is the number of images
(classifiers) in the database and K the number of stored ele-
ments of the non-parametric model. For typical values of
K = 1000 and N = 1M this would require additional 4GB
of memory, comparable to the size of the inverted index itself.
Second, computing the cumulative density function requires
applying all N learnt classifiers to the entire set of negative
examples, which has also size N. As a result computing the
cdf has complexity O(N?), which becomes quickly infeasi-
ble already for datasets with N larger than 100,000.

To address these issues we first describe an affine calibra-
tion model that calibrates the classifier score with a simple
linear function defined by only two parameters: its slope
and offset, greatly reducing the required storage. Second, we
show that the parameters of the affine calibration function can
be obtained by normalizing the learnt classification hyper-
plane without applying the classifiers on the negative data and
thus bringing down the computational complexity to O(N).
As a result, computing and storing the calibration functions
becomes feasible for very large datasets with 1M images.

5.1 Affine Calibration Model

Using the affine calibration model we transform the uncal-
ibrated classificationscore s;(q) of query q with a linear
function

fi@ =ajsj(q) + B;, )

where f;(q) is the output calibrated score, and «; and B;
are scalar calibration parameters specific to each classifier
Jj. In this work we use linear classifiers, hence substituting
for s (q) the linear classifier from (2) results also in a linear
calibrated classifier

fil@ =%q+b;. (6)
where %, = a;w; and b; = a;b; + ;. Note that the

calibrated classifier (6) has the same form as the original
classifier (2) and hence this representation does not require

any additional storage compared to storing the original clas-
sifier. The question remains how to set the parameters «;
and B; of the calibration function (5), which is discussed
next.

5.2 Calibration by Normalization

Parameters of the affine calibration function (5) could be
learnt from negative training data in a similar manner to,
for example, (Aubry et al. 2014). We have tried to estimate
the parameters in a similar manner by fitting a line to the
tail of the cdf, however this procedure did not yield satisfac-
tory results. In addition, as discussed above, in our case this
requires running all N classifiers on all N images, which is
prohibitive for large datasets. Instead, we have found that a
good calibration can be obtained by normalizing the learnt
hyperplane w. In particular, we set

@ = %)
T Wyl
Bj = —bjaj, ®)

where w; and b; are the parameters of the learnt SVM hyper-
plane for location j and ||w|| is the L, norm of w.

Given this choice of o; and 8; the bias term in Eq. (6)
cancels out and the calibrated classification score (6) reduces
to

1 ~

fil@ = Wwf»q =Wia. )

Since q is L, normalized, the outcome of the particular
choice of ; and B; is that the Eq. (9) is equivalent to com-
puting the normalized dot-product between vectors q and
w. This was found to work well in image retrieval (Sivic
and Zisserman 2003) or matching whitened HOG descrip-
tors (Doersch et al. 2013). In this work we investigate whether
this intuition about descriptor matching can be used as a form
of calibration for the learnt place-specific classifier.

Note that this form of calibration by normalization is
scalable to very large datasets as it (i) requires only O (N)
computations offline to pre-compute the calibration parame-
ters for each of the N learnt classifiers (Egs. (7) and (8)), and
(i1) does not need any additional storage or computation at
query time as the calibration parameters can be included in
the classifier (6). In Appendix we examine the per-exemplar
SVM cost and give an additional intuition why calibration
by re-normalization works.

6 Memory Efficient Classifier Representation

We learn a (calibrated) linear discriminative classifier with
weight vector w; and bias b; for each image j in the
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database.? These classifier parameters become the new rep-
resentation for each image. In this section we discuss how
the classifier parameters can be stored in a memory efficient
manner that is amenable for indexing. The goal is to apply
all the learnt classifiers to the query descriptor q

s=q'W+b, (10)

where W is d x N matrix storing all the learnt w; classifiers
as columns, b is a 1 x N vector storing all the learnt bias
values b}, q is the input query descriptor, sisa 1 x N vector
of output scores for all classifiers in the database, N is the
number of images in the database and d is the dimension-
ality of the image representation. As discussed in detail in
Sect. 7 we investigate two different image representations:
(i) the compact Fisher vectors (Jégou et al. 2012) and (ii)
the bag-of-visual-word vectors (Sivic and Zisserman 2003).
The learnt classifiers for these two image descriptors have
different statistics and require different methods for storing
and indexing. Next, we discuss the classifier representations
for the two types of image representations.

6.1 Fisher Vectors

The Fisher vector descriptors are not sparse, but have a
relatively low-dimension d € {128, 512, 2048} hence it is
possible to store directly the (non-sparse) matrix ¥V con-
taining the learnt classifier parameters w. In this work we
exhaustively compute the classifier scores for all images in
the database (given by Eq. (10)) using efficient (but exact)
matrix-vector multiplication routines. However, this com-
putation can be further sped-up using product quantization
indexing as described in Jegou et al. (2011).

6.2 Bag-of-Visual-Words

In the bag-of-visual-words representation, each image is
represented by a high dimensional vector x, where the
dimensionality d is typically 100,000, but the vector is very
sparse with only about 2000 non-zero entries. The learnt
w are of the same (high) dimension d but are not sparse.
As a result, directly storing the learnt classifiers becomes
quickly infeasible. To illustrate this, consider a database of
N =1,000,000 images. Storing the original descriptors with
about 2,000 non-zero entries for each image would take
around 8GB. However, directly storing the learnt non-sparse
100,000 x 1,000,000 matrix WW would require 400GB of
memory. To address this issue we have developed an alterna-
tive indexing structure taking advantage of the dual form of

2 When the calibration by re-normalization method is used the W con-
tains the re-normalized weights and the bias b; is zero. However, to
cover both calibration methods we include the bias term in the deriva-
tions in this section.
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the linear classifier as a sparse linear combination of a small
number of support vectors (Scholkopf and Smola 2002). The
key observation is that the number of support vectors k is sig-
nificantly lower then dimensionality d of the original image
descriptor. In the following we omit index j for clarity. In
detail, we represent each w by its corresponding coefficients
«a; of the linear combination of the support vectors (individual
image descriptors) X; such that

W:Zaixi:X-oc, (11)
i

where «;, the elements of vector e, are coefficients of the lin-
ear combination of the training data points X; and the matrix
X contains (as columns) descriptors of the entire database.
Note that the vector « is sparse and the number of non-zero
elements depends on the number of support vectors k.

As a result, matrix ¥V containing all learned classifier
weights can be expressed in the dual form as

W=2XA, (12)

where X is the (sparse) matrix of the bag-of-visual-words
image descriptors and A is the (sparse) matrix of « coeffi-
cients, where each column corresponds to vector & from (11).
Instead of storing all (non-sparse) weight vectors VW, which
has memory complexity O(dN) where d (=100,000) is the
dimensionality of the image representation and N is the size
of the database, we store two sparse matrices X and .4, which
has memory complexity O (mN + kN) where m (=2,000)
is the number on non-zero elements in the original bag-
of-visual-word descriptors, and & is the typical number of
support vectors. In our case k is about the size of the training
data which is around 500. As a result, the storage require-
ments are significantly reduced. For example, for a database
of 1M images the dual representation requires only about 10
GB of storage compared to 400GB for directly storing clas-
sifiers WW. Note that sparsity can be imposed directly on the
learnt classifiers w by appropriate regularization (Scholkopf
and Smola 2002). However, we found this approach did not
yield competitive results in terms of accuracy.

7 Experimental Setup and Implementation Details

In this section we describe the experimental datasets, outline
the two types of used image descriptors, and finally give
implementation details of the classifier learning procedure.

7.1 Image datasets

Experiments are performed on two datasets, the Pittsburgh
place recognition dataset (Gronat et al. 2013) and the Tokyo
24/7 dataset (Torii et al. 2015).
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7.1.1 Pittsburgh Dataset

The first dataset contains Google Street View panoramas
downloaded Grondt (2015) from the Internet covering an
area of 1.3 x 1.2 km? of the city of Pittsburgh (U.S.). Simi-
lar to Chen et al. (2011), we generate for each panorama 12
overlapping perspective views corresponding to two different
elevation angles 4° and 28° to capture both the street-level
scene and the building facades. This results in a total of
24 perspective views each with 90° FOV and resolution of
960 x 720 pixels. In this manner we generate two versions
of this dataset. The first version covers a smaller area and
contains 25k perspective images. The second larger dataset
contains 55k images.

As a query set with known ground truth GPS posi-
tions, we use 8999 panoramas from the Google Street
View research dataset (Google: ICMLA 2011 http://www.
icmla-conference.org/icmlal 1/challenge.htm), which cover
approximately the same area, but were captured at a different
time. The query images typically depict the same places from
different viewpoints and under different illumination condi-
tions. We generate a test query set such that we first select
a panorama at random, and second, we generate a perspec-
tive image with a random orientation and random elevation
pitch. This way we synthesize 4,000 query test images. Both
the query and database images are available upon request at
Gronat http://www.di.ens.fr/willow/research/perlocation/.

7.1.2 24/7 Tokyo dataset

The 24/7 Tokyo dataset (Torii et al. 2015) contains Google
Street View panoramas downloaded from the Internet cover-
ing an area of 1.6 x 1.6 km? of the city of Tokyo. The dataset
contains 76k perspective views. The query set contains 315
query images from 105 distinct locations captured by differ-
ent types of camera phones. This dataset is very challenging
as each location is captured at three different times: during
day, at sunset and during night. The dataset is available upon
request at Torii (2015).

7.2 Image Descriptors

We perform experiments with two types of image descrip-
tors: the sparse high-dimensional bag-of-visual-word vec-
tors (Sivic and Zisserman 2003) and the compact (not-sparse)
Fisher vectors (Jégou et al. 2012). Details of each are given
next.

7.2.1 Bag-of-Visual-Word Representation
We extract SURF descriptors (Bay et al. 2006) for each image

and learn a vocabulary of 100k visual words by approximate
k-means clustering (Philbin et al. 2007) from a subset of fea-

tures from 5,000 randomly selected database images. Then,
a tf-idf weighted vector (Sivic and Zisserman 2003) is com-
puted for each image by assigning each descriptor to the
nearest cluster center. Finally, all database vectors are nor-
malized to have unit L, norm.

7.2.2 Fisher Vectors

Following (Jégou et al. 2012) we project the extracted 128-
dimensional rootSIFT (Arandjelovi¢ and Zisserman 2012)
descriptors to 64 dimensions using PCA. The projection
matrix is learnt on a set of descriptors from 5,000 ran-
domly selected database images. This has also the effect of
decorrelating the rootSIFT descriptor. The 64-dimensional
descriptors are then aggregated into Fisher vectors using a
Gaussian mixture model with N = 256 components, which
results in a 2 x 256 x 64 =32,768-dimensional descriptor
for each image. The Gaussian mixture model is learnt from
descriptors extracted from 5,000 randomly sampled data-
base images. The high-dimensional Fisher vector descriptors
are then projected down to dimension using PCA learnt
from all available images in the database. The resulting low
dimensional Fisher vectors are then normalized to have unit
L2-norm, which we found to be important in practice.

7.3 Parameters of per-location classifier learning

To learn the exemplar support vector machine for each data-
base image j, the positive and negative training data are
constructed as follows. The negative training set N is
obtained by: (i) finding the set of images with geographi-
cal distance greater than 200 m; (ii) sorting the images by
decreasing value of similarity to image j measured by the
dot product between their respective descriptors; (iii) taking
the top N = 500 ranked images as the negative set. In other
words, the negative training data consists of the hard nega-
tive images, i.e. those that are similar to image j but are far
away from its geographical position, hence, cannot have the
same visual content. The positive training set P; consist of
the descriptor X of the target image ;.

We found that for the bag-of-visual-words representation
it was useful to further expand (Chum et al. 2007) positive
training set by close by images that view the same scene
structures. These images can be identified by geometric veri-
fication (Philbin et al. 2007) as follows. We first build a graph
where each image in the database represents a node and an
edge represents a spatial adjacency in the world. An edge
is present if the positions of the two images are within 50m
of each other. Then, we score each edge by the number of
geometrically verified matches (Philbin et al. 2007). Finally,
we remove edges with score below a threshold of 7,, = 40
matches. It is worth noting that the graph contains many
isolated nodes. This typically indicates that the viewpoint
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change between two adjacent panoramas is large. For each
image in the database, we include between zero and five extra
positive examples that are directly connected in the graph.

For the support vector machine classifier (SVM) training
we use 1ibsvm (Fan et al. 2008). We use the same global
C1 and C; parameters for all per-exemplar classifiers, but
find the optimal value of the parameters for each image rep-
resentation by a cross-validation evaluating performance on
a held out query set.

For the calibration by re-normalization, we L, normalize
the learned w; using Eq. (9) and use this normalized vector
as the new image descriptor x/j forimage j. At query time we
compute the descriptor q of the query image and measure its
similarity score to the learnt descriptors X/] for each database
image by Eq. (1).

For the p-value calibration, we take the learnt classifier for
each database image j and compute its SVM classification
score for all other database images to construct its empirical
cumulative density function (4). We keep only the top 1,000
values that, in turn, represent the calibration function. At
query time, given the query descriptor ¢, we compute the
SVM score (2) for each database image j, and compute its
calibrated SVM score f; (4).

8 Results

We evaluate the proposed per-location classifier learning
approach on two different image descriptors: the bag-of-
visual-words model (Sect. 8.1) and Fisher vectors (Sect. 8.2).
We also compare the recognition accuracy of the two
learnt representations relative to their compactness mea-
sured by their memory footprint (Sect. 8.3). Finally, we
compare results to linear discriminant analysis (LDA) and
whitening baselines (Sect. 8.4), outline the main failure
modes (Sect. 8.5) and discuss the scalability of our method
(Sect. 8.6).

Since the ground truth GPS position for each query image
is available, for each method we measure performance using
the percentage of correctly recognized queries (Recall) sim-
ilarly to, (e.g., Chen et al. 2011; Knopp et al. 2010; Sattler
et al. 2012). We deem the query as correctly localized if at
least one of the top K retrieved database images is within 20
meters from the ground truth position of the query.

8.1 Bag-of-Visual-Words Model

Results for the bag-of-visual-words image representation are
shown in Table 1. Learning per-location classifiers with either
calibration method (p-val and w-norm) clearly improves over
the standard bag-of-visual-words baseline (BOW) that does
not perform any learning. In addition, both calibration meth-
ods significantly improve over the learnt SVM classifiers
without any calibration (BOW SVM no calib) underscoring
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the importance of calibration for the independently learnt
per-location classifiers.

InTable 1, we also compare performance to our implemen-
tation of the confuser suppression approach (Conf. supp.)
of Knopp et al. (2010) that, in each database image, detects
and removes features that frequently appear at other far-away
locations (using parameters = 3.5 and w = 70). Our results
show an improvement, specially at recall@1.

Inspecting the detailed plots in Fig. 4 we further note
that the p-val calibration performs slightly better than the
w-norm calibration for shorter top K shortlists but this effect
is reversed for larger K. This could be attributed to the fact
that the p-val calibration uses the negative data to control
false positive errors, but has less control over false negatives,
as discussed in Sect. 4.3.

In Fig. 6 we visualize the learnt SVM weights on BOW
for p-val. We visualize the contribution of each feature to the
SVM score for the corresponding query image. Red circles
represent features with negative weights while green circles
correspond to features with positive weights. The area of each
circle is proportional to the contribution of the corresponding
feature to the SVM score. For instance for the left figure
notice that the correctly localized queries (c) contain more
green colored features than queries from other places (b)
and (a). Query (b) gets a high score because the building
has orange and white stripes similar to the the sun-blinds of
the bakery, which are features that also have large positive
weights in the query image (c) of the correct place. In the
top row we visualize the calibration of raw SVM score for
three different queries. The calibration function of the target
image j is shown in the blue and the corresponding SVM
scores of the three queries are denoted by red circles. Notice
that both images (b) and (c) have high calibrated score even
their respective SVM score was different.

Finally, examples of correctly and incorrectly localized
queries are shown in Fig. 9.

8.2 Fisher Vectors

Results of the proposed per-location learning method for
the Fisher vector image representation for different dimen-
sions are shown in Table 2 and Fig. 5. Similar to bag-
of-visual-words, the learnt representation (w-norm) signif-
icantly improves the place recognition performance over
the baseline Fisher vector (FV) matching without learning.
The improvements are consistent across different lengths of
shortlist K and for different dimensionality of the Fisher vec-
tor representation. We report results only for the w-norm
calibration as we found that the p-val calibration did not
perform well for the learnt Fisher vector classifiers (top 1
recall of 25.3% compared to baseline performance of 33.6%
for dimension 128). When examining the results we have
observed that for bag-of-visual-words the cdf estimated on
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the database well represents the scores of (unseen) negative
query images at test time. However, this is not the case for
Fisher vectors where estimated cdf on the database does not
represent well the scores of negative query images at test
time. The scores of (unseen) negative query images often
fall outside of the estimated cdf or at the very tail that is only
sparsely sampled. As a result the estimated query image p
values for Fisher vectors are often over-confident and incor-
rect (Figs. 6, 7).

Notice that the proposed per-location learning method
consistently improves performance over the raw Fisher vec-
tor descriptors on the larger Pittsburgh 55k dataset and the
challenging 24/7 Tokyo dataset (76k images). Examples
of correctly and incorrectly localized queries are shown in
Fig. 8. Next, we compare the performance of the two learnt
representations relative to their memory footprints.

8.3 Analysis of Recognition Accuracy Versus
Compactness

Here we analyze the recognition accuracy of the learnt
representations vs. their compactness measured by their
memory footprint on the Pittsburgh 25k image dataset. Ide-
ally, we wish to learn a more compact representation, that
still improves the recognition accuracy. However, usually
there is a trade-off between the discriminative power of the
representation and its size, where having a more compact
representation reduces the recognition accuracy (Jégou et al.
2012). We observe a similar behavior but our learnt repre-
sentation results in a higher recognition accuracy for a given
size, or alternatively, significantly reduces the size of the
representation for a given accuracy. The results are summa-
rized in Fig. 7. The figure shows the recognition performance
(y-axis) for the different dimensionality of the Fisher vec-
tor representation, which corresponds to different memory
footprints (x-axis). For example, for d = 128 the mem-
ory footprint is about 24 MB, whereas for d = 2048 the
memory footprint is about 384 MB. Note that the x-axis is
in log-scale. The bag-of-visual-words representation has a
fixed dimensionality (and fixed memory footprint) and hence
each bag-of-visual-words method is shown only as a single
point on the graph. For Fisher vectors, the results demon-
strate that for a given level of accuracy (y-axis) the proposed
method learns a more compact (lower-dimensional) repre-
sentation (x-axis). For example, our learnt 128-dimensional
descriptor (memory footprint of 24 MB) achieves a similar
accuracy (around 65%) as the 256-dimensional raw Fisher
descriptor (memory footprint of 51MB, interpolated from
Fig. 7). This corresponds to 50% memory savings for the
same level of recognition performance. Note that similar
to (Jégou et al. 2012), we observe decrease in performance
at high-dimensions for both the FV baseline and our method.
The results also demonstrate the benefits of using the compact

Table 1 Evaluation of the learnt bag-of-visual-words representation on
the Pittsburgh 25k dataset

Method: 25k Pittsburgh

recall@K [%] 1 2 5 10 20
BOW SVM no calib. 6.4 8.1 13.5 17.5 20.5
BOW 28.7 35.7 45.8 53.7 61.5

BOW Conf. supp Knopp 29.6 37.3 48.9 59.3 69.2
et al. (2010)

BOW w-norm 31.8 38.7 49.7 60.2 69.4
BOW p val 33.0 40.3 50.2 58.7 66.4

The table shows the fraction of correctly recognized queries (recall @K)
for the different values of K € {I,2,5, 10,20} retrieved database
images. The learnt representations (BOW w-norm and BOW p val)
outperform the raw bag-of-visual-words baseline (BOW) as well as the
learnt representation without calibration (BOW SVM no calib)
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Fig. 4 Evaluation of the learnt bag-of-visual-words representation on
the Pittsburgh 25k Gronit et al. (2013) dataset. The graph shows the
fraction of correctly recognized queries (recall@K, y axis) versus the
number of top K retrieved database images for the raw bag-of-visual-
words baseline (BOW) and the learnt representation with two different
calibration methods (p-val and w-norm)

FV descriptors compared to the bag-of-visual-words base-
line achieving significantly better recognition accuracy for a
similar memory footprint (Fig. 9).

8.4 Comparison to Linear Discriminant Analysis (LDA)
and Whitening Baselines

We have compared our method to the linear discriminant
analysis (LDA) (Aubry et al. 2014; Hariharan et al. 2012;
Gharbi et al. 2012) and whitening (Jégou and Chum 2012)
baselines. Results are reported on the Pittsburgh 25k dataset.
The LDA baseline finds a discriminative linear projection of
the feature space by minimizing an Euclidean loss, rather
than the hinge loss used in our work. In detail, follow-
ing (Aubry etal. 2014) we have used all available data to learn
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Table 2 Evaluation of the learnt Fisher vector representation on the
Pittsburgh (Gronatet al. 2013) and 24/7 Tokyo (Torii et al. 2015) datasets

recall@K [%] 1 2 5 10 20
Method/dataset 25k Pittsburgh

FV128 33.6 41.8 52.0 59.8 67.7
FV128 w-norm 38.3 47.5 57.7 65.8 72.7
FV512 443 51.7 61.4 68.7 75.2
FV512 w-norm 47.6 554 65.1 72.4 78.8
FV2048 46.9 54.1 63.8 70.5 76.8
FV2048 w-norm 50.2 57.3 67.0 73.8 78.0
FV16384 453 54.1 63.8 69.4 75.3
FV16384 w-norm 49.3 56.0 65.9 72.5 76.8
Method/dataset 55k Pittsburgh

FV128 10.9 14.1 20.2 26.4 332
FV128 w-norm 13.5 17.7 25.0 31.8 39.0
FV512 17.3 21.1 28.4 34.2 40.3
FV512 w-norm 19.8 25.1 32.7 38.7 46.0
FV2048 19.2 23.5 29.9 352 41.9
FV2048 w-norm 20.8 259 33.1 38.7 45.9
Method/dataset 24/7 Tokyo

FV128 14.2 20.0 27.9 34.2 41.5
FV128 w-norm 16.9 22.0 29.6 37.2 44.8
FV512 35.2 40.3 43.8 48.2 57.1
FV512 w-norm 36.1 42.0 46.8 52.8 614
FV2048 374 425 48.5 539 58.7
FV2048 w-norm 429 46.7 52.8 58.8 66.7
FV4096 429 46.3 54.0 59.0 64.8
FV4096 w-norm 44.3 471 54.7 61.1 66.5

The table shows the fraction of correctly recognized queries (recall @K)
for the different values of K € {I,2,5, 10, 20} retrieved database
images. The learnt Fisher vector representation (FV w-norm) consis-
tently improves over the standard Fisher vector matching baseline (FV)
for all target dimensions

the covariance matrix and used the calibrated LDA score
(see Aubry et al. (2014) Eq. 11) to obtain a classifier for each
database image. We have applied the LDA method on the
128-dimensional Fisher vector descriptor but have obtained
significantly worse performance (31.9% for recall@1) than
our method (recall@1 of 38.3%). We believe the better per-
formance of our method can be attributed to (i) the use of
hinge-loss and (ii) training using the top scoring hard nega-
tive examples that are specific for each place.

Next, we compare results to PCA compression followed
by whitening as suggested in Jégou and Chum (2012). For
bag-of-visual-words, we follow Jégou and Chum (2012) and
compare performance to PCA whitening to a target dimen-
sion of 4096. We have observed performance drop compared
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Fig. 5 Evaluation of the learnt Fisher vector representation on the Pitts-
burgh 25k (Gronat et al. 2013) dataset. The graph shows the fraction
of correctly recognized queries (recall@K, y axis) versus the number
of top K retrieved database images for the raw Fisher vector baseline
(FV) for different dimensions compared to the learnt representation (w-
norm). Note the consistent improvements over all lengths of shortlist
K for all dimensions

to the raw bag-of-visual-words baseline (28.7% to 26.1%
for recall@1). We hypothesize this could be attributed to the
large dictionary size used in our work (100k), whereas Jégou
and Chum (2012) report improved results for single dictio-
nary whitening only for dictionaries of up to 32k visual
words. Finally, we have also applied PCA whitening on
Fisher vector descriptors of dimensions 128, 512 and 2048,
but have not observed significant improvements over the
baseline raw descriptors. In fact, for the highest dimension
(2048) we have observed a performance drop (49.6% to
41.3%), which could be attributed to amplification of low-
energy noise as also reported in Jégou and Chum (2012).

8.5 Analysis of Improvement and Failure Cases

We have examined the improvement and failures of the
w-norm method w.r.t. the Fisher vector baseline on the Pitts-
burgh 25k dataset. We analyzed the cases for which the
w-norm method improves the rank of the first true positive
compared to the baseline and for which the rank of the first
true positive is made worse. In detail, considering a shortlist
of the size 20 we want to identify when: (i) an image with
the rank of >20 is attracted into the short list (improvement),
and (ii) an image with the rank of < 20 is pushed out of the
short list using our method (failure).

We observe that in 237 cases a low-ranked true positive
image by the baseline (ranked 40-70) is attracted into the
shortlist by the w-norm method, resulting in an improvement.
Note that in many other cases our method improves rank-
ing but here we only count the cases for which the baseline
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Fig. 6 A visualization of learnt feature weights for two database
images. In each panel: first row (Right) Target database image j. (Left)
Cumulative density function (or calibrated score) learnt for the SVM
scores of the corresponding classifier f;; three query images displayed
on the second row are represented by their SVM scores and cdf values
Fy(s), denoted (a—c) on the graph. Third row A visualization of the con-
tribution of each feature to the SVM score for the corresponding query
image. Red circles represent features with negative weights while green
circles correspond to features with positive weights. The area of each
circle is proportional to the contribution of the corresponding feature
to the SVM score. Notice that the correctly localized queries ¢ contain

method does not have any true positives in the top 20 short-
list. On the other hand, in 39 cases our method downrankes
correct images appearing in the top 20 short-list. However,
these images are typically downranked only slightly and still
occur in the top 40 shortlist.

Finally, we observe that the downranking typically occurs
on hard examples where the baseline performance is already
bad. When visually inspecting the failure cases we have
observed that our method typically fails on queries containing
a large amount of clouds or vegetation and images contain-
ing narrow streets and tunnels. Our method also sometimes
retrieves images capturing the same building from a different
side or a large distance.

8.6 Scalability

In the offline stage, our method collects hard negative exam-
ples for each location in the database, which are consequently
used to train exemplar SVM classifiers. As only a constant
number of examples (1-5 positives and 500 negatives) is used
to train each per-location classifier the overall complexity of
training is linear, O (N), i.e. we need to train one classifier
(with constant training time) for each of N images in the
database. The bottleneck of the offline stage is collecting

Calibrated classifier score f;

Target database image j
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more green colored features than queries from other places b and a.
Please note also that the calibration cdf's in the left and right panel are
similar but not identical. Left panel Query b gets a high score because
the building has orange and white stripes similar to the the sun-blinds
of the bakery, which are features that also have large positive weights
in the query image c of the correct place. Right panel Query b is in fact
also an image of the same location with a portion of the left skyscraper
in the target image detected in the upper left corner and the side of the
rightmost building in the target image detected in the fop right corner.
Both are clearly detected by the method as indicated by a large quantity
of green circles in the corresponding regions (Color figure online)
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Fig. 7 The recognition performance versus the memory requirements
for the Pittsburgh 25k dataset. The fraction of correctly localized queries
at the top 10 retrieved images (y axis) versus the memory footprint (x
axis) for the different representations. For Fisher vectors, the learnt
descriptor (FV w-renorm) clearly outperforms the raw Fisher vector
descriptor (FV) for all dimensions corresponding to different memory
footprints (x axis). Learnt per-location representations for the bag-
of-visual-words model (BOW p-val and BOW w-norm) also improve
performance over the raw bag-of-visual-words (BOW). However, the
Fisher vectors provide much better recognition performance for the
same memory footprint
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Fig. 8 Examples of correctly and incorrectly localized queries for the
learnt bag-of-visual-words representation. Each example shows a query
image (left) together with correct (green) and incorrect (red) matches
from the database obtained by learnt bag-of-visual-words representa-
tion p-val method (top) and the standard bag-of-visual-words baseline

the negative examples that is quadratic O(N?) in the data-
base size. In other words, for each of N database images, we
need to find the top 500 most similar negatives among all
N database images. However, we believe that even finding

@ Springer

(bottom). Note that the proposed method is able to recognize the place
depicted in the query image despite changes in viewpoint, illumination
and partial occlusion by other objects (trees, lamps) and buildings. Note
also that bag-of-visual-words baseline is often confused by repeating
patterns on facades and walls (Color figure online)

negatives can be scaled-up to very large datasets with stan-
dard compression techniques such as product quantization
(PQ) (Jegou et al. 2011) combined with sub-linear approxi-
mate nearest neighbor search (Muja and Lowe 2014).
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Fig. 9 Examples of correctly and incorrectly localized queries for the
learnt Fisher vector representation. Each example shows a query image
(left) together with correct (green) and incorrect (red) matches from
the database obtained by the learnt Fisher vector representation w-
norm method (fop) and the standard Fisher vector baseline (bottom)
for dimension 128. Note that the proposed method is able to recognize

At query time our method needs to compute the cali-
brated e-SVM score (Eq. (2)) of the query for each image
in the database. In the case of w-norm method the cal-
ibration weights can be included in the classifier weight

the place depicted in the query image despite changes in viewpoint,
illumination and partial occlusion by other objects (trees, lamps) and
buildings. Note that the baseline methods often finds images depicting
the same buildings but in a distance whereas our learnt representation
often finds a closer view better matching the content of the query (Color
figure online)

matrix, as discussed in Sect. 6. For the p-val calibration
method, each e-SVM score must be calibrated using K stored
values of the non-parametric CDF model. This requires a
search for the two closest values and subsequent interpola-
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tion, which yields complexity of O(N log K). Since K is
only a constant both the w-norm and p-val methods have
a linear time complexity (in the size of the database) at
query time but with different constants. However, in prac-
tice the constant in the p-val method can be quite large.
The actual running time per query is 340ms for the bag-
of-visual-words representation with p-val calibration and
3ms for the FV128 descriptor with w-norm calibration.
Both timings are on the 25k Pittsburgh dataset on a desk-
top with an Intel Xenon E5 CPU using a single thread.
Hence in practice, the p-val method may be scalable only to
medium size datasets. For the w-norm method, the query time
can be further sped-up using sub-linear approximate near-
est neighbor search (Muja and Lowe 2014) on compressed
descriptors (Jegou et al. 2011), making the method scalable
to very large datasets.

9 Conclusions

We have shown that place recognition can be cast as a classi-
fication problem and have used geotags as areadily-available
supervision to train an ensemble of classifiers, one for each
location in the database. As only few positive examples are
available for each location, we have developed two proce-
dures to calibrate the output of each classifier without the
need for additional positive training data. We have shown
that learning per-location representations improves the place
recognition performance over the raw bag-of-visual-words
and Fisher vector matching baselines. The developed cali-
bration methods are not specific to place recognition and can
be useful for other per-exemplar classification tasks, where
only a small number of positive examples are available (Mal-
isiewicz et al. 2011).
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Appendix

In Sect. 8 we show that the simple calibration by normal-
ization often results in surprisingly good place recognition
performance without the need for any additional positive or
negative calibration data. In this appendix, we give a possi-
ble explanation why this simple calibration works. We focus

@ Springer

on the case of a single positive training example, i.e. when
training set P = x*, which is the typical case for place
recognition where only one positive example is available for
each place. The analysis holds also for the case of multi-
ple expanded positive examples as in our case the positive
examples are coming from the same database of Street View
images, and hence have very similar statistics (illumination,
capturing conditions, the same camera, etc.).

In particular, we first analyze the SVM objective and
show that the learnt hyperplane w can be interpreted as a
new descriptor x* that replaces the original positive exam-
ple x* and is re-weighted to increase its separation from
the negative data. Second, we show that when x* is normal-
ized, i.e. X* = ||WT|| the dot-product qTX* corresponds to
measuring the cosine of the angle between the (normalized)
query descriptor q and the new descriptor x*, which was
found to work well in the literature for descriptor match-
ing, as discussed in Sect. 5.2. The two steps are given
next.

Analysis of Per-Exemplar SVM Objective

For a single positive example P = x*, the per-exemplar
SVM objective (3) can be written as

Qw,b) = ||w||> +C; - h(w'xT +b)

+Cy > h(-w'x—b). (13)
xeN

In the following, we analyze the objective (13) and provide
intuition why re-normalized weight vector w can be inter-
preted as a new descriptor. In particular, we show first that
when the weight C, of the negative data in objective (13)
goes to zero the learnt normalized W is identical to the origi-
nal positive training data pointx*. Second, when C» > 0, the
learnt vector W moves away from the positive vector x™ to
increase its separation from the negative data. The two cases
are detailed next.

Case I Cy — 0. The goal is to show that when the weight
C, of the negative data in objective (13) goes towards zero,
the resulting hyperplane vector w is parallel with the vector
of positive training descriptor x™. When w is normalized to
have unit L2 norm the two vectors are identical. First, let us
decompose w into parallel and orthogonal part with respect to
the positive training data point x*, i.e. w = wt +wl!l, where
(wh)Txt = 0. Next, we observe that when the weight of the
negative data diminishes (C, — 0), any non-zero component
wL will increase the value of the objective. As a result, for
C, — 0 the objective is minimized by w!l, i.e. the optimal
w is parallel with x*.

In detail, for w = wt + wll, the objective (3) can be
written as
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Fig. 10 An illustration of the effect of decreasing parameter C5 in the
exemplar support vector machine objective. The positive exemplar x* is
shown in green. The negative data points are shown in red. All training
data is L2 normalized to lie on a hyper-sphere. a For C, > 0, the normal
w of the optimal hyper-plane moves away from the direction given by
the positive example x in a manner that reduces the loss on the negative
data. b As the parameter C; decreases the learnt w becomes parallel
to the positive training example x* and its magnitude ||w|| goes to 0
(Color figure online)

Iwt + w2+ ¢ .h((wL+w“)Tx++b) (14)

+C > h (—(wL +whTx - b) .
xeN

Note that the orthogonal part w= does not change the value of
the second term in (14) because (w- +w!h)Tx+ = (wihTx+,
and hence (14) reduces to

i+ w2 ¢ (W 4 5)) (15)

+C > h (—(wL +whTx— b) .
xeN

In the limit case as C; — 0 any non-zero component w= will
increase the value of the objective (15). This can be seen by
noting that the third term vanishes when C> — 0 and hence
the objective is dominated by the first two terms. Further, the
second term in (15) is independent of w=. Finally, the first
term will always increase for any non-zero value of w' as
[lwt + wll||2 > ||w!l|| for any w' # 0.

As aresult, in the limit case when C» — 0 the optimal w is
parallel with x*. Note also, that when C; is exactly equal to
zero, C» = 0, the optimal w vanishes, i.e. the objective (15)
is minimized by trivial solution ||w|| = 0 and b = —1. The
effect of decreasing the parameter C» is illustrated in Fig. 10.

Case II Cy > 0. When the weight C of the negative data
in the objective (15) increases the direction of the optimal
w will be different from w!l and will change to take into
account the loss on the negative data points. Explicitly writ-
ing the hinge-loss #(x) = max(l — x,0) in the last term
of (15), we see that w will move in the direction that reduces
> ven max (1 +w'x 4+ b, 0), i.e. that reduces the dot prod-

uct w’ x on the negative examples that are active (support
vectors).

The Need for Normalization of w

Above we have shown that the learnt hyperplane w moves
away from the positive example x* in a manner that reduces
the loss on the negative data. The aim is to use this learnt
vector w as a new descriptor x* replacing the original positive
example xT. However, we wish to measure the cosine of the
angle between the the new descriptor x*and the query image
q. This is equivalent to the normalized dot product, hence the
vector w needs to be normalized.
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