
Joint Discovery of Object States and Manipulation Actions

Jean-Baptiste Alayrac∗ † Josef Sivic∗ † ‡ Ivan Laptev∗ † Simon Lacoste-Julien§

Abstract

Many human activities involve object manipulations
aiming to modify the object state. Examples of common
state changes include full/empty bottle, open/closed door,
and attached/detached car wheel. In this work, we seek to
automatically discover the states of objects and the associ-
ated manipulation actions. Given a set of videos for a par-
ticular task, we propose a joint model that learns to identify
object states and to localize state-modifying actions. Our
model is formulated as a discriminative clustering cost with
constraints. We assume a consistent temporal order for the
changes in object states and manipulation actions, and in-
troduce new optimization techniques to learn model param-
eters without additional supervision. We demonstrate suc-
cessful discovery of seven manipulation actions and corre-
sponding object states on a new dataset of videos depicting
real-life object manipulations. We show that our joint for-
mulation results in an improvement of object state discovery
by action recognition and vice versa.

1. Introduction

Many of our activities involve changes in object states.
We need to open a book to read it, to cut bread before eat-
ing it and to lighten candles before taking out a birthday
cake. Transitions of object states are often coupled with
particular manipulation actions (open, cut, lighten). More-
over, the success of an action is often signified by reaching
the desired state of an object (whipped cream, ironed shirt)
and avoiding other states (burned shirt). Recognizing ob-
ject states and manipulation actions is, hence, expected to
become a key component of future systems such as wear-
able automatic assistants or home robots helping people in
their daily tasks.

Human visual system can easily distinguish different
states of objects, such as open/closed bottle or full/empty
coffee cup [7]. Automatic recognition of object states and

∗Département dinformatique de l’ENS, École normale supérieure,
CNRS, PSL Research University, 75005 Paris, France.
†INRIA
‡Czech Institute of Informatics, Robotics and Cybernetics at the

Czech Technical University in Prague.
§Department of CS & OR (DIRO), Université de Montréal, Montréal.

Figure 1: We automatically discover object states such as
empty/full coffee cup along with their corresponding ma-
nipulation actions by observing people interacting with the
objects.

state changes, however, presents challenges as it requires
distinguishing subtle changes in object appearance such as
the presence of a cap on the bottle or screws on the car tire.
Despite much work on object recognition and localization,
recognition of object states has received only limited atten-
tion in computer vision [21].

One solution to recognizing object states would be to
manually annotate states for different objects, and treat the
problem as a supervised fine-grained object classification
task [13, 14]. This approach, however, presents two prob-
lems. First, we would have to decide a priori on the set of
state labels for each object, which can be ambiguous and not
suitable for future tasks. Second, for each label we would
need to collect a large number of examples, which can be
very costly.

In this paper we propose to discover object states directly
from videos with object manipulations. As state changes are
often caused by specific actions, we attempt to jointly dis-
cover object states and corresponding manipulations. In our
setup we assume that two distinct object states are tempo-
rally separated by a manipulation action. For example, the
empty and full states of a coffee cup are separated by the
“pouring coffee” action, as shown in Figure 1. Equipped
with this constraint, we develop a clustering approach that

1

ar
X

iv
:1

70
2.

02
73

8v
3

 [
cs

.C
V

]
 2

8
A

ug
 2

01
7

jointly (i) groups object states with similar appearance and
consistent temporal locations with respect to the action and
(ii) finds similar manipulation actions separating those ob-
ject states in the input videos. Our approach exploits the
complementarity of both subproblems and finds a joint so-
lution for states and actions. We formulate our problem by
adopting a discriminative clustering loss [3] and a joint con-
sistency cost between states and actions. We introduce an
effective optimization solution in order to handle the result-
ing non-convex loss function and the set of spatial-temporal
constraints. To evaluate our method, we collect a new video
dataset depicting real-life object manipulation actions in re-
alistic videos. Given this dataset for training, our method
demonstrates successful discovery of object states and ma-
nipulation actions. We also demonstrate that our joint for-
mulation gives an improvement of object state discovery by
action recognition and vice versa.

2. Related work
Below we review related work on person-object interac-

tion, recognizing object states, action recognition and dis-
criminative clustering that we employ in our model.
Person-object interactions. Many daily activities involve
person-object interactions. Modeling co-occurrences of ob-
jects and actions have shown benefits for recognizing ac-
tions in [10, 18, 25, 34, 46]. Recent work has also focused
on building realistic datasets with people manipulating ob-
jects, e.g. in instructional videos [2, 31, 36] or while per-
forming daily activities [37]. We build on this work but fo-
cus on joint modeling and recognition of actions and object
states.
States of objects. Prior work has addressed recognition of
object attributes [14, 32, 33], which can be seen as differ-
ent object states in some cases. Differently from our ap-
proach, these works typically focus on classifying still im-
ages, do not consider human actions and assume an a pri-
ori known list of possible attributes. Closer to our setting,
Isola et al. [21] discover object states and transformations
between them by analyzing large collections of still images
downloaded from the Internet. In contrast, our method does
not require annotations of object states. Instead, we use
the dynamics of consistent manipulations to discover object
states in the video with minimal supervision. In [9], the au-
thors use consistent manipulations to discover task relevant
objects. However, they do not consider object states, rely
mostly on first person cues (such as gaze) and take advan-
tage of the fact that videos are taken in a single controlled
environment.
Action recognition. Most of the prior work on action
recognition has focused on designing features to describe
time intervals of a video using motion and appearance [29,
38, 42, 43]. This is effective for actions such as dancing
or jumping, however, many of our daily activities are best

distinguishable by their effect on the environment. For ex-
ample, opening door and closing door can look very simi-
lar using only motion and appearance descriptors but their
outcome is completely different. This observation has been
used to design action models in [15, 16, 44]. In [44], for
example, the authors propose to learn an embedding in
which a given action acts as a transformation of features
of the video. In our work we localize objects and recog-
nize changes of their states using manipulation actions as
a supervisory signal. Related to ours is also the work of
Fathi et al. [15] who represent actions in egocentric videos
by changes of appearance of objects (also called object
states), however, their method requires manually annotated
precise temporal localization of actions in training videos.
In contrast, we focus on (non-egocentric) Internet videos
depicting real-life object manipulations where actions are
performed by different people in a variety of challenging in-
door/outdoor environments. In addition, our model jointly
learns to recognize both actions and object states with only
minimal supervision.
Discriminative clustering. Our model builds on unsu-
pervised discriminative clustering methods [3, 40, 45] that
group data samples according to a simultaneously learned
classifier. Such methods can incorporate (weak) supervi-
sion that helps to steer the clustering towards a preferred
solution [4, 12, 20, 23, 41]. In particular, we build on
the discriminative clustering approach of [3] that has been
shown to perform well in a variety of computer vision prob-
lems [4]. It leads to a quadratic optimization problem where
different forms of supervision can be incorporated in the
form of (typically) linear constraints. Building on this for-
malism, we develop a model that jointly finds object states
and temporal locations of actions in the video. Part of
our object state model is related to [24], while our action
model is related to [6]. However, we introduce new spatial-
temporal constraints together with a novel joint cost func-
tion linking object states and actions, as well as new effec-
tive optimization techniques.
Contributions. The contributions of this work are three-
fold. First, we develop a new discriminative clustering
model that jointly discovers object states and temporally lo-
calizes associated manipulation actions in video. Second,
we introduce an effective optimization algorithm to handle
the resulting non-convex constrained optimization problem.
Finally, we experimentally demonstrate that our model dis-
covers key object states and manipulation actions from in-
put videos with minimal supervision.

3. Modeling manipulated objects
We are given a set of N clips that contain a common

manipulation of the same object (such as “open an oys-
ter”). We also assume that we are given an a priori model
of the corresponding object in the form of a pre-trained ob-

Figure 2: Given a set of clips that depict a manipulated object, we wish to automatically discover the main states that the
object can take along with localizing the associated manipulation action. In this example, we show one video of someone
filling a coffee cup. The video starts with an empty cup (state 1), which is filled with coffee (action) to become full (state
2). Given imperfect object detectors, we wish to assign to the valid object candidates either the initial state or the final state
(encoded in Y). We also want to localize the manipulating action in time (encoded in Z) while maintaining a joint action-state
consistency.

ject detector [17]. Given these inputs, our goal is twofold:
(i) localize the temporal extent of the action and (ii) spa-
tially/temporally localize the manipulated object and iden-
tify its states over time. This is achieved by jointly clus-
tering the appearances of an object (such as an “oyster”)
appearing in all clips into two classes, corresponding to the
two different states (such as “closed” and “open”), while at
the same time temporally localizing a consistent “opening”
action that separates the two states consistently in all clips.
More formally, we formulate the problem as a minimization
of a joint cost function that ties together the action predic-
tion in time, encoded in the assignment variable Z, with
the object state discovery in space and time, defined by the
assignment variable Y :

minimize
Y ∈{0,1}M×2

Z∈{0,1}T

f(Z) + g(Y) + d(Z, Y) (1)

s.t. Z ∈ Z︸ ︷︷ ︸
saliency of action

Action localization

and Y ∈ Y︸ ︷︷ ︸
ordering + non overlap

Object state labeling

where f(Z) is a discriminative clustering cost to tempo-
rally localize the action in each clip, g(Y) is a discrimi-
native clustering cost to identify and localize the different
object states and d(Z, Y) is a joint cost that relates object
states and actions together. T denotes the total length of
all video clips and M denotes the total number of tracked
object candidate boxes (tracklets). In addition, we impose
constraints Y and Z that encode additional structure of the
problem: we localize the action with its most salient time
interval per clip (“saliency”); we assume that the ordering

of object states is consistent in all clips (“ordering”) and that
only one object is manipulated at a time (“non overlap”).

In the following, we proceed with describing different
parts of the model (1). In Sec. 3.1 we describe the cost
function for the discovery of object states. In Sec. 3.2 we
detail our model for action localization. Finally, in Sec. 3.3
we describe and motivate the joint cost d.

3.1. Discovering object states

The goal here is to both (i) spatially localize the manipu-
lated object and (ii) temporally identify its individual states.
To address the first goal, we employ pre-trained object de-
tectors. To address the second goal, we formulate the dis-
covery of object states as a discriminative clustering task
with constraints. We obtain candidate object detections us-
ing standard object detectors pre-trained on large scale ex-
isting datasets such as ImageNet [11]. We assume that each
clip n is accompanied with a set of Mn tracklets1 of the
object of interest.

We formalize the task of localizing the states of ob-
jects as a discriminative clustering problem where the goal
is to find an assignment matrix Yn ∈ {0, 1}Mn×2, where
(Yn)mk = 1 indicates that the m-th tracklet represents the
object in state k. We also allow a complete row of Yn to
be zero to encode that no state was assigned to the corre-
sponding tracklet. This is to model the possibility of false

1In this work, we use short tracks of objects (less than one second) that
we call tracklet. We want to avoid long tracks that continue across a state
change of objects. By using the finer granularity of tracklets, our model
has the ability to correct for detection mistakes within a track as well as
identify more precisely the state change.

positive detections of an object, or that another object of
the same class appears in the video, but is not manipulated
and thus is not undergoing any state change. In detail, we
minimize the following discriminative clustering cost [3]:2

g(Y) = min
Ws∈Rds×2

1

2M
‖Y −XsWs‖2F︸ ︷︷ ︸

Discriminative loss on data

+
µ

2
‖Ws‖2F︸ ︷︷ ︸

Regularizer

(2)

where Ws is the object state classifier that we seek to learn,
µ is a regularization parameter and Xs is aM×ds matrix of
features, where each row is a ds-dimensional (state) feature
vector storing features for one particular tracklet. The min-
imization in Ws actually leads to a convex quadratic cost
function in Y (see [3]). The first term in (2) is the discrim-
inative loss on the data that measures how easily the input
dataXs is classified by the linear classifierWs when the ob-
ject state assignment is given by matrix Y . In other words,
we wish to find a labeling Y for given object tracklets into
two states (or no state) so that their appearance features X
are easily classified by a linear classifier. To steer the cost
towards the right solution, we employ the following con-
straints (encoded by Y ∈ Y in (1)).
Only one object is manipulated at a time : non overlap
constraint. As it is common in instructional videos, we
assume that only one object can be manipulated at a given
time. However, in practice, it is common to have multiple
(spatially diverse) tracklets that occur at the same time, for
example, due to a false positive detection in the same frame.
To overcome this issue, we impose that at most one track-
let can be labeled as belonging to state 1 or state 2 at any
given time. We refer to this constraint as “non overlap” in
problem (1).
state 1 → Action → state 2: ordering constraints. We
assume that the manipulating action transforms the object
from an initial state to a final state and that both states are
present in each video. This naturally introduces two con-
straints. The first one is the ordering constraints on the la-
beling Yn, i.e. the state 1 should occur before state 2 in each
video. The second constraint imposes that we have at least
one tracklet labeled as state 1 and at least one tracklet la-
beled as state 2. We call this last constraint the “at least
one” constraint in contrast to forcing “exactly one” ordered
prediction as previously proposed in a discriminative clus-
tering approach on video for action localization [6]. This
new type of constraint brings additional optimization chal-
lenges that we address in Section 4.2.

3.2. Action localization

Our action model is equivalent to the one of [6] applied
to only one action. More precisely, the goal is to find an
assignment matrix Zn ∈ {0, 1}Tn for each clip n, where

2We concatenate all the variables Yn into one M×2 matrix Y.

Znt = 1 encodes that the t-th time interval of video is as-
signed to an action and Znt = 0 encodes that no action is
detected in interval t. The cost that we minimize for this
problem is similar to the object states cost:

f(Z) = min
Wv∈Rdv

1

2T
‖Z −XvWv‖2F︸ ︷︷ ︸

Discriminative loss on data

+
λ

2
‖Wv‖2F︸ ︷︷ ︸

Regularizer

, (3)

where Wv is the action classifier, λ is a regularization pa-
rameter and Xv is a matrix of visual features. We constrain
our model to predict exactly one time interval for an ac-
tion per clip, an approach for actions that was shown to be
beneficial in a weakly supervised setting [6] (referred to as
“action saliency” constraint). As will be shown in experi-
ments, this model alone is incomplete because the clips in
our dataset can contain other actions that do not manipulate
the object of interest. Our central contribution is to propose
a joint formulation that links this action model with the ob-
ject state prediction model, thereby resolving the ambiguity
of actions. We detail the joint model next.

3.3. Linking actions and object states

Actions in our model are directly related to changes in
object states. We therefore want to enforce consistency be-
tween the two problems. To do so, we design a novel joint
cost function that operates on the action video labeling Zn
and the state tracklet assignment Yn for each clip. We want
to impose a constraint that the action occurs in between the
presence of the two different object states. In other words,
we want to penalize the fact that state 1 is detected after the
action happens, or the fact that state 2 is triggered before the
action occurs.
Joint cost definition. We propose the following joint sym-
metric cost function for each clip:

d(Zn, Yn) =
∑

y∈S1(Yn)

[ty − tZn
]+ +

∑
y∈S2(Yn)

[tZn
− ty]+, (4)

where tZn
and ty are the times when the action Zn and the

tracklet y occur in a clip n, respectively. S1(Yn) and S2(Yn)
are the tracklets in the n-th clip that have been assigned to
state 1 and state 2, respectively. Finally [x]+ is the posi-
tive part of x. In other words, the function penalizes the
inconsistent assignment of objects states Yn by the amount
of time that separates the incorrectly assigned tracklet and
the manipulation action in the clip. The overall joint cost is
the sum over all clips weighted by a scaling hyperparameter
ν > 0:

d(Z, Y) = ν
1

T

N∑
n=1

d(Zn, Yn). (5)

4. Optimization
Optimizing problem (1) poses several challenges that

need to be addressed. First, we propose a relaxation of the

integer constraints and the distortion function (Section 4.1).
Second, we optimize this relaxation using Frank-Wolfe with
a new dynamic program able to handle our tracklet con-
straints (Section 4.2). Finally, we introduce a new round-
ing technique to obtain an integer candidate solution to our
problem (Section 4.3).

4.1. Relaxation

Problem (1) is NP-hard in general [30] due to its specific
integer constraints. Inspired by the approach of [5] that was
successful to approximate combinatorial optimization prob-
lems, we propose to use the tightest convex relaxation of
the feasible subset of binary matrices by taking its convex
hull. As our variables now can take values in [0, 1], we also
have to propose a consistent extension for the different cost
functions to handle fractional values as input. For the cost
functions f and g, we can directly take their expression on
the relaxed set as they are already expressed as (convex)
quadratic functions. Similarly, for the joint cost function d
in (4), we use its natural bilinear relaxation:

d(Zn, Yn) =

Mn∑
i=1

Tn∑
t=1

(
(Yn)i1Znt[tni − t]+ +

(Yn)i2Znt[t− tni]+
)
, (6)

where tni denotes the video time of tracklet i in clip n. This
relaxation is equal to the function (4) on the integer points.
However, it is not jointly convex in Y and Z, thus we have
to design an appropriate optimization technique to obtain
good (relaxed) candidate solutions, as described next.

4.2. Joint optimization using Frank-Wolfe

When dealing with a constrained optimization problem
for which it is easy to solve linear programs but difficult to
project on the feasible set, the Frank-Wolfe algorithm is an
excellent choice [22, 28]. It is exactly the case for our re-
laxed problem, where the linear program over the convex
hull of feasible integer matrices can be solved efficiently
via dynamic programming. Moreover, [27] recently showed
that the Frank-Wolfe algorithm with line-search converges
to a stationary point for non-convex objectives at a rate of
O(1/

√
k). We thus use this algorithm for the joint optimiza-

tion of (1). As the objective is quadratic, we can perform
exact line-search analytically, which speeds up convergence
in practice. Finally, in order to get a good initialization for
both variables Z and Y , we first optimize separately f(Z)
and g(Y) (without the non-convex d(Z, Y)), which are both
convex functions.
Dynamic program for the tracklets. In order to apply
the Frank-Wolfe algorithm, we need to solve a linear pro-
gram (LP) over our set of constraints. Previous work has
explored “exact one” ordering constraints for time localiza-
tion problems [5]. Differently here, we have to deal with

the spatial (non overlap) constraint and finding “at least
one” candidate tracklet per state. To deal with these two
requirements, we propose a novel dynamic programming
approach. First, the “at least one” constraint is encoded by
having a memory variable which indicates whether state 1
or state 2 have already been visited. This variable is used
to propose valid state decisions for consecutive tracklets.
Second, the challenging “non-overlap” tracklet constraint is
included by constructing valid left-to-right paths in a cost
matrix while carefully considering the possible authorized
transitions. We provide details of the formulation in Ap-
pendix C. In addition, we show in section 5.2 that these new
constraints are key for the success of the method.

4.3. Joint rounding method

Once we obtain a candidate solution of the relaxed prob-
lem, we have to round it to an integer solution in order to
make predictions. Previous works [2, 6] have observed that
using the learned W ∗ classifier for rounding gave better re-
sults than other possible alternatives. We extend this ap-
proach to our joint setup by proposing the following new
rounding procedure. We optimize problem (1) but fix the
values of W in the discriminative clustering costs. Specifi-
cally, we minimize the following cost function over the in-
teger points Z ∈ Z and Y ∈ Y:

1

2T
‖Z −XvW

∗
v ‖2F +

1

2M
‖Y −XsW

∗
s ‖2F + d(Z, Y), (7)

whereW ∗v andW ∗s are the classifier weights obtained at the
end of the relaxed optimization. Because y2 = y when y
is binary, (7) is actually a linear objective over the binary
matrix Yn for Zn fixed. Thus we can optimize (7) exactly
by solving a dynamic program on Yn for each of the Tn
possibilities of Zn, yielding O(MnTn) time complexity per
clip (see Appendix D for details).

5. Experiments
In this section, we first describe our dataset, the object

tracking pipeline and the feature representation for object
tracklets and videos (Section 5.1). We consider two exper-
imental set-ups. In the first weakly-supervised set-up (Sec-
tion 5.2), we apply our method on a set of video clips which
we know contain the action of interest but do not know its
precise temporal localization. In the second, more chal-
lenging “in the wild” set-up (Section 5.3), the input set of
weakly-supervised clips is obtained by automatic process-
ing of text associated with the videos and hence may contain
erroneous clips that do not contain the manipulation action
of interest. The data and code are available online [1].

5.1. Dataset and features

Dataset of manipulation actions. We build a dataset of
manipulation actions by collecting videos from different

sources: the instructional video dataset introduced in [2],
the Charades dataset from [37], and some additional videos
downloaded from YouTube. We focus on “third person”
videos (rather than egocentric) as such videos depict a va-
riety of people in different settings and can be obtained on
a large scale from YouTube. We annotate the precise tem-
poral extent of seven different actions3 applied to five dis-
tinct objects4. This results in 630 annotated occurrences of
ground truth manipulation action.

To evaluate object state recognition, we define a list of
two states for each object. We then run automatic object
detector for each involved object, track the detected ob-
ject occurrences throughout the video and then subdivide
the resulting long tracks into short tracklets. Finally, we la-
bel ground truth object states for tracklets within ±40 sec-
onds of each manipulation action. We label four possible
states: state 1, state 2, ambiguous state or false positive de-
tection. The ambiguous state covers the (not so common)
in-between cases, such as cup half-full. In total, we have
19,499 fully annotated tracklets out of which: 35% cover
state 1 or state 2, 25% are ambiguous, and 40% are false
positives. Note that this annotation is only used for eval-
uation purpose, and not by any of our models. Detailed
statistics of the dataset are given in Appendix B.
Object detection and tracking. In order to obtain detec-
tors for the five objects, we finetune the FastRCNN net-
work [17] with training data from ImageNet [11]. We use
bounding box annotations from ImageNet when available
(e.g. the “wheel” class). For the other classes, we manually
labeled more than 500 instances per class. In our set-up with
only moderate amount of training data, we observed that
class-agnostic object proposals combined with FastRCNN
performed better than FasterRCNN [35]. In detail, we use
geodesic object proposals [26] and set a relatively low ob-
ject detection threshold (0.4) to have good recall. We track
objects using a generic KLT tracker from [4]. The tracks
are then post-processed into shorter tracklets that last about
one second and thus are likely to have only one object state.
Object tracklet representation. For each detected object,
represented by a set of bounding boxes over the course of
the tracklet, we compute a CNN feature from each (ex-
tended) bounding box that we then average over the length
of the tracklet to get the final representation. The CNN fea-
ture is extracted with a ROI pooling [35] of ResNet50 [19].
The ROI pooling notably allows to capture some context
around the object which is important for some cases (e.g.
wheel “on” or “off” the car). The resulting feature descrip-
tor of each object tracklet is 8,192 dimensional.
Representing video for recognizing actions. Following

3put the wheel on the car (47 clips), withdraw the wheel from the car
(46), place a plant inside a pot (27), open an oyster (28), open a refriger-
ator (234), close a refrigerator (191) and pour coffee (57).

4car wheel, flower pot, oyster, refrigerator and coffee cup.

the approach of [2, 5, 6], each video is divided into chunks
of 10 frames that are represented by a motion and appear-
ance descriptor averaged over 30 frames. For the motion we
use a 2,000 dimensional bag-of-word representation of his-
togram of local optical flow (HOF) obtained from Improved
Dense Trajectories [43]. Following [2], we add an appear-
ance vector that is obtained from a 1,000 dimensional bag-
of-word vector of conv5 features from VGG16 [39]. This
results in a 3,000 dimensional feature vector for each chunk
of 10 frames.

5.2. Weakly supervised object state discovery

Experimental setup. We first apply our method in a weakly
supervised set-up where for each action we provide an input
set of clips, where we know the action occurs somewhere in
the clip but we do not provide the precise temporal localiza-
tion. Each clip may contain other actions that affect other
objects or actions that do not affect any object at all (e.g.
walking / jumping). The input clips are about 20s long and
are obtained by taking approximately ± 10s of each anno-
tated manipulation action.
Evaluation metric: average precision. For all variants
of our method, we use the rounded solution that reached
the smallest objective during optimization. We evaluate
these predictions with a precision score averaged over all
the videos. A temporal action localization is said to be cor-
rect if it falls within the ground truth time interval. Simi-
larly, a state prediction is correct if it matches the ground
truth state.5 Note that a “precision” metric is reasonable in
our set-up as our method is forced to predict in all videos,
i.e. the recall level is fixed to all videos and the method
cannot produce high precision with low recall.
Hyperparameters. In all methods that involve a discrim-
inative clustering objective, we used λ = 10−2 (action lo-
calization) and µ = 10−4 (state discovery) for all 7 actions.
For joint methods that optimize (1), we set the weight ν of
the distortion measure (5) to 1.
State discovery results. Results are shown in the top part
of Table 1. In the following, we refer to “State only” when-
ever we use our method without looking at the action cost or
the distortion measure (1). We compare to two baselines for
the state discovery task. Baseline (a) evaluates chance per-
formance. Baseline (b) performs K-means clustering of the
tracklets withK = 3 (2 clusters for the states and 1 for false
positives). We report performance of the best assignment
for the solution with the lowest objective after 10 differ-
ent initializations. Baseline (c) is obtained by running our
“State only” method while using random features for track-
let representation as well as ”at least one ordering” and ”non
overlap” constraints. We use random features to avoid non-
trivial analytic derivation for the ”Constraints only” perfor-
mance. This baseline reveals the difficulty of the problem

5In particular, we count “ambiguous” labels as incorrect.

put remove fill open fill open closeMethod wheel wheel pot oyster coff.cup fridge fridge Average

(a) Chance 0.10 0.11 0.10 0.07 0.06 0.10 0.10 0.09
(b) Kmeans 0.25 0.12 0.11 0.23 0.14 0.19 0.22 0.18
(c) Constraints only 0.35 0.38 0.35 0.36 0.31 0.29 0.42 0.35
(d) Salient state only 0.35 0.48 0.35 0.38 0.30 0.40 0.37 0.38
(e) At least one state only 0.43 0.55 0.46 0.52 0.29 0.43 0.39 0.44
(f) Joint model 0.52 0.59 0.50 0.45 0.39 0.47 0.47 0.48
(g) Joint model + det. scores. 0.47 0.65 0.50 0.61 0.44 0.46 0.43 0.51

State
discovery

(h) Joint + GT act. feat. 0.55 0.56 0.56 0.52 0.46 0.45 0.49 0.51
(i) Chance 0.31 0.20 0.15 0.11 0.40 0.23 0.17 0.22
(ii) [6] 0.24 0.13 0.11 0.14 0.26 0.29 0.23 0.20
(iii) [6] + object cues 0.24 0.13 0.26 0.07 0.84 0.33 0.37 0.32
(iv) Joint model 0.67 0.57 0.48 0.32 0.82 0.57 0.44 0.55

Action
localization

(v) Joint + GT stat. feat. 0.72 0.66 0.44 0.46 0.86 0.55 0.44 0.59

Table 1: State discovery (top) and action localization results (bottom).

and quantifies improvement brought by the ordering con-
straints. The next two methods are “State only” variants.
Method (d) corresponds to a replacement of the “at least
one constraint” by an “exactly one constraint” while the
method (e) uses our new constraint. Finally, we report three
joint methods that use our new joint rounding technique (7)
for prediction. Method (f) corresponds to our joint method
that optimizes (1). Method (g) is a simple improvement
taking into account object detection score in the objective
(details below). Finally, method (h) is our joint method but
using the action ground truth labels as video features in or-
der to test the effect of having perfect action localization for
the task of object state discovery.

We first note that method (e) outperforms (d), thus high-
lighting the importance of the “at least one” constraint for
modeling object states. While the saliency approach (tak-
ing only the most confident detection per video) was useful
for action modeling in [6], it is less suitable for our set-
up where multiple tracklets can be in the same state. The
joint approach with actions (f) outperforms the “State only”
method (e) on 6 out of 7 actions and obtains better aver-
age performance, confirming the benefits of joint modeling
of actions and object states. Using ground truth action lo-
cations further improves results (cf. (h) against (f)). Our
weakly supervised approach (f) performs not much lower
compared to using ground truth actions (h), except for the
states of the coffee cup (empty/full). In this case we observe
that a high number of false positive detections confuses our
method. A simple way to address this issue is to add the ob-
ject detection score into the objective of our method, which
then prefers to assign object states to higher scoring ob-
ject candidates further reducing the effect of false positives.
This can be done easily by adding a linear cost reflecting the
object detection score to objective (1). We denote this mod-
ified method “(g) Joint model + det. scores”. This method
achieves the best average performance and highlights that
additional information can be easily added to our model.
Action localization results. We compare our method to
three different baselines and give results in the bottom part
of Table 1. Baseline (i) corresponds to chance performance,

where the precision for each clip is simply the proportion
of the entire clip taken by the ground truth time interval.
Baseline (ii) is the method introduced in [6] used here with
only one action. It also corresponds to a special case of
our method where the object state part of the objective in
equation (1) is turned off (salient action only). Interest-
ingly, this baseline is actually worse than chance for sev-
eral actions. This is because without additional informa-
tion about objects, this method localizes other common ac-
tions in the clip and not the action manipulating the object
of interest. This also demonstrates the difficulty of our ex-
perimental set-up where the input video clips often contain
multiple different actions. To address this issue, we also
evaluate baseline (iii), which complements [6] with the ad-
ditional constraint that the action prediction has to be within
the first and the last frame where the object of interest is
detected, improving the overall performance above chance.
Our joint approach (iv) consistently outperforms these base-
lines on all actions, thus showing again the strong link be-
tween object states and actions. Finally, the approach (v)
is the analog of method (g) for action localization where
we use ground truth state labels as tracklet features in our
joint formulation showing that the action localization can
be further improved with better object state descriptors. In
addition, we also compare to a supervised baseline. The av-
erage obtained performance is 0.58 which is not far from
our method. This demonstrates the potential of using object
states for action localization. More details on this experi-
ment are provided in Appendix E.

Benefits of joint object-action modeling. We observe that
the joint modeling of object states and actions benefits both
tasks. This effect is even stronger for actions. Intuitively,
knowing perfectly the object states reduces a lot the search
space for action localization. Moreover, despite the recent
major progress in object recognition using CNNs, action
recognition still remains a hard problem with much room
for improvement. Qualitative results are shown in Fig. 3
and failure cases of our method are discussed in F.

Figure 3: Qualitative results for joint action localization (middle)
and state discovery (left and right) (see Fig. 1 for “fill coffee cup”).

5.3. Object state discovery in the wild

Towards the discovery of a large number of manipula-
tion actions and state changes, we next apply our method in
an automatic setting, where action clips have been obtained
using automatic text-based retrieval.
Clip retrieval by text. Instructional videos [2, 31, 36] usu-
ally come with a narration provided by the speaker describ-
ing the performed sequence of actions. In this experiment,
we keep only such narrated instructional videos from our
dataset. This results in the total of 140 videos that are 3 min-
utes long in average. We extract the narration in the form
of subtitles associated with the video. These subtitles have
been directly downloaded from YouTube and have been ob-
tained either by Youtube’s Automatic Speech Recognition
(ASR) or provided by the users.

We use the resulting text to retrieve clip candidates that
may contain the action modifying the state of an object. Ob-
taining the approximate temporal location of actions from
the transcribed narration is still very challenging due to am-
biguities in language (“undo bolt” and “loosen nut” refer to

Method put
wheel

remove
wheel

fill
pot

open
oyster

fill
coff.cup Ave.

State
disc.

(c) Cstrs only 0.23 0.34 0.25 0.29 0.11 0.24
State + det. sc. 0.33 0.48 0.28 0.40 0.13 0.32
(g) Joint 0.38 0.53 0.25 0.43 0.20 0.36

(g) Curated 0.63 0.68 0.63 0.63 0.53 0.62

Action
local.

(i) Chance 0.14 0.10 0.06 0.10 0.15 0.11
(iii) Action 0.05 0.10 0.00 0.15 0.25 0.11
(iv) Joint 0.30 0.30 0.20 0.20 0.20 0.24

(iv) Curated 0.53 0.35 0.32 0.40 0.59 0.44

Table 2: Results on noisy clips automatically retrieved by text.

the same manipulation) and only coarse temporal localiza-
tion of the action provided by the narration. Given a manip-
ulation action such as “remove tire”, we first find positive
and negative sentences relevant for the action from an in-
struction website such as Wikihow. We then train a linear
SVM classifier [8] on bigram text features. Finally, we use
the learned classifier to score clips from the input instruc-
tional videos. In detail, the classifier is applied in a slid-
ing window of 10 words finding the best scoring window in
each input video. The clip candidates are then obtained by
trimming the input videos 5 seconds before and 15 seconds
after the timing of the best scoring text window to account
for the fact that people usually perform the action after hav-
ing talked about it. We apply our method on the top 20 video
clips based on the SVM score for each manipulation action.
More details about this process are provided in Appendix A.
Results. As shown in Table 2, the pattern of results, where
our joint method performs the best, is similar to the weakly
supervised set-up described in Sec. 5.2. This highlights
the robustness of our model to noisy input data – an im-
portant property for scaling-up the method to Internet scale
datasets. To assess how well our joint method could do with
perfect retrieval, we also report results for a “Curated” set-
up where we replace the automatically retrieved clips with
the 20s clips used in Sec. 5.2 for the corresponding videos.

6. Conclusion and future work
We have described a joint model that relates object states

and manipulation actions. Given a set of input videos, our
model both localizes the manipulation actions and discov-
ers the corresponding object states. We have demonstrated
that our joint approach improves performance of both object
state recognition and action recognition. More generally,
our work provides evidence that actions should be modeled
in the larger context of goals and effects. Finally, our work
opens up the possibility of Internet-scale learning of manip-
ulation actions from narrated video sequences.

Acknowledgments This research was supported in part by a Google
Research Award, ERC grants Activia (no. 307574) and LEAP (no.
336845), the CIFAR Learning in Machines & Brains program and
ESIF, OP Research, development and education Project IMPACT No.
CZ.02.1.01/0.0/0.0/15 003/0000468.

References
[1] Project webpage (code/dataset). http://www.di.ens.

fr/willow/research/objectstates/. 5
[2] J.-B. Alayrac, P. Bojanowski, N. Agrawal, I. Laptev, J. Sivic,

and S. Lacoste Julien. Unsupervised learning from narrated
instruction videos. In CVPR, 2016. 2, 5, 6, 8, 11, 14

[3] F. Bach and Z. Harchaoui. DIFFRAC: A discriminative and
flexible framework for clustering. In NIPS, 2007. 2, 4

[4] P. Bojanowski, F. Bach, I. Laptev, J. Ponce, C. Schmid, and
J. Sivic. Finding actors and actions in movies. In ICCV,
2013. 2, 6

[5] P. Bojanowski, R. Lajugie, F. Bach, I. Laptev, J. Ponce,
C. Schmid, and J. Sivic. Weakly supervised action label-
ing in videos under ordering constraints. In ECCV, 2014. 5,
6, 11, 13, 14

[6] P. Bojanowski, R. Lajugie, E. Grave, F. Bach, I. Laptev,
J. Ponce, and C. Schmid. Weakly-supervised alignment of
video with text. In ICCV, 2015. 2, 4, 5, 6, 7, 14

[7] T. F. Brady, T. Konkle, A. Oliva, and G. A. Alvarez. Detect-
ing changes in real-world objects: The relationship between
visual long-term memory and change blindness. Commu-
nicative and Integrative Biology, 2006. 1

[8] C. Cortes and V. Vapnik. Support-vector networks. Machine
Learning, pages 273–297, 1995. 8

[9] D. Damen, T. Leelasawassuk, O. Haines, A. Calway, and
W. Mayol-Cuevas. You-do, i-learn: Discovering task rele-
vant objects and their modes of interaction from multi-user
egocentric video. In BMVA, 2014. 2

[10] V. Delaitre, J. Sivic, and I. Laptev. Learning person-object
interactions for action recognition in still images. In NIPS,
2011. 2

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. ImageNet: A large-scale hierarchical image database.
In CVPR, 2009. 3, 6

[12] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. A. Efros.
What makes Paris look like Paris? SIGGRAPH, 2012. 2

[13] K. Duan, D. Parikh, D. Crandall, and K. Grauman. Dis-
covering localized attributes for fine-grained recognition. In
CVPR, pages 3474–3481, 2012. 1

[14] A. Farhadi, I. E. Lim, D. Hoiem, and D. Forsyth. Describing
objects by their attributes. In CVPR, 2009. 1, 2

[15] A. Fathi and J. M. Rehg. Modeling actions through state
changes. In CVPR, 2013. 2

[16] B. Fernando, E. Gavves, M. J. Oramas, A. Ghodrati, and
T. Tuytelaars. Modeling video evolution for action recogni-
tion. In CVPR, 2015. 2

[17] R. Girshick. Fast R-CNN. In ICCV, 2015. 2, 6
[18] A. Gupta, A. Kembhavi, and L. S. Davis. Observing human-

object interactions: Using spatial and functional compatibil-
ity for recognition. PAMI, 31(10):1775–1789, 2009. 2

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016. 6

[20] D.-A. Huang, L. Fei-Fei, and J. C. Niebles. Connectionist
temporal modeling for weakly supervised action labeling. In
ECCV, 2016. 2

[21] P. Isola, J. J. Lim, and E. H. Adelson. Discovering states and
transformations in image collections. In CVPR, 2015. 1, 2

[22] M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse
convex optimization. In ICML, 2013. 5

[23] A. Jain, A. Gupta, M. Rodriguez, and L. Davis. Represent-
ing videos using mid-level discriminative patches. In CVPR,
pages 2571–2578, 2013. 2

[24] A. Joulin, K. Tang, and L. Fei-Fei. Efficient image and video
co-localization with Frank-Wolfe algorithm. In ECCV, 2014.
2, 11

[25] H. Kjellström, J. Romero, and D. Kragić. Visual object-
action recognition: Inferring object affordances from human
demonstration. CVIU, 115(1):81–90, 2011. 2

[26] P. Krhenbhl and V. Koltun. Geodesic object proposals. In
ECCV, 2014. 6

[27] S. Lacoste-Julien. Convergence rate of Frank-Wolfe for non-
convex objectives. arXiv:1607.00345, 2016. 5

[28] S. Lacoste-Julien and M. Jaggi. On the global linear conver-
gence of Frank-Wolfe optimization variants. In NIPS, 2015.
5

[29] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld.
Learning realistic human actions from movies. In CVPR,
2008. 2

[30] E. M. Loiola, N. M. M. de Abreu, P. O. Boaventura-Netto,
P. Hahn, and T. Querido. A survey for the quadratic assign-
ment problem. EJOR, 176(2):657–690, 2007. 5

[31] J. Malmaud, J. Huang, V. Rathod, N. Johnston, A. Rabi-
novich, and K. Murphy. What’s cookin’? Interpreting cook-
ing videos using text, speech and vision. In NAACL, 2015.
2, 8

[32] D. Parikh and K. Grauman. Relative attributes. In ICCV,
2011. 2

[33] G. Patterson, C. Xu, H. Su, and J. Hays. The SUN attribute
database: Beyond categories for deeper scene understanding.
IJCV, 2014. 2

[34] H. Pirsiavash and D. Ramanan. Detecting activities of daily
living in first-person camera views. In CVPR, 2012. 2

[35] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-
wards real-time object detection with region proposal net-
works. In NIPS, 2015. 6

[36] O. Sener, A. Zamir, S. Savarese, and A. Saxena. Unsuper-
vised semantic parsing of video collections. In ICCV, 2015.
2, 8

[37] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev,
and A. Gupta. Hollywood in homes: Crowdsourcing data
collection for activity understanding. In ECCV, 2016. 2, 6

[38] K. Simonyan and A. Zisserman. Two-stream convolutional
networks for action recognition in videos. In NIPS, 2014. 2

[39] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. CoRR, 2014. 6

[40] S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery
of mid-level discriminative patches. In ECCV, 2012. 2

[41] K. Tang, A. Joulin, L.-J. Li, and L. Fei-Fei. Co-localization
in real-world images. In CVPR, 2014. 2

[42] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.
Learning spatiotemporal features with 3D convolutional net-
works. In ICCV, 2015. 2

http://www.di.ens.fr/willow/research/objectstates/
http://www.di.ens.fr/willow/research/objectstates/

[43] H. Wang and C. Schmid. Action recognition with improved
trajectories. In ICCV, 2013. 2, 6, 14

[44] X. Wang, A. Farhadi, and A. Gupta. Actions ˜ transforma-
tions. In CVPR, 2016. 2

[45] L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maximum
margin clustering. In NIPS, 2004. 2

[46] B. Yao, X. Jiang, A. Khosla, A. L. Lin, L. Guibas, and L. Fei-
Fei. Human action recognition by learning bases of action
attributes and parts. In ICCV, 2011. 2

Outline of Appendix
This Appendix gives additional details and quantitative

results for our method. The organization is as follows.
In Appendix A, we provide additional experimental details
about the SVM training used to retrieve the clips with subti-
tles, described in Section 5.3 of the main paper, along with a
visualization of results. In Appendix B, we give additional
statistics and details about the dataset that was briefly in-
troduced in Section 5.1 of the main paper. In Appendix C,
we give additional details about the dynamic program that
we use to solve the linear program over the track constraints
defined in Section 3.1 of the main paper as needed for the
Frank-Wolfe optimization algorithm. In Appendix D, we
detail how we implement the new joint rounding method (7)
that was introduced in Section 3.3 of the main paper. In
Appendix E, we give additional details about the super-
vised baselines results given in Section 5.2. Finally, in Ap-
pendix F, we comment on the common failure cases of the
method.

A. SVM training for clip retrieval
In Section 5.3 we proposed an automatic method for re-

trieving video clips with manipulated objects. This method
makes use of narrations that come along with instructional
videos. Narrations in the form of text are first obtained auto-
matically with Automatic Speech Recognition (ASR)6 and
then processed as detailed below.

Language dataset. For each manipulation action, we
first find relevant positive and negative sentences on instruc-
tion websites such as Wikihow. On average we obtain about
12 positive and 50 negative sentences per action.

Language features. Off-the-shelf methods for text pars-
ing typically fail in the absence of punctuation. To process
ASR output, which comes without punctuation, we propose
to use the following simple but robust text representation.
We represent every 10-word window of the narration by a
TF-IDF vector based of uni-grams and bi-grams. We use the
same TF-IDF representation to encode text in our Language
dataset on the level of sentences.

SVM training. We train binary linear SVM classifiers
to identify manipulation actions using the Language dataset
for training and the regularization parameter C = 10. The
obtained classifiers are then used to score every 10-word
window of text narrations. Video clips with the temporal
correspondence to the top-scoring text narrations for each
action are then retrieved. To deduce the temporal extent of
the video clip given the top-scoring window, we trim 5 sec-
onds before and 15 seconds after the corresponding timing.
This is to account for the fact that people are usually doing
the action after speaking about it. These are the clips we use
for our evaluation in Section 5.3 of the main paper.

6The ASR transcriptions are directly downloaded from YouTube.

Illustration. In Figure 3, we provide an illustration of
text based clip retrieval. This visualization demonstrates the
difficulty of the addressed problem (see caption for details).

B. Dataset of manipulated objects
Table 4 provides statistics for the dataset introduced in

Section 5.1 of the main paper. For each object class we
indicate associated action classes and the number of video
clips for each action. We also provide the list of states and
the number of object tracklets with state annotations. In
total, we have around 20,000 annotated tracks which we use
for the quantitative evaluation of state discovery.

C. Dynamic program for the tracklets
The track constraints defined in Section 3.1 introduce

new challenges compared to the previous related work [2,
5, 24]. Recall that there are three main components in the
constraints. First, we assume that only one object is ma-
nipulated at a given time. Thus at most one tracklet can be
assigned to a state at a given time. This constraint is referred
to as the non-overlap constraint. Second, we have the or-
dering constraint that imposes that state 1 always happens
before state 2. The last constraint imposes that we have at
least one tracklet labeled as state 1 and at least one track-
let labeled as state 2. We need to be able to minimize lin-
ear functions over this set of constraints in order to use the
Frank-Wolfe algorithm. More precisely, as the constraints
decompose over the different clips, we can solve indepen-
dently for each clip n the following linear problem:

minimize
Yn∈{0,1}Mn×2

Tr(CTn Yn) (8)

s.t. Yn ∈ Yn︸ ︷︷ ︸
non-overlap + ordering

+ at least one

,

where Cn ∈ RMn×2 is a cost matrix that typically comes
from the computation of the gradient of the cost function
at the current iterate. In order to solve this problem, we
use a dynamic program approach that we explain next. Re-
call that we are given Mn tracklets (yi)Mn

i=1 and our goal is
to output the Yn matrix that assigns to each of these track-
lets either state 1, state 2 or no state at all while respecting
the constraints. The whole method is illustrated in Figure 5
with a toy example.

Non-overlap data structure for the tracklets. We first
pre-process the tracklets to build an auxiliary data-structure
that is used to enforce the non-overlap constraint between
the tracklets, as illustrated in Figure 5a. First, we sort and
index each tracklet by their beginning time, and add two
fictitious tracklets: y0 as the starting tracklet and yf as the
ending tracklet. These two tracklets are used to start and
terminate the dynamic program. If all the tracklets were

we ’ve also talked the wheel on the opposite side of the flat tire so we ’re ready to start changing it the first
thing we ’ll do is jack the vehicle up you have to loosen the jack a little bit in order to get the handle off this
particular model has a lug wrench built right in before we jack they would want to loosen the lug nuts because
once it ’s jacked up it ’s going to be very difficult to get those lug nuts off this particular model has a hubcap
which we ’ll just loosen those up does n’t take much because they ’re made out of plastic that the hubcap out
of the way i have access to the lug nuts loosen the lug nuts position yourself firmly pressing counterclockwise to
loosen the lug nuts not to lose just enough to crack them is a little stubborn position yourself over using your
knee or your foot you can gain leverage now we ’re ready to jack it up this is the common scissors jack the
screen moves in and out allowing the mac mechanism to move up and down and lift your car so as you turn it
to the right it will go up as you loosen it the jack will collapse allowing the car to come down now will position
the jack you want to be sure to get the jack on a good part of the frame your owners manual is a good place
to find where did properly jack the vehicle you can raise it up by hand until it contacts the frame it is in good
position we use the jack handle to raise the vehicle insert the end of the jack handle into the jack using it as
leverage it will help make the car go up easier remember turning clockwise to go up and counterclockwise to go
down carefully jack the car up never stick your hands or your legs under the vehicle as the car can fall and cause
damage checking can take a while so be patient and cautious as you jack ok now that the car is jacked up now
we ’ll take the lug nuts loose remember we already pre loosen them when the car was on the ground making
it easy to notice will come right off now trying to do that while the car was jacked up would be very difficult
remember to keep your lug nuts in close hand you do n’t want to roll away in the grass because it ’ll be hard
to find and that ’s what holds your tire on again we ’re turning them counterclockwise to get them loose or to
the left we ’ll remove the flat tire set it over here out of the way now there was heavy traffic area you would n’t
want to leave it in the street you might want to put it to the rear of the car grab the spare tire

put it in position you ’re going to center the spare tire on the wheel studs that ’s what the lug nuts go so go
ahead and do that lining it up you see it lines are pretty easy then install your lug nuts again clockwise is tight
counterclockwise is loose so we ’ll take them up by hand as far as they ’ll go once the tire centered lug nuts are
hand tight take the lug wrench again turning it clockwise to tighten the lugs to their firm not too tight because
remember your cars up on a jack we would n’t want it falling off with too much leverage of force insert the jack
handle back into the jack turning it counterclockwise again we ’re going to lower the vehicle again this will take
some time but going down a lot easier than going up it seems to be going down easy you can just do it like this
by doing it straight instead of having an angle but if it ’s too tough you can angle it and get the leverage that
you ’ll need to lower the jack or to raise the jack turn the jack low enough you can do it by hand now that it
does n’t have contact with the frame and we can remove it now that the tires on the ground we ’ll go ahead and
give them that final type we ’re going to start down here then move to the top one then back down over and back
again a little star pattern making sure we have equal torque on the wheel stud ok what we have our spare tire on
it set it up we ’re ready to go a couple things to remember

Figure 3: Illustration of our text based clip retrieval approach for the action “put wheel on a car”. We display the narration
of the video that is obtained from Automatic Speech Recognition (ASR). The text is highlighted with different colors. These
colors correspond to the score of the SVM that has been trained to detect sentences which refer to the action of interest.
More precisely, for each word, we compute the average score over all the windows that contain it. Red indicates high score,
blue indicates low score. The shown frames correspond to the top scoring part of the narration. We can see the coherence
between what the person says (highlighted in red) and does in the video. Note the different challenges of the problem. First,
the input narration is very long. Second, the text directly comes from ASR, therefore it contains mistakes and does not have
any punctuation. Third, several different expressions are similar and could refer to the action of interest. Despite all these
challenges, our method is able to correctly retrieve the clip that contains the action of interest.

(a) Non-overlap data structure for tracklets (b) Cost matrix C̃n for the dynamic program

Figure 5: In (a), we provide an illustration of a possible situation for the tracklets. y0 and yf are two fictitious tracklets that encode the
beginning and end of the video. Each tracklet is indexed based on its beginning time. The time overlap between tracklets is shown by the
grey color. We specify for each tracklet its possible successors by the dotted red arrows (see main text). Finally an admissible labeling
is illustrated by yellow tags where y1 and y5 have both been assigned to state 1 and y6 to state 2. In (b), we give an illustration of our
approach to solve (8) with a dynamic program. We display the modified cost matrix C̃n (see main text). A valid path has to go from
the green dot (y0) to the red dot (yf). The light yellow entries show part of the Cn matrix that are inserted in C̃n, whereas white entries
encode the rows of 0s that are inserted to impose the at least one ordering constraint. The red arrows specify an example optimal path
inside the matrix. The red entries display the tracklets that have been assigned to state 1 (y1 and y5) or state 2 (y6) (equivalent to putting
ones in the appropriate corresponding entries in Yn). Finally, the grey arrows display the possible valid transitions that can be made for
the entries along the red path, for clarity. We see for example that from (2, y1), there are 6 possible transitions: two column choices from
the two red arrows from y1 in (a) encoding the non-overlap constraint; and three row choices encoding the valid transition from “state 1”
(corresponding to the choice “state 1”, 0 or “state 2” for the next tracklet) encoding the “at least one” ordering constraint.

Objects Actions (#clips) States #Tracklets

wheel {remove (47), put (46)} {attached, detached} 5447
coffee cup {fill (57)} {full, empty} 1819
flower pot {put plant (27)} {full, empty} 2463
fridge {open (234), close (191)} {open, closed} 7968
oyster {open (28)} {open, closed} 1802

Table 4: Statistics of our new dataset of manipulated objects

sequentially ordered without any overlap in time, then we
could simply make a decision for each of them sequen-
tially as was done in previous work on action localization
for example (one decision per time step) [5]. To enforce
the non-overlap constraint, we force the decision process
to choose only one possible successor among the group of
overlapping valid immediate successors of a tracklet. For
each tracklet yi, we thus define its (smallest) set of “valid
successors” as the earliest tracklet yj7 after yi that is also
non-overlapping with yi, as well as any other tracklet yl for
l > j that is overlapping with yj (thus giving the earliest
valid group of overlapping tracklets). The valid successors

7Earliest means the smallest j.

are illustrated by red dotted arrows in Figure 5a. For ex-
ample, the valid successors of y1 are y3 (the earliest one
that is non-overlapping) as well as y4 (which overlaps with
y3 thus forming an overlapping group). Skipping a track-
let in this decision process means that we assign it to zero
(which trivially always satisfies the non-overlapping con-
straint); whereas once we choose a tracklet to potentially
assign it to state 1 or 2, we cannot visit any overlapping
tracklet by construction of the valid successors, thus main-
taining the non-overlap constraint.

Dynamic program. The dynamic programming ap-
proach is used when we can solve a large problem by solv-
ing a sequence of inclusive subproblems that are linked by a
simple recursive formula and that use overlapping solutions
(which can be stored in a table for efficiency). In terms
of implementation, [5] encoded their dynamic program as
finding an optimal path inside a cost matrix. This approach
is particularly suited when the update cost rule depends only
on the arrival entry in the cost matrix as opposed to be tran-
sition dependent. As we will show below, we can encode
the solution to our problem in a way that satisfies this prop-
erty. We therefore use the framework of [5] by casting our
problem as a search for an optimal path inside a cost matrix

C̃n illustrated in Figure 5b, and where the valid transitions
encode the possible constraints.

One main difference with [5] is that we have to deal with
the challenging at least one constraint in the context of or-
dered labels. To do so, we can filter further the set of valid
decisions by using “memory states” that encode in which
of the following three situations we are: (i) that state 1 has
not yet been visited, (ii) that state 1 has already been vis-
ited, but state 2 has not yet been visited (and thus that we
can either come back to state 1 or go to state 2) and (iii)
that both states have been visited. These memory states can
be encoded by interleaving complete rows of 0s in between
columns of Cn stored as rows, to obtain the 5 ×Mn ma-
trix C̃n. These new rows encode the three different memory
states previously described when making a prediction of 0
for a specific tracklet, and we enforce the correct memory
semantic by only allowing a path to move to the same row
or the row immediately below, except for state 1 which can
also move directly to state 2 (two rows below), and the mid-
dle “between state 1/2” row, where one can go up one row
additionally to state 1. Finally, the valid transitions between
columns (tracklets) are given by the valid successors data
structure as given in Figure 5a to encode the non-overlap
constraints. Combining these two constraints (at least one
ordering and non-overlap), we illustrate with grey arrows
in Figure 5b the possible transitions from the states along
the path in red. To describe the dynamic program recursion
below, we need to go the opposite direction from the suc-
cessors, and thus we say that yj is a predecessor of yi if and
only if yi is a successor of yj .

To perform the dynamic program, we maintain a matrix
Dn of the same size as C̃n whereDn(k, i) contains the min-
imal valid path cost of going from (1, y0) to (k, yi) inside
the cost matrix C̃n. To define the cost update recursion to
compute Dn(k, i), let P (k, i) be the set of tuples (l, j) for
which it is possible to go from (l, j) to (k, yi) according to
the rules described above. The update rule is then as fol-
lows:

Dn(k, i) = min
(l,j)∈P (k,i)

Dn(l, j) + C̃n(k, yi). (9)

As we see here, the added cost depends only on the arrival
entry C̃n(k, yi). We can therefore use the approach of [5]
and only consider entry costs rather than edge costs. Thanks
to our indexing property (tracklets are sorted by the begin-
ning time), we can update the dynamic program matrix by
filling each column of Dn one after the other. Once this
update is finished, we back-track to get the best path by
starting from the ending track (predecessors of yf) at the
last row (to be sure that both states have been visited) that
has the lowest score in the Dn matrix. The total complexity
of this algorithm is of order O(Mn).

Features put remove fill open fill open close Averagewheel wheel pot oyster coff.cup fridge fridge

(1) CNN + HOF 0.65 0.68 0.56 0.11 0.91 0.54 0.59 0.58
(2) CNN + IDT 0.65 0.72 0.56 0.21 0.93 0.6 0.62 0.61

Table 5: Results of supervised baselines for action localization.

D. Joint cost rounding method
Recall that we propose to use a convex relaxation ap-

proach in order to obtain a candidate solution of main prob-
lem (1). Thus, we need to round the relaxed solution after-
ward in order to get a valid integer solution. We propose
here a new rounding that is adapted to our joint problem.
We referred to this rounding as the joint cost rounding
(see Section 4 of main paper). This rounding is inspired
by [6, 2]. They observe that using the learned W ∗ classifier
to round gives them better solutions, both in terms of objec-
tive value and performance. We propose to use its natural
extension for our joint model. We first fix the classifiers
for actions Wa and for states Ws to their relaxed solution
(W ∗a ,W

∗
s) and find, for each clip n, the couple (Zn, Yn)

that minimizes the joint cost (7). To do so, we observe that
we can enumerate all Tn possibilities for Zn, and solve for
each of them the minimization of the joint cost with re-
spect to Yn. The minimization with respect to Yn can be
addressed as follows. First, we observe that the distortion
function (6) is bilinear in (Zn, Yn). Let Zn be a Tn × 1
vector, and let 12 be a vector of ones of length 2. We can
actually write: d(Zn, Yn) = Tr((BnZn1>2)

>Yn) for some
matrix Bn ∈ RMn×Tn . Thus, when Zn is fixed, the joint
term d(Zn, Yn) is actually a simple linear function of Yn.
In addition, the quadratic term in Yn coming from (2) is also
linear over the integer points (using the fact that y2 = y for
y ∈ {0, 1}). Thus, when Zn, W ∗a and W ∗s are fixed, the
minimization over Yn is a linear program (8) that we solve
using our dynamic program from the previous section. The
final algorithm is given in Algorithm 1. Its complexity is of
order O(TnMn).

E. Supervised baselines for Action Localiza-
tion

We have run supervised baseline methods with state-of-
the-art features. To be able to compare numbers with our
experiment, we used a leave-one-out technique. For each
action, we train a binary classifier with SVM on all videos
except one. Similarly to our setting, we then select the top
scoring time interval of the left alone test video. We re-
peat this process for all videos and report the metric used
in our paper. For baseline (1), we use the same features
we are using in the main paper. For baseline (2), we com-
plete our features with all channels of Improved Dense Tra-
jectories (IDT) [43]. Detailed results are given in Table 5.

Algorithm 1 Joint cost rounding for video n

Get W ∗s and W ∗a from the relaxed problem.
Initialize Z∗, Y ∗ and val∗ = +∞.
Loop over all possibilities for Zn (saliency)
for t in 1 : Tn do

Z ← zeros(Tn, 1) # Set the t-th entry of Z to 1

Zt ← 1
Definition of the cost matrix
Cn ← 1

2M (ones(Mn, 2)− 2XsWs) +
ν
T BnZ1

>
2

Dynamic program for the tracks
Ymin ← argminY ∈Yn

Tr(CTn Y)
Cost computation
costZ ← 1

2T ‖Z −XaWa‖2F
costY ← 1

2M ‖Ymin −XsWs‖2F
costZY ← ν

T d(Z, Ymin)
Update solution if better
val← costZ + costY + costZY
if val < val∗ then

Z∗ ← Z
Y ∗ ← Ymin

val∗← val
end if

end for
return Z∗, Y ∗

We observe that we obtain results that are on par with our
weakly supervised baselines (0.55 versus 0.58), therefore
demonstrating the potential of using the information of ob-
ject states for action localization.

F. Failure cases
We observed two main types of failures, illustrated in

Figure 6. The first one occurs when a false positive object
detection consistently satisfies the hypothesis of our model
in multiple videos (the top two rows in Figure 6). The sec-
ond typical failure mode is due to ambiguous labels (bottom
row in Figure 6). This highlights the difficulty in annotating
ground truth for long actions such as “pouring coffee”.

Figure 6: Typical failure cases for “removing car wheel”
(top) and ‘‘fill coffee cup” (middle, bottom) actions. Yellow
indicates correct predictions; red indicates mistakes. Top:
the removed wheel is incorrectly localized (right). Middle:
the “empty cup” is incorrectly localized (left). Bottom: In
this case, both object tracklets are annotated as “ambigu-
ous” in the ground truth as they occur during the pouring
action and hence the predictions, while they appear reason-
able, are deemed incorrect.

