Correction des exercices (Premières S)

Merki de me signaler les erreurs éventuelles.

Exercice 1

1. Le calcul du discriminant donne : $\Delta = 9 - 4 \times (-2) \times 5 = 49$, d’où :
 \[
 \begin{cases}
 x_1 = \frac{-3 + 7}{-4} = -1 \\
 x_2 = \frac{-3 - 7}{-4} = \frac{5}{2}
 \end{cases}
 \implies S = \{-1, \frac{5}{2}\}
 \]

2. $\Delta = \left[-(3 + \sqrt{2}\right)^2 - 4 \times 1 \times 3\sqrt{2} = 11 - 6\sqrt{2} = (3 - \sqrt{2})^2$
 \[
 \begin{cases}
 x_1 = \frac{3 + \sqrt{2} + 3 - \sqrt{2}}{2} = 3 \\
 x_2 = \frac{3 + \sqrt{2} - 3 + \sqrt{2}}{2} = \sqrt{2}
 \end{cases}
 \Rightarrow S = \{3, \sqrt{2}\}
 \]

3. Posons $X = x^2$, on a alors l’équation $2X^2 + 9X + 4 = 0$ à résoudre. $\Delta = 81 - 4 \times 2 \times 4 = 49$.
 \[
 \begin{cases}
 X_1 = \frac{-9 + 7}{-4} = -\frac{1}{2} \\
 X_2 = \frac{-9 - 7}{4} = -4
 \end{cases}
 \]
 Valables pour $X = x^2$, ces deux racines sont strictement négatives alors que x^2 est forcément positif, d'où on déduit qu'il n'y a pas de solution : $S = \emptyset$.

4. $\Delta = \left[-(\alpha + \beta)\right]^2 - 4 \times 1 \times \alpha\beta = \alpha^2 + 2\alpha\beta - 4\alpha\beta = \alpha^2 - 2\alpha\beta + \beta^2 = (\alpha - \beta)^2$.
 \[
 \begin{cases}
 x_1 = \frac{\alpha + \beta + \alpha - \beta}{2} = \alpha \\
 x_2 = \frac{\alpha + \beta - \alpha + \beta}{2} = \beta
 \end{cases}
 \Rightarrow S = \{\alpha, \beta\}
 \]

Exercice 2

La courbe représentative de f est représentée sur la Figure 1(a). On obtient C_g à partir de C_f par une symétrie axiale par rapport à l’axe des abscisses (Figure 1(b)). Pour C_h (Figure 1(c)), si $f(x) \geq 0$, alors $h(x) = f(x)$, sinon $h(x) = -f(x)$. Pour C_k (Figure 1(d)), si $x \geq 0$ alors $k(x) = f(x)$. De plus, pour tout $x \in \mathbb{R}, k(-x) = f(|-x|) = f(x)$ donc la fonction k est paire et alors sa courbe est symétrique par rapport à (Oy).

Exercice 3

1. On a le polynôme $P(x) = x^4 + 6x^3 - 11x^2 - 60x + 100$ que l'on souhaite mettre sous la forme $P(x) = (Q(x))^2$. P étant de degré 4, Q est forcément de degré 2. Posons alors $Q(x) = ax^2 + bx + c$ et développons Q^2 :
 \[
 (Q(x))^2 = (ax^2 + bx + c)^2
 = (ax^2 + bx + c) (ax^2 + bx + c)
 = a^2x^4 + 2abx^3 + (b^2 + 2ac)x^2 + 2bcx + c^2
 \]
Par identification terme à terme, on obtient le système :

\[
\begin{aligned}
a^2 &= 1 \\
2ab &= 6 \\
b^2 + 2ac &= -11 \\
2bc &= -60 \\
c^2 &= 100
\end{aligned}
\]

\[
\begin{aligned}
a &= 1 \\
b &= 3 \\
c &= -10
\end{aligned}
\]

Car Q et $-Q$ étant indifféremment solutions, on peut donc a ou $-a$: choisissons $a > 0$. Finalement,

\[Q(x) = x^2 + 3x - 10\]

2. Résoudre $P(x) = 0$ revient à résoudre $Q(x) = 0$, soit $x^2 + 3x - 10 = 0$.

On a $\Delta = 9 + 40 = 49$, d’où :

\[
\begin{aligned}
x_1 &= \frac{-3 + 7}{2} = 2 \\
x_2 &= \frac{-3 - 7}{2} = -5
\end{aligned}
\]

\[S = \{2, -5\}\]
3. (a) On a : \((x + 5)(ax^2 + bx + c) = ax^3 + (5a + b)x^2 + (5b + c)x + 5c\). Par identification :

\[
\begin{align*}
 a &= 1 \\
 5a + b &= 6 \\
 5b + c &= 6 \\
 5c &= 5
\end{align*}
\]
\[
\begin{align*}
 a &= 1 \\
 b &= 1 \\
 c &= 1
\end{align*}
\]

(b) On a :

\[
f(x) = \frac{x^4 + 6x^3 - 11x^2 - 60x + 100}{x^3 + 6x^2 + 6x + 5} = \frac{(x^2 + 3x - 10)^2}{(x + 5)(x^2 + x + 1)}
\]

Déterminons \(\mathcal{D}_f\) : on doit avoir \((x + 5)(x^2 + x + 1) \neq 0\), soit \(x + 5 \neq 0\) et \(x^2 + x + 1 \neq 0\). C’est-à-dire, \(x \neq -5\) pour la première condition. Pour la deuxième, cherchons à résoudre \(x^2 + x + 1 = 0\). \(\Delta = -3 < 0\) donc le polynôme reste toujours positif. Ainsi, \(\mathcal{D}_f = \mathbb{R} \setminus \{-5\}\).

Les racines du trinôme \(x^2 + 3x - 10\) sont \(-5\) et \(2\) (question 2) donc :

\[
x^2 + 3x - 10 = (x + 5)(x - 2)
\]

Finalement,

\[
\forall x \in \mathbb{R} \setminus \{-5\}, \quad f(x) = \frac{(x + 5)^2(x - 2)^2}{(x + 5)(x^2 + x + 1)} = \frac{(x + 5)(x - 2)^2}{x^2 + x + 1}
\]

Exercice 4

On a :

\[
t(h) = \frac{f(1 + h) - f(1)}{h} = \frac{1}{(1 + h)^2} - 1 = \frac{1}{h} - 1 = \frac{1 - (1 + h)^2}{h(1 + h)^2} = \frac{-h^2 - 2h}{h(1 + h)^2}
\]

Donc,

\[
t(h) = \frac{-2 - h}{(1 + h)^2}
\]

Ainsi,

\[
\lim_{h \to 0} t(h) = -2
\]

d'où :

\[
\lim_{h \to 0} \frac{f(1 + h) - f(1)}{h} = -2
\]

\(f\) est donc dérivable en 1 et \(f'(1) = -2\).

Exercice 5

Soit \(f(x) = 1 - x^2\), la dérivée est \(f'(x) = -2x\). Utilisons la formule donnant l’équation de la tangente au point \(M(x_0, y_0) : y = f(x_0) + f'(x_0)(x - x_0) = 1 - x_0^2 + (-2x_0)(x - x_0)\).

Pour calculer les coordonnées de \(A\) et \(B\), il suffit de remplacer successivement \(y\) puis \(x\) par 0 dans l’équation précédente :

\[
0 = 1 - x_0^2 + (-2x_0)(x_A - x_0) \quad \quad y_B = 1 - x_0^2 + (-2x_0)(-x_0)
\]

Nous obtenons alors :

\[
\begin{align*}
 x_A &= \frac{x_0^2 + 1}{2x_0} \\
 y_A &= 0 \\
 x_B &= 0 \\
 y_B &= x_0^2 + 1
\end{align*}
\]
L’aire \(\mathcal{A} \) du triangle vaut \(\frac{x_A \times y_B}{2} \), ce qui donne :

\[
\mathcal{A} = \frac{(x_0^2 + 1)^2}{4x_0}
\]

Nous avons \(x_0 > 0 \) et \(y_0 > 0 \), soit \(1 - x_0^2 > 0 \), d’où \(-x_0^2 > -1 \) et \(x_0^2 < 1 \). Comme \(x_0 > 0 \), on en déduit alors que \(x_0 < 1 \). On doit donc avoir \(x_0 \in [0,1] \).

Nous voulons déterminer le minimum de \(\mathcal{A} \) pour \(x_0 \in [0,1] \). Notons pour cela :

\[
\mathcal{A}(x) = \frac{(x^2 + 1)^2}{4x}
\]

Étudions les variations de \(\mathcal{A} \) sur \([0,1] \) :

\[
\mathcal{A}(x) = \frac{x^4 + 2x^2 + 1}{4x} = \frac{x^3}{4} + \frac{x}{2} + \frac{1}{4x}
\]

d’où :

\[
\mathcal{A}'(x) = \frac{3}{4}x^2 + \frac{1}{2} - \frac{1}{4x^2} = \frac{3x^4 + 2x^2 - 1}{4x^2} = \frac{B(x)}{4x^2}
\]

avec :

\[
B(x) = 3x^4 + 2x^2 - 1
\]

où l’on reconnaît une équation bicarrée. Posons alors \(X = x^2 \) et résolvons en \(X : \Delta = 2^2 - 4 \times 3 \times (-1) = 16 \).

Donc :

\[
\begin{aligned}
X_1 &= \frac{-2 + 4}{6} = \frac{1}{3} \\
X_2 &= \frac{-2 - 4}{6} = -1
\end{aligned}
\]

\[\Rightarrow\]

\[3X^2 + 2X - 1 = 3\left(X - \frac{1}{3}\right)(X + 1) = (3X - 1)(X + 1)
\]

Donc :

\[
B(x) = (3x^2 - 1)(x^2 + 1) = (x\sqrt{3} + 1)(x\sqrt{3} - 1)(x^2 + 1)
\]

Finalement,

\[
\mathcal{A}'(x) = \frac{(x\sqrt{3} + 1)(x\sqrt{3} - 1)(x^2 + 1)}{4x^2}
\]

Sur \([0,1] \), on obtient le tableau de variation suivant :

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>(\frac{1}{\sqrt{3}})</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{A}'(x))</td>
<td></td>
<td>(-)</td>
<td>(\theta)</td>
</tr>
<tr>
<td>(\mathcal{A}(x))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\mathcal{A}(x) \) est minimum pour \(x = \frac{1}{\sqrt{3}} \) et vaut alors \(\frac{4\sqrt{3}}{9} \) : le point \(M \) recherché a donc pour coordonnées :

\[
M \left(\frac{1}{\sqrt{3}}, \frac{2}{3} \right)
\]
Exercice 6

1. Pour tout $n \in \mathbb{N}$, en utilisant l’expression conjuguée pour les racines carrées, on a :

$$u_n = \sqrt{n+1} - \sqrt{n}$$

$$= \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}}$$

$$= \frac{n+1 - n}{\sqrt{n+1} + \sqrt{n}}$$

$$= \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

Les fonctions $x \to \sqrt{x+1}$ et $x \to \sqrt{x}$ sont croissantes sur $[-1, +\infty[$ et $[0, +\infty]$ respectivement, donc la fonction $x \to \sqrt{x+1} + \sqrt{x}$ est croissante sur $[0, +\infty[$ par somme de fonctions croissantes. La fonction $x \to \frac{1}{x}$ est quant à elle décroissante sur $[0, +\infty[$. On en déduit que la fonction $x \to \frac{1}{\sqrt{x+1} + \sqrt{x}}$ est décroissante sur $[0, +\infty[$.

Conclusion : La suite (u_n) est décroissante.

2. On a :

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0$$

Donc la suite (u_n) converge vers 0.

Exercice 7

1. Au premier lancer du dé, on obtient un six possibilités (de 1 à 6), que l’on retrouve au second lancer et encore au troisième lancer : au total, il y a donc $6^3 = 216$ triplets possibles.

2. (a) Ici, seul compte le premier lancer, où l’on veut obtenir un 6, soit une possibilité sur 6. La probabilité associée vaut donc

$$P(6, *, *) = \frac{1}{6}$$

où * représente n’importe quel chiffre sur les deuxième et troisième lancers.

(b) Il est demandé ici de calculer la probabilité d’obtenir exactement un 6 sur les trois lancers.

Commençons par étudier le cas où seul le premier lancer donne un 6, soit 1 possibilité sur 6. Si le deuxième lancer ni le troisième de doivent être un 6, soit chaque fois 5 possibilités sur 6. Il y a finalement, pour les trois lancers réunis, $1 \times 5 \times 5 = 25$ possibilités. Même calculs si l’unique 6 est obtenu au deuxième ou au troisième lancer. Au total, $3 \times 25 = 75$ possibilités. La probabilité associée vaut donc :

$$P(\text{un 6}) = \frac{75}{216} = \frac{25}{72}$$

(c) On veut déterminer la probabilité qu’il y ait exactement deux 6 sur les trois lancers. Soit le cas où les deux premiers lancers sont des 6. Il y a une seule possibilité pour les deux premiers lancers et 5 pour le troisième, ce qui donne $1 \times 1 \times 5 = 5$ possibilités pour les trois lancers réunis. L’ordre
d’obtention de deux 6 étant ici encore indifférent, on a donc un total de 5+5+5 = 15 possibilités.
La probabilité d’obtenir exactement deux 6 avec trois lancers est donc :

\[P(\text{deux } 6) = \frac{15}{216} = \frac{5}{72} \]

(d) A chacun des trois lancers, il y a une seule possibilité d’obtenir un 6. Soit au total 1 × 1 × 1 = 1 possibilité. La probabilité correspondante est donc :

\[P(\text{trois } 6) = \frac{1}{216} \]

(e) A chacun des trois lancers, l’événement “ne pas obtenir de 6” a 5 possibilités sur 6 de se réaliser, soit au total 5 × 5 × 5 = 125 possibilités. D’où la probabilité :

\[P(\text{aucun } 6) = \frac{125}{216} \]

Vérification : On remarquera aisément que l’univers des possibles est bien représenté par les événements (b) à (e) : dans chacun des tirages possibles, il y a forcément 1,2,3 ou aucun 6. Numériquement, la probabilité de réalisation de l’un de ces événements correspond à celle de l’événement certain, soit 1 :

\[P(\text{un } 6) + P(\text{deux } 6) + P(\text{trois } 6) + P(\text{aucun } 6) = \frac{75 + 15 + 1 + 125}{216} = 1 \]

Exercice 8

1. G existe car 2 + (−3) = −1 ≠ 0. On a de plus :

\[\overrightarrow{AG} = \frac{-3}{2 + (-3)} \overrightarrow{AB} = 3\overrightarrow{AB} \]

H existe car : −3 + 2 = −1 ≠ 0. Et de même :

\[\overrightarrow{AH} = \frac{2}{-3 + 2} \overrightarrow{AB} = -2\overrightarrow{AB} \]

2. On a :

\[\overrightarrow{C'D} + \overrightarrow{C'H} = \overrightarrow{C'A} + \overrightarrow{AG} + \overrightarrow{C'A} + \overrightarrow{AH} = 2\overrightarrow{C'A} + \overrightarrow{AG} + \overrightarrow{AH} \]

Or \(C' \) est le milieu de \([AB] \), donc \(2\overrightarrow{C'A} = \overrightarrow{BA} \), et d’après la quetion précédente :

\[\overrightarrow{AG} + \overrightarrow{AH} = 3\overrightarrow{AB} - 2\overrightarrow{AB} = \overrightarrow{AB} \]

d’où :

\[\overrightarrow{C'D} + \overrightarrow{C'H} = \overrightarrow{BA} + \overrightarrow{AB} = \overrightarrow{0} \]

Donc \(C' \) est le milieu de \([GH] \) et alors, \(G \) et \(H \) sont symétriques par rapport à \(C' \).

3. Soit \(G \) le barycentre de \((A,a)\) et \((B,b)\) et \(H \) le barycentre de \((A,b)\) et \((B,a)\), avec \(a + b \neq 0 \). On a :

\[\overrightarrow{AG} = \frac{b}{a+b} \overrightarrow{AB} \]

\[\overrightarrow{AH} = \frac{a}{a+b} \overrightarrow{AB} \]
Donc :

\[\overrightarrow{C'G} + \overrightarrow{C'H} = 2\overrightarrow{CA} + \overrightarrow{AG} + \overrightarrow{AH} \]

\[= \overrightarrow{BA} + \left(\frac{b}{a+b} + \frac{a}{a+b} \right) \overrightarrow{AB} \]

\[= \overrightarrow{BA} + \overrightarrow{AB} \]

\[= \overrightarrow{0} \]

Le résultat peut donc être généralisé.

4. Soit I tel que \(\overrightarrow{BI} = 3\overrightarrow{BA} - 5\overrightarrow{BC} \).

\[\overrightarrow{BI} = 3\overrightarrow{BA} - 5\overrightarrow{BC} \iff \overrightarrow{BI} - 3(\overrightarrow{BI} + \overrightarrow{IA}) + 5(\overrightarrow{BI} + \overrightarrow{IC}) = \overrightarrow{0} \]

\[\iff -3\overrightarrow{BI} - 3\overrightarrow{IA} + 5\overrightarrow{IC} = \overrightarrow{0} \]

Donc \(x = y = -3 \) et \(z = 5 \) conviennent.

5. H est le barycentre de \((A, -3)\) et \((B, 2)\) donc, pour tout \(M \) du plan, on a :

\[-3\overrightarrow{MA} + 2\overrightarrow{MB} = (-3 + 2)\overrightarrow{MH} \]

soit :

\[-3\overrightarrow{MA} + 2\overrightarrow{MB} = -\overrightarrow{MH} \quad \text{ou} \quad 3\overrightarrow{MA} - 2\overrightarrow{MB} = \overrightarrow{MH} \]

Donc :

\[||3\overrightarrow{MA} - 2\overrightarrow{MB}|| = 3AC \iff ||\overrightarrow{MH}|| = 3AC \iff MH = 3AC \]

L’ensemble \(E \) des points \(M \) solutions est donc le cercle de centre \(H \) et de rayon \(3AC \).

Exercice 9 Le cercle que l’on doit déterminer passe par les deux points \(A(2, -1) \) et \(B(1, 3) \). Le centre se situe donc nécessairement sur la médiatrice de \([AB]\). Le milieu de \([AB]\) est le point \(I(\frac{3}{2}, 1) \). Cherchons une équation de la médiatrice de \([AB]\). Pour cela, écrivons qu’avec \(I \) milieu de \([AB]\), le point \(M(x, y) \) est sur la médiatrice si seulement si \(\overrightarrow{IM} \cdot \overrightarrow{AB} = 0 \). On a :

\[\overrightarrow{IM} \begin{pmatrix} x - \frac{3}{2} \\ y - 1 \end{pmatrix} \quad \text{et} \quad \overrightarrow{AB} \begin{pmatrix} -1 \\ 4 \end{pmatrix} \]

d’où une équation de la médiatrice de \([AB]\) est :

\[x - 4y + \frac{5}{2} = 0 \]

Déterminons-en alors l’intersection avec la droite donnée :

\[\begin{cases} x + y + 1 = 0 \\ x - 4y + \frac{5}{2} = 0 \end{cases} \]

7
En faisant la différence des deux équations, nous obtenons :
\[5y - \frac{3}{2} = 0 \]
Donc :
\[y = \frac{3}{10} \quad \text{et} \quad x = -\frac{13}{10} \]
sont les coordonnées du centre du cercle. Notons \(\Omega \) ce centre.

\[\Omega \left(-\frac{13}{10}, \frac{3}{10} \right) \]

Pour trouver le rayon \(r \) du cercle, on a :
\[||\overrightarrow{\Omega B}|| = r \]
\[||\overrightarrow{\Omega B}||^2 = r^2 = \left(1 + \frac{13}{10} \right)^2 + \left(3 - \frac{3}{10} \right)^2 = \frac{1258}{100} \]
d'où \(r = \sqrt{12.58} \approx 3.55 \).

Exercice 10

1. On a :
\[\overrightarrow{AB} \left(1, 1, -\frac{1}{2} \right) \quad \text{et} \quad \overrightarrow{AE} \left(2, 2, -1 \right) \]
d'où \(\overrightarrow{AE} = 2\overrightarrow{AB} \), donc \(A, B \) et \(E \) sont alignés.

2. On a :
\[\overrightarrow{AB} \left(1, 1, -\frac{1}{2} \right) \quad \text{et} \quad \overrightarrow{DC} \left(1, 1, -\frac{1}{2} \right) \]
Les droites \((AB)\) et \((CD)\) étant distinctes, l'égalité \(\overrightarrow{AB} = \overrightarrow{DC} \) prouve que \(ABCD \) est un parallélogramme.

3. On a :
\[\overrightarrow{AF} \left(5, 5, -13 \right) \quad \text{et} \quad \overrightarrow{AB} \left(1, 1, -\frac{1}{2} \right) \quad \text{et} \quad \overrightarrow{AC} \left(2, 2, -\frac{9}{2} \right) \]
Pour prouver que \(F \in (ABC) \), il suffit de trouver \(x \) et \(y \) tels que : \(\overrightarrow{AF} = x\overrightarrow{AB} + y\overrightarrow{AC} \).
\[
\overrightarrow{AF} = x\overrightarrow{AB} + y\overrightarrow{AC} \quad \iff \quad \begin{pmatrix} 5 \\ 5 \\ -13 \end{pmatrix} = x \begin{pmatrix} 1 \\ 1 \\ -\frac{1}{2} \end{pmatrix} + y \begin{pmatrix} 2 \\ 9 \\ -\frac{9}{2} \end{pmatrix} \]
\[\iff \begin{cases} 5 = x + 2y \\ -13 = -\frac{1}{2}x - \frac{9}{2}y \end{cases} \quad \iff \begin{cases} x + 2y = 5 \\ x + 9y = 26 \end{cases} \]
\[\iff \begin{cases} x = -1 \\ y = 3 \end{cases} \]
Donc : \(F \in (ABC) \) et \(F(-1, 3) \) dans \((A, \overrightarrow{AB}, \overrightarrow{AC}) \).