Integer Clocks and Local Time Scales
Part I – Part II

Adrien Guatto

ENS - PARKAS

SYNCHRON 2014
Part I
Programming Languages for Reactive Systems

■ Critical Control Software:
 ■ Process unbounded sequences of data
 ■ ... within bounded memory
 ■ ... and bounded reaction time.

■ Synchronous Digital Hardware:
 ■ Process unbounded sequences of data
 ■ ... within bounded memory
 ■ ... and bounded reaction time.

■ Synchronous Programming Languages: program both!
Synchrony and Performance-Sensitive Code

- Traditional use cases: control laws, protocols, etc.
- Signal processing: involve...
 - subtle space/time tradeoffs
 - architecture-dependent optimizations
- Can we use Synchronous Languages for such applications?

Long-Term Objective

Design and implement a...

- synchronous functional language
- compiling to hardware and software
- with the usual safety guarantees
- but generating code of a different shape
Ingredients

Integer Clocks
- Compute streams by bursts of value
- Generate nested loops from purely functional code

Local Time Scales
- Time may pass faster inside than outside
- Time is now *ambient* rather than *global*
- Make the type system more uniform

Linear Higher-Order Functions
- Call every function you receive exactly once
- Enable *modular* compilation to hardware
This Talk

- Present Integer Clocks and Local Time Scales intuitively
 - Reason purely on stream functions à la Lustre, Lucid S., Lucy-n
 - Focus on first-order parts
- Show how the intuitions can be implemented as a type system
 - (Check buffers sizes)
 - Reject non-causal programs
- Discuss soundness results
 - Proof by realizability
Streams are infinite sequences of values
- Think of them as produced by programs running forever
- However, streams may be partial, i.e. block after some time!
 - Happens when the producer program does an infinite, silent loop.
Here is a picture of $\text{Stream}(\mathbb{B})$, ordered by information:
Stream Functions (1/2)

Consider the following function

\[f : \text{Stream}(\mathbb{N}) \to \text{Stream}(\mathbb{N}) \]
\[f(x.xs) = (x + 1).(f xs) \]

Can it be implemented as a state machine? Yes. For example:

\[m : M(\mathbb{N}, \mathbb{N}) \]
\[m = (\{\ast\}, \ast, \lambda(\ast, x).(*, x + 1)) \]

The machine \(m \) processes one element per transition. It was easy since the function is \textit{length-preserving}.
What about the following function?

\[g : \text{Stream}(\mathbb{N}) \rightarrow \text{Stream}(\mathbb{N}) \]
\[g(x.xs) = (x + 1).(x - 1).(g\ xs) \]

Yes, if we cheat a bit.

\[m_1 : \mathcal{M}(\mathbb{N}, \text{List}(\mathbb{N})) \]
\[m_1 = (\{\ast\}, *, \lambda(\ast, x).(\ast, [x + 1; x - 1])) \]

Another possibility:

\[m_2 : \mathcal{M}(\text{List}(\mathbb{N}), \mathbb{N}) \]
\[m_2 = (\mathbb{N} \cup \{\ast\}, *, \\
\begin{align*}
\lambda(s, x).& \text{if } s = \ast \text{ then } (hd\ x, hd\ x + 1) \text{ else } (\ast, s - 1)\
\end{align*} \]
Naively speaking, the function g is not length-preserving.

\[
g : \text{Stream}(\mathbb{N}) \to \text{Stream}(\mathbb{N})
\]
\[
g (x.xs) = (x + 1).(x - 1).(g xs)
\]

However, we can make it so by changing its (co)domain!

\[
g_1 : \text{Stream}(ext{List}(\mathbb{N})) \to \text{Stream}(ext{List}(\mathbb{N}))
\]
\[
g_1 ([x].xs) = [x + 1; x - 1].(g_1 xs)
\]

\[
g_2 : \text{Stream}(ext{List}(\mathbb{N})) \to \text{Stream}(ext{List}(\mathbb{N}))
\]
\[
g_2 ([x].xs) = [x + 1].(\text{let } [].xs' = xs \text{ in } [x - 1].(g_2 xs'))
\]

Functions g_1 and g_2 are length-preserving.
Synchronizing Functions

How to describe the relationship between g, g_1 and g_2?

\[
g : \text{Stream}(\mathbb{N}) \to \text{Stream}(\mathbb{N})
\]
\[
g_1 : \text{Stream}(\text{List}(\mathbb{N})) \to \text{Stream}(\text{List}(\mathbb{N}))
\]
\[
g_2 : \text{Stream}(\text{List}(\mathbb{N})) \to \text{Stream}(\text{List}(\mathbb{N}))
\]

Remember that g_1 and g_2 work only for specific list sizes:

<table>
<thead>
<tr>
<th></th>
<th>Input list sizes</th>
<th>Output list sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_1</td>
<td>\mathbb{N}^ω</td>
<td>\mathbb{N}^ω</td>
</tr>
<tr>
<td>g_2</td>
<td>$(1, 0)^\omega$</td>
<td>\mathbb{N}^ω</td>
</tr>
</tbody>
</table>

These integer streams, clocks, fully characterize g_1 and g_2. We write:

\[
g_1 :: (1) \rightarrow (2)
\]
\[
g_2 :: (1, 0) \rightarrow (1)
\]
A clock \(w \) is just a stream of integers!
What can we do with such a \(w \in \text{Stream}(\mathbb{N}) \)?

\[
\text{pack}_w \\
\text{Stream}(V) \quad \quad \quad \text{Stream(List}(V)) \\
\text{unpack}
\]

For example:

\[
\begin{array}{|c|c|c|c|c|}
\hline
x &= \text{pack}_{1(10)}(a.b.c.d \ldots) & [a] & [b] & \emptyset & [c] & \emptyset & \ldots \\
y &= \text{pack}_{(02)}(a.b.c.d \ldots) & \emptyset & [a; b] & \emptyset & [c; d] & \emptyset & \ldots \\
\hline
\end{array}
\]

Obviously:

\[\text{unpack } x = \text{unpack } y \]
We now define the functions g_1 and g_2 purely from their clocks:

\[
\begin{align*}
 g_1 &:: (1) \rightarrow (2) \\
 g_1 &= \text{pack}_{(2)} \circ g \circ \text{unpack} \\
 g_2 &:: (10) \rightarrow (1) \\
 g_2 &= \text{pack}_{(1)} \circ g \circ \text{unpack}
\end{align*}
\]

What about the following function?

\[
\begin{align*}
 g_3 &:: (01) \rightarrow (1) \\
 g_3 &= \text{pack}_{(1)} \circ g \circ \text{unpack}
\end{align*}
\]

It is wrong, since it breaks its contract at the first time step:

\[
g_3 ([], \bot) = \bot
\]
From Synchronization to Desynchronization

\[g_1 : (1) \rightarrow (2) \]

\[\text{sync}_{(1) \rightarrow (2)} \]

\[\text{desync}_{(1) \rightarrow (2)} \]

\[g : \text{Stream}(\mathbb{N}) \rightarrow \text{Stream}(\mathbb{N}) \]

\[g_2 : (10) \rightarrow (1) \]

\[\text{sync}_{(10) \rightarrow (1)} \]

\[\text{desync}_{(10) \rightarrow (1)} \]
A buffer shifts the values of a clocked stream to the left:

\[
\begin{array}{c|c|c|c|c|c}
\hline
x & (10) & [a] & [b] & [c] & \ldots \\
\hline
x' & (01) & [a] & [b] & [c] & \ldots \\
\hline
\end{array}
\]

The relation \(w <:_k w' \) models a buffer with producer \(w \), consumer \(w' \) and \(k \) steps of delay. For example:

- \((10) <:_1 (01) \)

\[
\begin{array}{cccccccc}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & \ldots \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & \ldots \\
\end{array}
\]

- \((101) <:_0 (011) \) but not \((101) <:_1 (011) \)

\[
\begin{array}{cccccccc}
1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & \ldots \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & \ldots \\
\end{array}
\]
Now, given a function $h :: w_1 \rightarrow w_2$, we may put a buffer on its...

Output: if $w_2 <:_k w'_2$, we define

$$h' :: w_1 \rightarrow w'_2$$

$$h' = \text{buffer}_{w_2 <: k w'_2} \circ h$$

For example:

$$(1) \rightarrow (10) <: (1) \rightarrow (01)$$

Input: if $w'_1 <: k w_1$, we define

$$h'' :: w'_1 \rightarrow w_2$$

$$h'' = h \circ \text{buffer}_{w'_1 <: k w_1}$$

For example:

$$(01) \rightarrow (1) <: (10) \rightarrow (1)$$
Playing with Synchronous Functions: Feedback

Given a function $h :: w_1 \rightarrow w_2$, is it safe to compute $x = h x$?
What about...

\[h_1 :: (1) \rightarrow (1) \quad \text{KO} \]
\[h_2 :: (01) \rightarrow (10) \quad \text{OK} \]
\[h_3 :: (011) \rightarrow (101) \quad \text{KO} \]

We allow feedback only when $w_2 <:_1 w_1$.
This makes sure that $x = h x$ is total.
Part II
Recap of Part I

In part I, we saw...

- How the compilation of Lustre-like languages can be seen as making stream functions length-preserving by cheating with (co-)domains:

 \[
 \text{from } \text{Stream}(\mathbb{N}) \rightarrow \text{Stream}(\mathbb{N}) \quad \text{to } \text{Stream}(\text{List}(\mathbb{N})) \rightarrow \text{Stream}(\text{List}(\mathbb{N}))
 \]

- How these way of making functions length-preserving can be characterized by the sizes of the lists

- How you could play with some operations on stream functions, such as buffering and feedback loops.

Now we turn to the description of local time scales.
Take any function f implemented by state machine m, with

$$f :: (10) \rightarrow (01)$$

We can transform f into f' such that

$$f' :: (1) \rightarrow (1)$$

What would be m', the implementation of f'?

- A single transition of m' performs two transitions of m
- We write

$$ (10) \rightarrow (01) \uparrow_{(2)} (1) \rightarrow (1) $$
Local Time Scales and Scatter/Gather

A local time scale comes with a clock \mathcal{w} driving its internal time

- E.g. $(2\ 1)$ begins with two internal steps for one external, etc.

How does the inside sees the outside? The converse?

- $w_1 \rightarrow w_2 \uparrow w w'_1 \rightarrow w'_2$: leaving local time

\[
\begin{align*}
(101) & \rightarrow (011) \quad \uparrow_{(2\ 1)} \quad (1) \rightarrow (1) & \text{OK} \\
(011) & \rightarrow (101) \quad \uparrow_{(2\ 1)} \quad (1) \rightarrow (1) & \text{OK}
\end{align*}
\]

- $w_1 \rightarrow w_2 \downarrow w w'_1 \rightarrow w'_2$: entering local time

\[
\begin{align*}
(1) & \rightarrow (1) \quad \downarrow_{(2\ 1)} \quad (101) \rightarrow (011) & \text{OK} \\
(1) & \rightarrow (1) \quad \downarrow_{(2\ 1)} \quad (011) \rightarrow (101) & \text{KO}
\end{align*}
\]
Scatter/Gather: Streams

Consider two simple examples:

\[(10) \uparrow_{(2)} (1)\]

What is the action of \((2)\) on \((10)\) that gives \((1)\)?

Let us define clock composition as

\[
\text{Stream}(\mathbb{N}) \times \text{Stream}(\mathbb{N}) \rightarrow \text{Stream}(\mathbb{N})
\]

\[
(n.w) \text{ on } (m_1 \ldots m_n.w') = (\sum_{1 \leq i \leq n} m_i).(w \text{ on } w')
\]

We can now define:

\[
w_1 \uparrow_w w_2 \iff w \text{ on } w_1 = w_2
\]

Similarly, \((1) \downarrow_{(2)} (0 1)\) because \((1) = (2) \text{ on } (10)\)
Going back to our first example: \((10) \rightarrow (01) \uparrow_{(2)} (1) \rightarrow (1)\). Why?

Because we have \((1) \downarrow_{(2)} (10)\) and \((01) \uparrow_{(2)} (1)\).

This suggests the reasoning principle

\[
\frac{w'_1 \downarrow_w w_1 \quad w_2 \uparrow_w w'_2}{w_1 \rightarrow w_2 \uparrow_w w'_1 \rightarrow w'_2}
\]

More complex principles can be found for \(w_1 \rightarrow w_2 \downarrow_w w'_1 \rightarrow w'_2\).
Putting it all together (1/2)

Take \(f(x, y) = (0.y, x) \). Is the smallest fixpoint of \(f \) total? Why?

This problem is equivalent to the scheduling of this Lustre code:

\[
\begin{align*}
x &= 0 \ fby \ y \\
y &= x
\end{align*}
\]

Consider the signature below:

\[
f :: \ (0 \, 1) \otimes 0(0 \, 1) \rightarrow (1 \, 0) \otimes (0 \, 1)
\]

It mimics the growth of partial streams in \(\text{lfp } f = \bigsqcup_{i \geq 0}(f^i \bot) \):

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f \ x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\bot, \bot))</td>
<td>((0.\bot, \bot))</td>
</tr>
<tr>
<td>((0.\bot, \bot))</td>
<td>((0.\bot, 0.\bot))</td>
</tr>
<tr>
<td>((0.\bot, 0.\bot))</td>
<td>((0.0.\bot, 0.\bot))</td>
</tr>
<tr>
<td>((0.0.\bot, 0.\bot))</td>
<td>((0.0.0.\bot, 0.0.\bot))</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
</tbody>
</table>
So, with \(f :: (01) \otimes 0(01) \rightarrow (10) \otimes (01) \), since
\[
(10) \prec_{1} (01) \\
(01) \prec_{1} 0(01)
\]
we know that the fixpoint is total, and get
\[
lfp f :: (10) \otimes (01)
\]
Now, we can wrap it into a local time scale going twice faster
\[
(10) \otimes (01) \uparrow_{(2)} (1) \otimes (1)
\]
Interestingly, something happens to the internal buffers

<table>
<thead>
<tr>
<th>Inside view</th>
<th>Outside view</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10) \prec_{1} (01)</td>
<td>(1) \prec_{0} (1)</td>
</tr>
<tr>
<td>(01) \prec_{1} 0(01)</td>
<td>(1) \prec_{1} 0(1)</td>
</tr>
</tbody>
</table>

Wire
Memory
\[
\begin{align*}
e & ::= x \\
 & \quad | \lambda x.e \\
 & \quad | e e \\
 & \quad | (e, e) \\
 & \quad | \text{let } (x, x) = e \text{ in } e \\
 & \quad | \text{fix } e \\
 & \quad | c \\
 & \quad | \text{op } e \\
 & \quad | \text{merge } p e e \\
 & \quad | e \text{ when } p \\
p & ::= c^*(c^+) \\

t & ::= dt :: ct \\
 & \quad | t \otimes t \\
 & \quad | t \rightarrow t \\
 & \quad | dt ::= \text{bool} | \text{int} | \ldots \\
 & \quad | ct ::= p \\
 & \quad | ct \text{ on } ct \\
\Gamma & ::= \Box \\
 & \quad | \Gamma, x : t
\end{align*}
\]
Typing Buffers

Sub
\[
\Gamma \vdash e : t \\
\vdash t <_{k} t' \\
\hline
\Gamma \vdash e : t'
\]

AdaptFun
\[
t'_1 <_{k_1} t_1 \\
t_2 <_{k_2} t'_2 \\
\hline
t_1 \rightarrow t_2 <_{0} t'_1 \rightarrow t'_2
\]
\[
\text{Fix} \quad
\Gamma \vdash e : t \rightarrow t' \quad \vdash t' <:_1 t \quad \vdash t' \text{ value} \\
\hline \\
\Gamma \vdash \text{fix} \ e : t'
\]
Typing Local Time Scales

\[
\begin{align*}
\text{Scale} \\
\vdash \Gamma \downarrow_{ct} \Gamma' & \quad \Gamma' \vdash e : t' & \vdash t' \uparrow_{ct} t \\
\hline
\Gamma \vdash e : t
\end{align*}
\]
Soundness and Realizability

Two semantics: unclocked $\mathcal{K}[__]$ and clocked $\mathcal{S}[__]$, e.g.

$$\mathcal{K}[\vdash e : \text{int} :: ct \rightarrow \text{int} :: ct] : \text{Stream}({\mathbb{N}}) \rightarrow \text{Stream}({\mathbb{N}})$$

$$\mathcal{S}[\vdash e : \text{int} :: ct \rightarrow \text{int} :: ct] : \text{Stream}({\text{List}({\mathbb{N}})}) \rightarrow \text{Stream}({\text{List}({\mathbb{N}})})$$

Soundness theorem

The statics (typing) and dynamics (semantics) agree:

$$\forall e, dt, ct, \text{clock} \ S[\vdash e : dt :: ct] = [ct]$$

Some interesting, more or less direct corollaries:

- The clocked semantics is causal
 $$\forall e, dt, ct, S[\vdash e : dt :: ct] \text{ is total}$$

- Synchronizing the unclocked semantics gives the clocked one
 $$\forall e, t, S[\vdash e : t] = \text{sync}_t \ \mathcal{K}[\vdash e : t]$$
Soundness proof (1/2)

- First, define the set of *realizers* of some type \(t \):

\[
\begin{align*}
\mathcal{W}_t & \subseteq S[t] \\
\mathcal{W}_{dt :: ct} & = \{ xs \mid \text{clock} \; xs = \llbracket ct \rrbracket \} \\
\mathcal{W}_{t_1 \otimes t_2} & = \mathcal{W}_{t_1} \times \mathcal{W}_{t_2} \\
\mathcal{W}_{t \rightarrow t'} & = \{ f \mid \forall x \in \mathcal{W}_t, (f \; x) \in \mathcal{W}_{t'} \} \\
\mathcal{W}_\Gamma & \subseteq S[\Gamma] \\
\ldots
\end{align*}
\]

- The soundness theorem then becomes a corollary of the *adequacy lemma*: for all \(\Gamma, e \) and \(t \), we have

\[
\forall \gamma \in \mathcal{W}_\Gamma, (S[\Gamma \vdash e : t] \; \gamma) \in \mathcal{W}_t
\]

- Unfortunately, it does not work!
Soundness proof (2/2)

- The proof attempt fails on fixpoints: we need information on partial streams.
- Let us refine realizers as follows:
 \[
 \begin{align*}
 \mathcal{W}^n_{t} & \subset S[t] \\
 \mathcal{W}^n_{dt :: ct} & = \{xs \mid \text{clock } xs \equiv_n S[ct]\} \\
 \mathcal{W}^n_{t_1 \otimes t_2} & = \mathcal{W}^n_{t_1} \times \mathcal{W}^n_{t_2} \\
 \mathcal{W}^n_{t \rightarrow t'} & = \{f \mid \forall m \leq n, \forall x \in \mathcal{W}^m_t, (f \ x) \in \mathcal{W}^m_{t'}\} \\
 \mathcal{W}^n_{\Gamma} & \subset S[\Gamma] \\
 \end{align*}
 \]

- And restate the adequacy lemma:
 \[
 \forall n \in \mathbb{N}, \forall \gamma \in \mathcal{W}^n_{\Gamma}, (S[\Gamma \vdash e : t] \gamma) \in \mathcal{W}^n_t
 \]
- An essential lemma for fixpoints:
 \[
 \forall t, t', k, n \in \mathbb{N}, \forall xs \in \mathcal{W}^n_t, (S[t <:_k t'] xs) \in \mathcal{W}^{n+k}_{t'}
 \]
Related work and Inspiration

- Lustre (Caspi, Halbwachs et al.)
 - General conceptual setting
- Lucid Synchrone (Caspi, Pouzet et al.)
 - Clocks as types
 - Separate compilation
- Lucy-n (Mandel, Plateau, Pouzet)
 - Buffers, adaptability
 - Ultimately periodic clocks
- Clock Domains in ReactiveML (Mandel, Pasteur)
 - Local time scales
- Geometry of Synthesis, Verity (Ghica)
 - Linear HOFs to circuits via $G()$ (from Abramsky, Girard)
- Cyclic Scheduling of *DFs (Lee, Munier-Kordon, etc.)
 - Algorithms for type inference with periodic clocks
Conclusion and Perspectives

- A setting for unified clocking / initialization / causality analysis
 - The full type system is not overly complex
 - Local time scales important for modularity
 - No need for a scheduling pass after typing
- Relies on standard programming language theory
 - Denotational Semantics, Types, Realizability
 - Realizability is a powerful tool. Too powerful?
- Lots of remaining questions
 - Theoretical: principality, better semantic setting, full abstraction
 - Practical: type inference, optimizations, parallel code generation

Thank you!
DownArrowBin
\[t'_1 \uparrow_{ct} t_1 \quad \vdash \quad t_2 \downarrow_{ct} t'_2 \quad \text{ct} \leq (1) \]
\[\vdash \quad t_1 \rightarrow \circ t_2 \downarrow_{ct} t'_1 \rightarrow \circ t'_2 \]

DownArrowPos
\[t'_1 \downarrow_{ct'} t_1 \quad \vdash \quad t_2 \uparrow_{ct'} t'_2 \quad \text{ct on ct'} = (1) \]
\[\vdash \quad t_1 \rightarrow \circ t_2 \downarrow_{ct} t'_1 \rightarrow \circ t'_2 \]

DownOn
\[t \downarrow_{ct} t'' \quad \vdash \quad t'' \downarrow_{ct'} t' \]
\[\vdash \quad t \downarrow_{ct \text{ on ct'}} t' \]