II.2 Double visage combinatoire - géométrie

II.2.1 Aspect combinatoire

Nous donnons sept présentations équivalentes des dessins d'enfants, qu'il est utile de combiner pour en percevoir les applications. L'équivalence entre ces descriptions est classique et date de bien avant l'étude des dessins d'enfants. Nous n'en ferons donc pas des démonstrations complètes.

a. Topologie

Présentation 1 (Carte bipartite)
Une carte (S, K, X) est bipartite si elle est munie d'une application S-> {o, *} donnant un type aux sommets, telle que chaque arête soit adjacente à deux sommets de types différents.
La catégorie P1 a pour objets les cartes bipartites sur une surface orientable et les morphismes sont les homéomorphismes conservant le type des sommets.

Ceci est la définition la plus visuelle, celle qui permet de tracer effectivement des dessins au sens commun du terme. Pour encore plus de simplicité, nous pouvons oublier le type des sommets d'un dessin et obtenir un dessin propre (cf. § II.2.2.b.).

Présentation 2 (Triangulations bicolorées)
Une triangulation (S, K, X) est bicolorée si ses cellules (triangles) sont de deux couleurs déterminées par une application X-K -> {±1} telle que deux triangles adjacents sont de couleurs différentes.

Nous pouvons remarquer que si une surface compacte X est munie d'une triangulation bicolorée, elle est orientable. On aborde parfois le sujet des dessins d'enfants par l'étude des triangulations [3].

Présentation 3 (Triangulations tripartites)
Une triangulation (S, K, X) tripartite si elle est munie d'une application S-> {o, *, °} donnant un type aux sommets, telle que chaque arête soit adjacente à deux sommets de types différents.

Ces deux dernières présentations sont équivalentes. Si nous avons une triangulation tripartite, chaque cellule a trois sommets de types distincts. Pour chacune, l'ordre des sommets o, *, ° donne une orientation. Lorsque nous avons choisi une orientation sur X, cela nous donne une bicoloration des cellules.

Réciproquement, soit une triangulation bicolorée. Nous choisissons un sommet a qui sera de type o et un sommet b adjacent à a qui sera de type *. Ceci permet de construire de proche en proche un partition des sommets telle que les trois sommets d'un triangle soient de types différents. À cause de la bicoloration, le nombre de triangles adjacents à un sommet donné est pair, cette construction est donc cohérente.

Nous pouvons construire une correspondance entre la présentation P3 des dessins sous la forme de triangulations tripartites et la présentation P1 sous la forme de cartes bipartites. Prenons une triangulation tripartite (S,K,X). Soit S' l'ensemble des sommets de type o ou *, et soit K' la réunion des sommets de S' et des arêtes reliant deux sommets de S'. Alors (S',K',X) est une carte bipartite. Il y a un point ° dans chaque cellule, et cette cellule est la réunion des triangles touchant ce point.

Présentation 4 (Hypercartes)
Un dessin est aussi une classe d'homéomorphisme d'hypercartes sur une surface connexe compacte orientable.

Cette présentation est équivalente aux précédentes. En effet, si (S,K,X) est la carte délimitant les cellules (de trois types) d'une hypercarte P4, sa carte duale est une triangulation tripartite P3.

  Bonhomme
Figure II.5: Le ``petit bonhomme'' : carte bipartite, triangulation et hypercarte (les flèches sont numérotées de 1 à 8).

b. Choix de terminologie

À cause des propriétés géométriques et algébriques (voir P8), nous appellerons zéro les points de type o et un ceux de type *. Nous appellerons face les cellules, ou bien les points °. La description P3 sous la forme de triangulations tripartites montre qu'il est facile de permuter les rôles de ces trois types de points.

Nous appellerons flèche un segment reliant un o et un * (selon P1), ou bien le triangle positif contigu (selon P2) ou le sommet positif correspondant (selon P4). gif Nous appellerons triangle chaque cellule de la triangulation (selon P2 ou P3). Les triangles positifs correspondent aux demi-segments de o vers * et les triangles négatifs aux demi-segments de * vers o. gif Nous appellerons fléchette les six types de demi-segments, o - *, * - o, o - °, ° - o, * - ° ou ° - *. gif Nous évitons ainsi le terme de drapeau qui sert à désigner parfois les flèches, parfois les triangles. Le degré du dessin est le nombre de flèches. C'est donc le nombre d'arêtes de la carte bipartite (catégorie P1) ou bien le nombre de triangles de chaque type (P2).

  Terminologie
Figure II.6: Flèches, triangles et fléchettes

Si g est le genre de X, N le degré du dessin, a le nombre de zéros, b le nombre de uns et c le nombre de faces, la caractéristique d'Euler vaut :

X = 2 - 2g = a + b + c - N

c. Groupes

Étant donnée une triangulation tripartite sur une surface (non nécessairement orientée) X, nous définissons une action sur les triangles : r0, r1, roo associent respectivement à un triangle son symétrique par rapport aux côtés * - °, ° - o et o - *. Ce sont les générateurs du groupe hypercartographique H2 = < r0, r1, roo | r02 = r12 = roo2 = 1 > (nous utilisons les notations de Jones et Singerman [26]).

Étant donné un dessin (sur une surface orientée X) nous définissons aussi une action sur les flèches : en un sommet se rencontrent plusieurs flèches, qu'on ordonne selon l'orientation de la surface. Cette action associe à une flèche la suivante autour du sommet considéré. Par définition, s0, s1 et soo agissent respectivement par rotation autour des o, *, °. Ils engendrent le groupe hypercartographique orienté H2+ = < s0, s1, soo | s0 s1 soo = 1 >. On peut remarquer que H2+ est le sous-groupe d'indice 2 de H2 engendré par s0 = r1 roo , s1 = roo r0 et soo = r0 r1 . On peut aussi remarquer que H2+ est isomorphe au groupe libre engendré par s0 et s1.

Présentation 5 (Sous-groupes d'indice fini)
Les dessins sont en correspondance avec les classes de conjugaison de sous-groupes d'indice fini du groupe hypercartographique H2+.

Le stabilisateur d'une flèche est un sous-groupe B d'indice fini de H2+, l'action de ce groupe sur B et ses translatés est identique à l'action sur les flèches. Elle est identique pour tous les conjugués de B.

En sens inverse, nous pouvons reconstruire un dessin comme Schneps [37, p53] par recollement des triangles d'une triangulation, ou bien comme Jones et Singerman [26, p124] par quotient d'une hypercarte universelle de type [p,q,r].

On dit qu'une hypercarte (un dessin) est de type [p,q,r] si ces nombres (qui peuvent prendre la valeur oo) sont des multiples des valences des hyper-faces, hyper-arêtes et hyper-sommets. Les groupes triangulaires orientés, ou fuchsiens, agissent sur les flèches de tels dessins. On note ces groupes D(p,q,r) = < s0, s1, soo | s0p = s1q = soor = s0 s1 soo = 1 > .

Présentation 6 (Sous-groupes d'indice fini, bis)
Les dessins sont en correspondance avec les classes de conjugaison de sous-groupes d'indice fini d'un groupe triangulaire D(p,q,r)p, q et r sont finis.

L'action de ce groupe sur les d flèches d'un dessin se traduit par une représentation du groupe dans le groupe de permutations Sd.

Présentation 7 (Triplets de permutations)
Un dessin est aussi un triplet de permutations (s0, s1, soo) opérant transitivement sur un ensemble fini (de flèches), telles que s0 s1 soo = 1 , défini à conjugaison près (renumérotation de l'ensemble des flèches).

Les sommets o (resp. * ou °) sont en correspondance avec les cycles (orbites) de s0 (resp. s1 ou soo), la valence du sommet est égale à la longueur du cycle. Cette présentation des hypercartes comme triplet de permutations est très classique et les hypercartes sont parfois définies en tant que permutations [15].

À cause de la présentation P8 d'un dessin comme revêtement ramifié, nous appelons monodromie le triplet (s0, s1, soo ), qui correspond à l'action du pi1 sur le revêtement. La monodromie du dessin de la figure II.5 est par exemple :
soo = (1,2,6,5,8,7,4),
s0 = (1,4,5,6)(2,3),
s1 = (1,2,3)(5,7,8).

II.2.2 Variantes

a. Marquage 

Si l'une des faces (cellules °) du dessin est distinguée des autres, il s'agit d'un dessin marqué. Ceux-ci ont des propriétés algébriques un peu plus simples qu'en l'absence de marquage. Ils interviennent lors de l'étude du groupe modulaire Gamma(1) = PSL2(Z) et de son sous-groupe de congruence Gamma(2). Birch les appelle drawings [7].

  Exemples
Figure II.7: Exemples de dessins marqués de genre 0 (dans le plan).

Si le dessin n'a qu'une face, celle-ci est donc naturellement marquée. En genre 0, le graphe correspondant n'a pas de cycle. On dit alors que le dessin est un arbre. Les arbres ont une importance particulière parmi les dessins d'enfants : leur étude est plus facile et peut suffire, par exemple lorsqu'on cherche à caractériser l'action de Gal(Qbar / Q) sur les dessins.

b. Restrictions de valences 

Si nous demandons à ce que les sommets * aient une valence égale à 2, nous pouvons regrouper deux à deux les arêtes et le dessin est alors une carte de X, ayant pour sommets les o et ayant une * sur chaque arête. Lorsqu'on trace ces dessins, on omet habituellement de placer les * au milieu des arêtes. Nous les appelons les dessins propres (clean, ou pure). C'est ce que Shabat et Voevodsky ont appelé dessin [43].

  Exemples
Figure II.8: Exemples de dessins propres.

Si nous acceptons des sommets * de valence 1 ou 2, il s'agit d'un dessin cartographique. gif Ils correspondent au groupe cartographique orienté C2+ = D(oo,2,oo).

Ces deux variantes sont les plus étudiées par les combinatoriciens.

Si les sommets o sont de valence 1 ou 3 et les sommets * de valence 1 ou 2, nous avons les dessins triangulaires. Ils correspondent au groupe triangulaire orienté T2+ = D(oo,2,3).

Les dessins triangulaires marqués servent par exemple à l'étude du groupe modulaire PSL2(Z).

  Exemples
Figure II.9: Exemples de dessins triangulaires.

Si les sommets o sont tous de même valence p, les sommets * de même valence q et les cellules de même valence r, nous avons les dessins semi-réguliers. Les dessins galoisiens (c'est-à-dire les dessins dont le nombre des automorphismes est égal au degré, on les appelle aussi dessins réguliers) sont des dessins semi-réguliers, la réciproque est fausse en genre > 0.

  Exemples
Figure II.10: Exemples de dessins (semi-)réguliers de genre 0.

c. Dessin sur une surface quelconque

Nous avons défini les dessins sur une surface X, compacte, connexe et orientable. La surface X peut être munie d'une structure de courbe algébrique (variété algébrique de dimension 1) ou de surface de Riemann (analytique de dimension 1 sur C).

Si X est une surface connexe, éventuellement non orientable, éventuellement avec un bord. Il est encore possible d'y tracer un graphe cellulaire (bipartite), mais cette surface n'a pas la même richesse algébrique et analytique.

L'étude de cette généralisation des dessins d'enfants est faite par exemple par Jones et Singerman [26]. Elle ne présente que peu d'intérêt pour nous puisque ces dessins n'ont pas les propriétés algébriques permettant d'étudier l'aspect arithmétique d'un revêtement.

d. Sous-groupes du groupe modulaire

L'étude des sous-groupes du groupe modulaire et de leur action sur le plan hyperbolique est une façon de s'intéresser aux dessins d'enfants [2, 7].

On rappelle que le groupe modulaire

PSL2(Z) = SL2(Z) / {±I} = {±Mat(a,b;c,d) | a, b, c et d éléments de Z et ad-bc = 1}

agit sur le demi-plan hyperbolique sous la présentation

PSL2(Z) = {z -> (az+b) / (cz+d) | a, b, c et d éléments de Z et ad-bc = 1}

Parmi ses sous-groupes on distingue les sous-groupes de congruence, par exemple les Gamma(n) tels que b et c soient congrus à 0 modulo n.

Le groupe triangulaire orienté T2+ peut être identifié au groupe Gamma(1) = PSL2(Z) et le groupe hypercartographique orienté H2+ au sous-groupe de congruence Gamma(2), mais il faut remarquer que l'injection canonique du sous-groupe des translations Z -> PSL2(Z), avec n -> (z ->z+n), définit un marquage du dessin correspondant. C'est pour cela que lorsqu'on aborde ainsi les dessins d'enfants, on considère les dessins marqués

II.2.3 Aspect géométrique

Nous avons donc défini les dessins d'enfants topologiquement comme un graphe à l'intérieur d'une surface X, sans en fixer la position dans cette surface. Il existe une définition équivalente, comme revêtement de P1 moins trois points, qui donne la ``vraie'' forme d'un dessin en imposant la forme de ce graphe.

a. Revêtement complexe ramifié

Présentation 8 (Revêtement)
On s'intéresse aux revêtements finis ß : X->P1C ramifiés au dessus de 0, 1, oo seulement, à Qbar-isomorphisme près.
Cette définition d'un dessin d'enfant est équivalente aux définitions topologiques. Ceci est la Correspondance de Grothendieck.

On fait se correspondre la monodromie du revêtement et la présentation du dessin comme triplet de permutations.

Un dessin d'enfant, au sens de P5, est en bijection avec les classes de conjugaison des sous-groupes d'indice fini de H2+.

Or pi1, le groupe fondamental de P1C - {0, 1, oo}, engendré par les trois boucles autour de 0, 1 et oo, est isomorphe au groupe H2+.

Un théorème classique (par exemple [37, lemme I.1, p48]) prouve que les classes de conjugaison des sous-groupes d'indice fini de pi1 sont en bijection avec les revêtements finis de P1C - {0, 1, oo}. Si B est un sous-groupe d'indice fini de pi1 et si X est le revêtement universel de P1C - {0, 1, oo}, alors le quotient B \ X définit un revêtement fini, et réciproquement B est le stabilisateur dans pi1 d'un point du revêtement.

b. Correspondance de Grothendieck d'un point de vue élémentaire

Visuellement, cette correspondance s'obtient comme suit : à partir d'un revêtement ß : X->P1C, la préimage sur X du segment [0, 1] inclus dans P1C trace un dessin. L'ensemble fini ß-1(0) est l'ensemble des sommets o, l'ensemble ß-1(1) contient les *, et ß-1(oo) les °. Les flèches sont les composantes de ß-1(]0, 1[), qui relient les o et les *. De même, ß-1(]1, oo[) relie les * et ° et ß-1(]oo, 0[) relie les ° et o. Nous avons ainsi une triangulation (P2 et P3) et les triangles de chaque type sont les préimages de chaque demi-sphère P1C - R.

Dans l'autre sens, on part d'une triangulation bicolorée et on construit l'application ß en envoyant chaque triangle dans la demi-sphère P1C - R correspondant au type du triangle. On utilise par exemple le théorème d'existence de Riemann pour relever une structure complexe.

L'application ß est appelée application de Belyi. Toute fonction rationnelle sur X ayant au plus trois valeurs critiques est une application de Belyi. En effet, le choix du triplet {0, 1, oo} n'est pas limitatif puisque tout triplet de points rationnels de P1 peut être envoyé par une homographie sur {0, 1, oo}. Parfois, on choisit {0, 1728, oo}, lorsqu'on étudie le groupe modulaire [2, 7].

c. Aspect arithmétique

La contribution de Belyi [5] est la suivante. On peut tracer un dessin d'enfant sur n'importe quelle courbe définie sur Qbar.

Théorème 1 (Belyi)
Soit X une courbe algébrique (projective, connexe et lisse) définie sur C. Alors X est une courbe arithmétique si et seulement s'il existe un revêtement ramifié ß : X->P1C, tel que ses valeurs critiques soient dans {0, 1, oo}. Le couple (X, ß) est appelé paire de Belyi.

Preuve
Le sens si est une conséquence (pas si évidente [47]) d'un critère de Weil. La preuve de l'autre sens, due à Belyi, se fait en construisant ß à partir d'une fonction Qbar-rationnelle quelconque sur X.
On procède en deux étapes : on diminue le nombre de valeurs critiques non rationnelles, au prix d'une augmentation de la ramification au dessus de l'infini, puis on diminue le nombre de valeurs critiques finies, jusqu'à ce qu'il n'en reste que deux.
Une courbe arithmétique est par définition une courbe algébrique définie sur Qbar. Un élément f de son corps des fonctions sur Qbar définit un revêtement de P1 ramifié sur un sous-ensemble fini de P1(Qbar).

La première étape se fait en composant à gauche f par une suite de polynômes diminuant le nombre de valeurs critiques non rationnelles. Soit C l'ensemble des valeurs critiques de f non rationnelles et leurs conjuguées par Gal(Qbar / Q). Soit h le polynôme à coefficients rationnels s'annulant sur C. Alors les valeurs critiques de h o f sont 0, oo et les valeurs critiques de h, qui seront annulées par un polynôme de degré strictement inférieur à d°h.

La seconde étape se fait en composant à gauche par des polynômes de la forme ci-dessous, qui envoient les valeurs critiques {oo, 0, 1, m/(m+n)} en {oo, 0, 1}, et réduisent donc le nombre de valeurs critiques rationnelles.

z -> (m+n)m+n/(mmnn)   zm(1-z)n

Belyi a proposé une variante de cette seconde étape, où on compose par une unique fraction rationnelle, dont les points de ramification sont des entiers positifs, et dont les valeurs de ramification sont {0, 1, oo}. De telles fractions rationnelles sont les fonctions de Belyi d'une famille de dessins d'enfants, pour lesquels il a donné une construction explicite (cf. § III.2.1.b.).

II.2.4 Généralisations

a. Revêtements de la sphère

Nous pouvons considérer les revêtements f : X->P1 ramifiés au dessus de k>3 points. Comme Adrianov et Shabat [1], nous pouvons appeler f une fonction de Fried si k=4, mais ce terme n'a pas la même audience que ``fonction de Belyi''. Contrairement au cas des fonctions de Belyi, la position relative dans P1 des 4 valeurs de ramification change les propriétés algébriques du dessin.

b. Graphes enrubannés

Partant d'une paire de Belyi (X, ß), nous traçons sur X la préimage du cercle unité. Nous obtenons ainsi une carte sur X ayant un o ou un ° au centre de chaque face (les faces sont donc de deux couleurs) et dont les sommets sont des * et sont de valence paire.

  Exemples
Figure II.11: Dessins et graphes enrubannés.

Selon la terminologie de [49], un graphe enrubanné est une carte dont tous les sommets ont pour valence au moins 3. Un graphe enrubanné est orientable s'il est possible de le munir d'une bicoloration des cellules. Les valences des sommets sont alors toutes paires. Si on ignore les * de valence 2, la préimage du cercle unité est donc un graphe enrubanné orienté.

Pour avoir une bijection, nous devons associer à chaque arête du graphe enrubanné un entier positif, sa longueur, qui est est égale au nombre de * sur l'arête, plus un.

Les graphes enrubannés métriques sont les graphes enrubannés dont chaque arête est étiquetée par un réel positif, sa longueur. Ils forment donc une généralisation (topologique) des dessins d'enfants.

c. Différentielles de Strebel

Les différentielles de Strebel sont aux graphes enrubannés métriques ce que les applications de Belyi sont aux dessins d'enfants.

Une forme différentielle quadratique w n'ayant que des pôles doubles est une différentielle de Strebel si on peut y associer gif un graphe critique Gamma qui délimite une décomposition cellulaire de la surface X.

Un théorème de Strebel [44] montre que pour tout n-uplet de points distincts P1, ..., Pn étiquetés par des réels strictement positifs p1, ..., pn, il existe une et une seule différentielle de Strebel ayant P1, ..., Pn comme pôles et p1, ..., pn comme périmètre des faces correspondantes.

Si (X, ß) est une paire de Belyi, nous voyons X comme une surface de Riemann et ß comme une fonction méromorphe sur X. Nous pouvons construire la forme différentielle méromorphe Tß = dß / (2piiß). Son carré wß = (Tß)¤2 est une différentielle de Strebel dont le graphe critique est aussi le graphe enrubanné préimage du cercle unité par ß.

Le problème de la rationalité ou de l'algébraïcité des paramètres d'une différentielle de Strebel n'est pas facile.