
How to repair ESIGN

Louis Granboulan?
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Abstract. The ESIGN signature scheme was provided with an inade-
quate proof of security. We propose two techniques to repair the scheme,
which we name ESIGN-D and ESIGN-R.
Another improvement of ESIGN is encouraged, where the public key is
hashed together with the message. This allows to have a security proof
in the multi key setting.
Additionally, the lower security of ESIGN compared to RSA-PSS leads
to suggest that a common public key is used for ESIGN and RSA-PSS,
leaving to the signer the choice between fast signature or better security.

1 Description of ESIGN and its security proof

1.1 Introduction

ESIGN is a digital signature scheme whose complete description can be
found in the submission to NESSIE [4]. The public key is a composite
number n = p2q and the best known attack against ESIGN has to find
this factorization. However, the published proof of its security relies on
the intractability of finding an approximation of the e-th root modulo n,
where e ≥ 8.

In this document we will use some numeric estimations for the security
induced by the intractability of factorization. We base our estimation on
a workfactor of 256 for the factorization of a 512 bit number with NFS
and for the factorization with ECM of a number having a 190 bits factor.
Then a computing power of 264 should be able to factorize a p2q of 800
bits, 280 should factorize 1536 bits, 2128 should factorize 6000 bits and
2160 should factorize 10000 bits.

? Part of this work has been supported by the Commission of the European Commu-
nities through the IST Programme under Contract IST-1999-12324 (NESSIE). This
paper is NESSIE document NES/DOC/ENS/WP5/019/3 and is published in
the proceedings of SCN’02 c©Springer Verlag. The information in this document is
provided as is, and no guarantee or warranty is given or implied that the information
is fit for any particular purpose. The user thereof uses the information at its sole
risk and liability.



1.2 Description of the scheme

The security is measured by the size l of the factors of n. The key gen-
eration computes two random prime numbers p and q of size l such that
n = p2q is of size 3l. The public key contains n, the private key contains
p and pq. The value e ≥ 8 is a parameter of the scheme and can be con-
sidered to be part of the public key. However, it is recommended that all
ESIGN signatures in a given application use the same e. A collision-free
hash function H with output size l− 1 is also a parameter of the scheme.
Let f(x) = bx

e mod n
22l c, the approximate e-th power function.

To sign a message m, we make four steps.

1. Compute h← H(m).

2. For a random r < pq compute u ← h · 22l − re mod n and v ← d upq e.

Compute w ← v · pq − u and get another r until w < 22l−1.

3. Compute t← v/(e · re−1) mod p and s← r + t · pq.

4. The signed message is σ = m‖s where s has length 3l.

The verification of a signed message σ = m‖s checks if H(m) ?= f(s).

In some variants of ESIGN the value r is required to be prime with n. It
is necessary to make the signature algorithm always work, but the failure
probability is extremely low.

ESIGN is a valid signature scheme because for a generated signature the
value of se mod n is 0‖h‖0‖w = h · 22l + w. We may notice that the
output distribution of the signature algorithm gives fixed h and uniform
random w.

1.3 The proof of security

It is similar to the classic proof [1] of Full Domain Hash signature schemes
in the random oracle model, based on the intractability to find a preimage
for f. The (t, ε, qS , qH)-forger is allowed to make qS signature queries, qH
hash queries and outputs a valid forgery with probability ε after a running
time t. The reduction is an algorithm that interacts with the forger and is
able to solve any instance of this intractable problem. It is the reduction
that answers signature and hash queries, and this simulation is perfect if it
has the same statistical distribution as a real signer. Coherent parameters
are qS ≤ qH and also t ' qH .

Here is a short description of the security proof for ESIGN.

The reduction receives a challenge: a n = p2q number with unknown
factors and a l− 1 bits number η. The goal is to find a value s such that



f(s) = η. This is the AER (approximate e-th root) problem for η and
modulo n.

One integer j ≤ qS + qH is randomly selected. To answer a query for
H(m), random values s are generated until the most significant and the
2l-th bit of se mod n are 0 and h = f(s) is returned (this value h can be
proven to have uniform distribution). To answer a signature query for m,
a query for H(m) is simulated and the signature is the corresponding s.
The exception is the j-th hash query which answers η.

The simulation of a signer succeeds if no signature query is made for the j-
th hash query. That happens with probability (1− 1

qS+qH
)qS ' qH

qS+qH
≥ 1

2 .

The reduction can find an approximate e-th root of η if the forgery cor-
responds to the j-th hash query. That happens with probability 1

qS+qH
.

Therefore the conclusion is that if finding an approximate e-th root is
(t, ε/(qS+qH))-hard, then ESIGN is (t, ε, qS , qH)-secure. For example if we
aim at k = 80 bits of security, we need log2(t/ε) = k and log2 qH = k, and
factoring n should need a workfactor of 2160, which is probably obtained
with l = 3300.

1.4 The mistake

Stern and al. noticed [5] that the security proof for ESIGN makes the
(invalid) hypothesis that it is a deterministic signature scheme. Indeed,
the simulator gives the same answer to multiple signature queries for the
same message.

Therefore the conclusion of the proof is invalid. The forger can make two
signature queries for the same message. If the signer is simulated by the
reduction then these will give the same answer. If it is a real signer the
probability that they are identical is 2−2l. If the forger makes qS signature
queries for the same message he will detect the simulator with probability
1− 2−2l(qS−1).

1.5 A proof based on claw-free permutations1

It is similar to the improved proof of RSA-FDH by Coron [2] and is based
on the claw intractability of f together with another function g that has
uniform l − 1 bits output.

It has the same flaw as the classic proof but does apply to ESIGN-D and
ESIGN-R.

1 This paragraph was not in the preproceedings distributed at the SCN’02 conference ;
it uses the results of Dodis and Reyzin [3] presented at the conference.



The security proof works as follows: most queries for H(m) are answered
as in the classic FDH proof, but a proportion of about α

qS
is answered

with the value g(z) for a random z. To answer a signature query for m,
a query for H(m) is simulated and the signature is the corresponding s.

The simulation of a signer succeeds if no signature query corresponds
to a hash query that was answered with some g(z). That happens with
probability (1− α

qS
)qS ' 1− α.

The reduction can find a claw f(s) = g(z) if the forgery corresponds
to such a hash query. That happens with probability α

qS
. Therefore the

conclusion is that if finding a claw is (t, ε/qS)-hard, then ESIGN is about
(t, ε, qS , qH)-secure.

A natural candidate is g(z) = b ηz
e

22l c for a random η. This proof can be
based on the intractability of the following Claw-AER problem.

An instance of the problem is a n = p2q number with unknown factors and
a target η. A solution is a pair of values s and z such that b s

e

22l c = b
ηze

22l c.

However, the Claw-AER problem has never been studied before and it is
risky to base the security of a scheme on this assumption.

2 Repairing ESIGN

We propose two simple ways for repairing ESIGN such that it is provable.

2.1 ESIGN-D : making ESIGN deterministic

We build a deterministic variant of ESIGN which can have a proven
security of k bits. A one-way function φ with output randomly distributed
in the numbers modulo pq will be used.

An additional k bit value ∆ is included in the secret key. Only step 2 of
the signature generation is changed. Instead of generating random values
r until an adequate value is found, the signature algorithm uses the values
φ(H(m)‖∆‖i) for i = 0, 1, 2, ...

The proof of this scheme is exactly the one in paragraph 1.3. It is impor-
tant that the values w = (se mod n) mod 22l−1 from the simulation are
indistinguishable from the values generated by the signature algorithm. It
is the case because ∆ is secret and sufficiently large to withstand exhaus-
tive search, therefore the output of φ is unpredictible for the attacker.

The function φ can be built based on a cryptographic hash function.
One possibility is to have a 4l bits output reduced modulo pq, another
possibility is to have a 2l+1 bits output and increment i until it is smaller
than pq. We may want to force an upper bound on i to be able to represent



it in a fixed length bit string, its representation can be of variable length
if the hash function accepts variable length input.

2.2 ESIGN-R : making randomized ESIGN signature

simulable

We increase the randomness of signature generation such that the re-
duction will be able to simulate the probabilistic output of the signature
oracle.
The new signature algorithm needs an additional random input ρ which
is appended to the message. Its length should be more than 2 log2 qS bits.

1. Compute h← H(m‖ρ).
2. For a random r < pq compute u ← h · 22l − re mod n and v ← d upq e.

Compute w ← v · pq − u and get another r until w < 22l−1.
3. Compute t← v/(e · re−1) mod p and s← r + t · pq.
4. The signed message is σ = m‖ρ‖s.

The verification of a signed message σ = m‖ρ‖s checks if H(m‖ρ) ?= b s
e

22l c.

The proof needs to be adapted. To answer signature queries for m, a
random value ρ is selected, a query for H(m‖ρ) is simulated and the
signature is m‖ρ‖s.
If two signature queries are answered with the same value for ρ, then they
also have the same s and the simulations fails as with the original ESIGN
scheme. But the length of ρ is more than 2 log2 qS bits and collisions in
ρ are very unprobable, therefore the simulation’s answers to signature
queries have uniform random values w.

2.3 Comparison of both techniques

From a performance point of view, ESIGN-D adds on average two calls
to φ. Both cost a few calls to e.g. SHA-1 with small input, plus a modular
reduction mod pq. What dominates this additional performance cost is
the (two) modular reductions.
ESIGN-R adds a few bytes in the input of H, both for signature and
verification. This is much faster than the modular reductions.
ESIGN-R also increases the length of the signature by the number of bits
of ρ, which can be 80 if log2 qS = 30. But this overhead is small compared
to the 3l = 10000 bits of s that are needed for proven 80 bits security.
ESIGN-R has a tight security proof under the Claw-AER assumption
(this is the direct translation of the security proof of PFDH or PSS).



Both algorithms can be modified to allow (partial) message recovery, by
using another hash function G in a way similar to PSS. The hash function
H has output of 2k bits whereas G has output of l − 1 − 2k bits. The
recovered message m̄ has length l − 1 − 2k bits, and instead of using
H(m) the signature algorithm uses H(m)‖(m̄⊕G(H(m)). The verification
algorithm computes h‖a ← b s

e

22l c and recovers m̄ ← a ⊕ G(h) before
checking if H(m) ?= h.

ESIGN-R apparently has a slightly better performance, the same proven
security under AER and better security under Claw-AER. However, an
external source of randomness is needed and this has a performance cost
that can dominate the signing time. Moreover deterministic signatures
might be mandatory in some applications. We prefer ESIGN-D.

2.4 A concluding remark

Because of the bad efficiency of the security reduction to AER, both
modifications of ESIGN don’t increase the security if we use a 1152 or
1536 bits modulus, because for these sizes the cost of factoring can be
estimated to be between 264 and 280. We only proved that the scheme
has at least 32 to 40 bits of security, and this is within the computing
power of most computers.

However ESIGN-D avoids the (usually expensive) use of external ran-
domness. We strongly suggest the replacement of ESIGN with ESIGN-D
in all contexts. If heuristic security is sufficient, a 1536 bits modulus can
be used. If provable security is a concern, 10000 bits are needed.

3 The multi key setting

The multi key setting corresponds to the case where many public keys
are used for one digital signature scheme, and the attacker wants to forge
a new signature for each of these public key.
A scheme is secure in the multi key setting if the best strategy for the
forger is to attack each public key independently. None of ESIGN-D or
ESIGN-R as described above is proven secure in the multi key setting,
because the random oracle H replaces a function that is common to all
public keys.
The solution (also found in KCDSA for example) is to have a different
hash function for each public key, for example by prepending the public
key at the beginning of the input of H.



4 Dual mode of use of the public key

4.1 The idea

The core remark is that the public key n for ESIGN is indistiguishible
of a RSA public key, and that the signature verification algorithms are
very similar. It might be useful in a number of settings to disseminate a
unique public key that could be used for both ESIGN and RSA-PSS.
This modification adds one bit to the signature, which decides which ver-
ification procedure has to be used. The public key is n = p2q and the
public exponent is odd. e = 9 or 65537 are reasonable choices. Recom-
mended parameter values are such that 8|(3l + 1), for example l = 373.
Another security parameter kr = 32 is needed for RSA-PSS.

4.2 Dual signature scheme with appendix

A digest κ = H(n, e) is computed with a collision-intractable hash func-
tion. Three other hash functions are used and are modeled as distinct
random oracles. H0 and H1 output l − 1 bits and H2 outputs 2l − 1 bits.

Verification procedure for a signed message σ
– σ is split in m‖s‖b with one bit for b and 3l bits s.
– 0‖h‖0‖a← se mod n
– if b = 0 then r‖0...0← a⊕ H2(h) else r ← ε (empty string)
– The signature is valid if h ?= Hb(κ‖m‖r)

RSA-PSS based signature algorithm
– get a random kr bits value r
– h← H0(κ‖m‖r)
– a← (r‖0...0)⊕ H2(h), s← (0‖h‖0‖a)1/e, σ ← m‖s‖1.
ESIGN-D based signature algorithm
– h← H1(κ‖m)
– get the smallest i such that v · pq − u < 22l−1,

with r ← φ(h‖∆‖i), u← h · 22l − re mod n and v ← d upq e.

– t← v/(e · re−1) mod p, s← r + t · pq mod n, σ ← m‖s‖0.

4.3 Security proof

The same key can be used in two contexts. For documents where long
term security is more important, only RSA-PSS signature can be taken
as valid. For more common documents, ESIGN signature will also be
accepted, and the signer will have the possibility to sign faster.



The natural question is whether this dual mode introduces a security flaw.

To prove the security of this dual mode of use of a public key, we need
a new proof. In the random oracle, we will assume the existence of a
(t, ε, qS , qH)-forger, where qS = qSE + qSR and qH = qH0

+ qH1
+ qH2

).
The forger is allowed to make qSE signature queries to the ESIGN-D
signature oracle, qSR signature queries to the RSA-PSS signature oracle,
qH0

hash queries for H0, qH1
hash queries for H1, qH2

hash queries for H2

and outputs a valid forgery with probability ε after a running time t.
The reduction algorithm for the dual mode of use has to find a solution
for the AER problem with target η or a solution for the RSA problem
with target η′ = η ·22l+w. It runs in parallel the reduction algorithm from
the security proof for ESIGN-D with target η and using a (t, ε, qSE , qH1

)-
forger and the reduction algorithm from the security proof for RSA-PSS
with target η′ and using a (t, ε, qSR, qH0

, qH2
)-forger.

If the forgery is a ESIGN-D signature, then the reduction can solve the
AER problem with probability 1

qSE+qH1

. If the forgery is a RSA-PSS sig-

nature, then the reduction can solve the RSA problem with probability
close to 1.

We can conclude that using the same key for ESIGN-D and RSA-PSS
does not weaken the security of these schemes.
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