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Abstract. Many variants of the ElGamal signature scheme have been
proposed. The most famous is the DSA standard. If computing discrete
logarithms is hard, then some of these schemes have been proven secure
in an idealized model, either the random oracle or the generic group. We
propose a generic but simple presentation of signature schemes with se-
curity based on the discrete logarithm. We show how they can be proven
secure in idealized model, under which conditions. We conclude that none
of the previously proposed digital signature schemes has optimal prop-
erties and we propose a scheme named PECDSA.
Keywords: digital signature, DSA variants, idealized model, proven
security.

1 Introduction

1.1 Motivations

Very often, cryptographic primitives are based on some core technique,
but the details of the design are subject to many variants. The goal of
this paper is to find the best design for digital signature schemes based
on the intractability of the discrete logarithm problem.

Many variants of the original ElGamal [11] signature scheme have been
described [1, 2, 17–19, 22–25, 29–31, 34, 35]. We want to compare them and
to find the best variant.

? Part of this work has been supported by the Commission of the European Commu-
nities through the IST Programme under Contract IST-1999-12324 (NESSIE). This
paper is NESSIE document NES/DOC/ENS/WP5/022/1. The information in
this document is provided as is, and no guarantee or warranty is given or implied
that the information is fit for any particular purpose. The user thereof uses the
information at its sole risk and liability.



1.2 Overview of the results

We show how to build many DL-based signature schemes by mixing four
components which we name: a group, a hash function, a projection and
a category. All these components can take many possible values, and we
describe some of them. We show that most published DL-based signature
schemes can be described that way.

We show that the random oracle model, which usually is used to idealize
collision-resistant hash functions, can also be used to idealize collision-
resistant almost invertible functions.

Then we give three security proofs for DL-based signature schemes, in
different idealized worlds, and we explain which are the requirements that
a signature scheme needs to meet to be secure in these idealized worlds.

We show that none of the previously published signature schemes has
been proven in the three idealized worlds. We describe PECDSA, which
has all the required properties. We also describe a variant of PECDSA
with partial message recovery and the same security properties.

1.3 Related work

Some effort has been done towards an global description of DL-based
schemes. Horster, Michels and Petersen [13–15] defined the Meta-ElGamal
signature schemes. Brickell, Pointcheval, Vaudenay and Yung [6] defined
the Trusted ElGamal-type signature schemes of type I and II.

The security proofs in this paper are directly inspired from security proofs
that were published for some DL-based signature schemes [6–8, 39].

2 Preliminary definitions

2.1 Digital signature schemes

A signature scheme is built on three algorithms: a key generation algo-
rithm, a signing algorithm and a verification algorithm.

The key generation algorithm generates a random public key and secret
key pair (pk, sk).

Let M be the set of the possible messages and A be the set of possible
appendices. The (randomized) signing algorithm takes a message m ∈M
and the secret key sk and generates the appendix a ∈ A. The signed
message is (m, a). The (randomized) verification algorithm takes a signed

2



message (m, a) ∈M×A and answers a boolean value, whether the signed
message is valid or not.

All signed messages generated by the signing algorithm should be detected
as valid by the verification algorithm and it should be difficult to generate
a valid signed message without the secret key.

Signature scheme with partial message recovery. LetM = M̂×M̄
be the set of the possible messages andA be the set of possible appendices.
The (randomized) signing algorithm takes a message (m̂, m̄) ∈ M and
the secret key sk and generates the appendix a ∈ A. The signed message
is (m̂, a). The (randomized) verification algorithm takes a signed message
(m̂, a) ∈ M̂×A and answers a recovered message m̄ ∈ M̄ and a boolean
value, whether the signed message is valid or not.

All signed messages generated by the signing algorithm should be detected
as valid by the verification algorithm and it should be difficult to generate
a valid signed message without the secret key. The verification algorithm
should also return the value m̄ that was used in the signing algorithm.

2.2 Proven security

We say that a signature scheme is secure if it is existentially unforgeable
against adaptive chosen message attacks, which means that no forger
exists. A forger is an algorithm that receives a public key, is allowed to
ask signature queries for this public key, and returns a forgery. The forger
succeeds if the forgery is a valid signed message for a message that was
not the input of a signature query. Strong unforgeability (also known
as non-malleability) authorizes any forgery that was not the answer of
a signature query, even if the message was the input of some signature
query.

A proof of security makes some assumptions (hardness of discrete loga-
rithm, collision-resistance of a given function, ...) and shows that if there
exists a forger then one of these assumptions does not hold. It explains
how to build an algorithm that breaks one of these assumptions if given
access to a forger. This algorithm is called simulator because it answers
the signature queries made by the forger, and therefore simulates the
signing algorithm. This simulation should be indistinguishable from the
actual signing algorithm.

The efficiency of the proof is measured by the gap between the success
probability of the forger and the success probability of the simulator,
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and the comparison of their running times. In tight proofs the success
probabilities and the running times are similar. In loose proofs the simu-
lator succeeds with much lower probability than the forger, and security
parameters need to be increased for the proof to be really meaningful [4].

Idealized models. For a security proof in an idealized model, some
components of the scheme are replaced with an ideal function, and the
simulator has the control of this ideal function. The forger needs to make
queries to the simulator to compute these functions.
For example, in the random oracle model [3], a hash function is replaced
by an oracle that returns a random value for each new query. In the
generic group model [36, 7], group operation are given random answers,
provided that they agree with the group laws.
Both models may give a security proof for a scheme that is insecure when
the idealized component is replaced by any efficient concrete implemen-
tation [9, 10]. However, not being able to prove the security of a scheme
even in an idealized model is a security concern.

We consider that proofs in an idealized model as a validation for the de-
sign. Different proofs where different components are idealized give more
confidence in a design.

3 The toolbox

3.1 Construction of the DL-based signature schemes

The signature scheme is built on

– A DL-group 〈G〉 of order q where computing discrete logarithms is
hard.
The set of possible private keys is V ⊂ Zq. If the private key of the
signer is v ∈ V, the corresponding public key is the element V = Gv.
Depending on the category, we may need V = Zq or V = Z×q .
All groups will be denoted multiplicatively, even in the case of elliptic
curves.

– A projection. It is a function p : 〈G〉 → R.

– A hash function that makes a digest of the message. It is a function
H :M×R→ H where M is the set of possible messages.

– A category that defines the formulas for signature and verification.
The category defines two functions φ and ψ : H×R× S → Zq and a
function σ : I → S where I ⊂ H×R×V ×K with S = Zq or Z×q and
K = Zq or Z×q .
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The digital signature scheme works as follows:

– Verification. The verification of (m, r, s) ∈ M × R × S computes
h = H(m, r), α = φ(h, r, s), β = ψ(h, r, s), R = GαV β and checks if
R ∈ GK and if r ?= p(R).

– Signature. To sign the message m one takes a random k ∈ K, com-
putes R = Gk, r = p(R), h = H(m, r) until (h, r, v, k) ∈ I and
s = σ(h, r, v, k). The signed message is (m, r, s).

– Partial message recovery. For some schemes the p function is de-
signed to allow partial message recovery. The verification r ?= p(R)
also extracts the recovered message m̄.

3.2 DL-groups.

DL-based signature schemes do computations in a cyclic group 〈G〉 of
known order q and known generator G. Adding or taking inverses of
elements of the group should be easy, yet elements of 〈G〉 can be indis-
tinguishable from elements of a larger set.

Usually 〈G〉 is a cyclic subgroup of the multiplicative group Z×p of integers
modulo p, or an elliptic curve subgroup, and q is a prime number.

The exponentiation is a bijection from Zq to 〈G〉 defined by k 7→ Gk

and the discrete logarithm is the inverse of that bijection. By definition,
computing the discrete logarithm in a DL-group is intractable.

Z×q is the set of invertible elements of Zq and for any k ∈ Z×q the group

element Gk is a generator of 〈G〉. One must know the factorization of q
to compute inverses in Z×q .

Let #q be an integer smaller than log2 q and let [Zq]# be the subset of
Zq that contains the integers smaller than 2#q. The group operation ⊕ in
[Zq]# corresponds to the XOR of bits strings of length #q.

3.3 Hash function

The function H : M × R → H should be easy to compute, has uni-
form random output for random m and may have some of the following
properties.

– H is Type I if ∀m ∈ M, r, r′ ∈ R, H(m, r) = H(m, r′). This common
value is H(m).
H is Type II if it is not Type I.
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– H with Type I is collision-resistant if it is hard to find distinct inputs
m 6= m′ such that H(m) = H(m′).

– H with Type II is collision-resistant if it is hard to find distinct inputs
(m, r) 6= (m′, r′) such that H(m, r) = H(m′, r′).

– H with H ⊂ [Zq]# and R ⊂ [Zq]# is xor-collision-resistant if given
random r, r′ it is hard to findm,m′ such that H(m, r)⊕r = H(m′, r′)⊕
r′.

– H with H ⊂ Zq and R ⊂ Zq is add-collision-resistant if given random
r, r′ it is hard to find m,m′ such that H(m, r) + r = H(m′, r′) + r′.

– H with H ⊂ Zq and R ⊂ Z×q is div-collision-resistant if given random
r, r′ it is hard to find m,m′ such that H(m, r)/r = H(m′, r′)/r′.

– H is suitable as a random oracle if the knowledge of many input-
output pairs does not restrict substantially the possible images space
for a distinct input.

3.4 Projections

The function p : 〈G〉 → R is easy to compute by the signer, and the
verifier should be able to test if r ?= p(R) for R ∈ 〈G〉 and r ∈ R. NB: if
elements of 〈G〉 are indistinguishable from elements of a larger set, then
p is defined on the whole larger set. The projection may have some of the
following properties.

– p is ε-almost uniform if ∀r ∈ R, PrR∈〈G〉[p(R) = r] ≥ ε.

– p is ε-almost invertible if there exists an efficient algorithm to compute
the function p−1 : R → 〈G〉 such that

• ∀R ∈ p−1(r), p(R) = r

• At least a proportion ε of the sets p−1(r) is non empty.

• Elements randomly taken from random sets p−1(r) are indistin-
guishable from elements randomly taken from 〈G〉.

– p is ` + 1-collision-resistant for ` ≥ 1 if it is hard to find distinct
R0, ..., R` such that p(R0) = ... = p(R`).

– p is suitable as a random oracle if the knowledge of many input-
output pairs does not restrict substantially the possible images space
for a distinct input. NB: an almost invertible function can be suitable
as a random oracle (see also section 4.1).

Examples of projections.

– ElGamal projection. For 〈G〉 ⊂ Z×p and R = Zp it is p(R) = R.
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This function is almost uniform and collision-resistant. It is not
almost-invertible if appartenance to 〈G〉 is hard to check. It is not
suitable as a random oracle.

– DSA projection. For 〈G〉 ⊂ Z×p and R = Zq it is p(R) = R mod q.
This function is almost uniform and probably log q-collision-resistant
[6]. It is not almost-invertible if appartenance to 〈G〉 is hard to check.
It is not suitable as a random oracle.

– EC projections. If 〈G〉 is a subgroup of an elliptic curve defined
over some finite field F, let (Rx, Ry) be the coordinates of the point
R ∈ 〈G〉 and iF a mapping from F to the set of integers.
• ECxq projection. For R = Zq it is p(R) = iF(Rx) mod q.
• ECx2 projection. For R = [Zq]# it is p(R) = iF(Rx) mod 2#q.
• ECaddq projection. ForR = Zq it is p(R) = iF(Rx+Ry) mod q.

These functions are almost uniform and almost invertible. They are
probably log q-collision-resistant. They are not suitable as a random
oracle.

– KCDSA projection. p is a hash function with output in R, e.g.
based on SHA-1.
This function is uniform and collision-resistant, and suitable as a ran-
dom oracle. It is not almost-invertible.

– Permuted projection. Any projection p′ : 〈G〉 → R can be com-
posed with a random permutation P : R → R to obtain p = P ◦ p′.
The projection p inherits from properties of p′, but is also suitable as
a random oracle.

Projections with partial message recovery. Let F : 〈G〉 × M̄ → R
and F−1 : 〈G〉 × R → M̄ ∪ {fail} such that ∀R ∈ 〈G〉, F(R, m̄) = r ⇔
F−1(R, r) = m̄. Then the function p(R) = F(R, m̄) is a projection that
allows partial message recovery. The verification r ?= p(R) is false if, and
only if, F−1(R, r) returns fail .

– PVSSR projection. It is the composition of an arbitrary encryption
function E over R and with key in 〈G〉 and a redundancy function
ρ : M̄ → R. The definition is F(R, m̄) = ER ◦ ρ(m̄) and F−1(R, r) =
ρ−1 ◦ E−1

R (r).
The redundancy function ρ should have the following properties:
• it is collision-free,
• the inverse ρ−1 : R → M̄ ∪ {fail} is easy to compute.
• a random element m̃ ∈ R is very unlikely the image of some m̄ ∈
M̄,

If E is a secure cipher, then the projection is uniform, collision-
resistant and suitable as a random oracle, but is not almost invertible.
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– Group projection. It is a special case of the PVSSR projection,
based on any other projection p′ : 〈G〉 → G such that G is a group
with an action on R. This defines a one-time-pad encryption scheme
and the projection is p(R) = p′(R) · ρ(m).

This projection has the same properties as p′.

– NS projection. This is the Group projection where G = R = Zq
with additive action. It is defined by the equation p(R) = p′(R) +
ρ(m) mod q.

This projection has the same properties as p′.

– NR projection. This is the Group projection where 〈G〉 ⊂ Z×p and
G = Z×p has a multiplicative action on R = Zp and with a tweak of
Schnorr projection p′(R) = R−1 mod p. The NR projection is defined
by the equation ρ(m) = R · p(R) mod p.

3.5 Categories

Definition and properties. The category is described by the sets V ⊂
Zq, S ⊂ Zq, H and R, by the two functions φ and ψ : H ×R× S → Zq
and a set I ⊂ H ×R× V ×K.

A category should meet some of the following properties.

– Other functions. Let A be the set of possible outputs for φ and
B the set of possible outputs for ψ. Five additional functions can be
defined.

For all defined function in (φ, ψ, σ, λh, λs, λr, µh) there exists an
efficient algorithm that computes the result.

• σ : I → S.

• λh : A× B ×R → H

• λs : A× B ×R → S

• λr : A× B ×H → R

• µh : S ×R× V ×K → H

– Main properties. These properties are mandatory for all DL-based
schemes.

(m1) For all (h, r, v, k) ∈ I, the value s = σ(h, r, v, k) is such that if
α = φ(h, r, s) and β = ψ(h, r, s) then k = α+ v · β.

(m2) For all v ∈ V and h ∈ H, Pr
r∈R, k∈K

[(h, r, v, k) ∈ I] ≥ εm.

Property (m1) implies that all signatures generated by the signing
algorithm are valid. Property (m2) implies that the expected number
of random k needed for signature generation is less than 1

εm
.
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– Other properties.

(o1) For all (h, r, s) ∈ H ×R× S
the equation λh(φ(h, r, s), ψ(h, r, s), r) = h holds.

(o2) For all (h, r, s) ∈ H ×R× S
the equation λs(φ(h, r, s), ψ(h, r, s), r) = s holds.

(o3) The function s 7→ µh(s, r, v, k) is the inverse of h 7→ σ(h, r, v, k).

– Additional properties for security with idealized p.

(p1) For fixed (h, r, v) and uniform k such that (h, r, v, k) ∈ I the value
σ(h, r, v, k) is uniform in S.

NB: this property together with the hypothesis that the function
k 7→ p(Gk) is (almost-)uniform and one-way implies that the set
of possible valid appendices (r, s) for a message m is uniformly
distributed.

(p2) For fixed h ∈ H and v ∈ V and uniformly random s ∈ S and
r ∈ R, then k = φ(h, r, s)+ v ·ψ(h, r, s) is uniformly random in K.

NB: failure may happen if I 6= H×R× V ×K and if k 6∈ K. It is
accepted that the probability of this failure is negligible.

(p3) Given random r and r′, it is hard to find some (α, β) and mes-
sages m and m′ such that λh(α, β, r) = H(m, r) and λh(α, β, r

′) =
H(m′, r′).

– Additional properties for security with idealized H.

(h1) If h = λh(α, β, r) and s = λs(α, β, r) then α = φ(h, r, s) and
β = ψ(h, r, s).

(h2) Pr
α∈A,β∈B

[λh(α, β, p(G
αV β)) ∈ H and λs(α, β, p(G

αV β)) ∈ S] ≥ εh.

– Additional properties for security with idealized 〈G〉.

(g1) For all (h, r, s) the equation λr(φ(h, r, s), ψ(h, r, s), h) = r holds.

(g2) For any (h, h′, r, s), if λr(φ(h, r, s), ψ(h, r, s), h
′) = r then h′ = h.

Simple categories. Those are the categories where H ⊂ Zq and R ⊂ Zq
and where each of φ and ψ only does one operation in Zq. These are less
general that Meta-ElGamal [13] or TEGTSS [6] schemes, but cover all
actual published schemes.

Properties (m1), (m2), (o1), (o2), (o3), (p1), (p2), (h1) and (h2) hold for
all the following examples.

– ElGamal category. Let H ⊂ Zq, R = V = K = S = B = Z×q
and A = Zq. Because I = {(h, r, v, k)|h + v · r ∈ Z×q } property (p2)
can fail with negligible probability. (p3) is equivalent to div-collision-
resistance of H. (g1) and (g2) hold with the restrictions H ⊂ Z×q and
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A = Z×q . (m2) and (h2) hold with εm = ϕ(q)
q

and εh = |H|
q
.

φ(h, r, s) = h/s λh(α, β, r) = αβ−1 · r
ψ(h, r, s) = r/s λs(α, β, r) = β−1 · r
σ(h, r, v, k) = (h+ v · r)/k λr(α, β, h) = α−1β · h
µh(s, r, v, k) = k · s− v · r

– Inverse ElGamal category. Let H ⊂ Zq, R = V = K = S = B =
Z×q and A = Zq. Because I = {(h, r, v, k)|h+v ·r ∈ Z×q } property (p2)
can fail with negligible probability. (p3) is equivalent to div-collision-
resistance of H. (g1) and (g2) hold with the restrictions H ⊂ Z×q and

A = Z×q . (m2) and (h2) hold with εm = ϕ(q)
q

and εh = |H|
q
.

φ(h, r, s) = h · s λh(α, β, r) = αβ−1 · r
ψ(h, r, s) = r · s λs(α, β, r) = r−1 · β
σ(h, r, v, k) = k/(h+ v · r) λr(α, β, h) = α−1β · h
µh(s, r, v, k) = k/s− v · r

– GOST category. Let H ⊂ Z×q , V = K = S = A = Zq and R =
B = Z×q . (o3) needs the restriction K = Z×q . (p3) is equivalent to div-
collision-resistance of H. (g1) and (g2) hold. (m2) and (h2) hold with

εm = 1 and εh = |H|
q
.

φ(h, r, s) = s/h λh(α, β, r) = β−1 · r
ψ(h, r, s) = r/h λs(α, β, r) = αβ−1 · r
σ(h, r, v, k) = k · h− v · r λr(α, β, h) = β · h
µh(s, r, v, k) = (s+ v · r)/k

– GDSA category. Let H ⊂ Zq, K = S = A = B = Zq and R = V =
Z×q . (p3) is equivalent to div-collision-resistance of H. (g1) and (g2)
hold with the restrictions H ⊂ Z×q and A = Z×q . (m2) and (h2) hold

with εm = 1 and εh = |H|
q
.

φ(h, r, s) = h/r λh(α, β, r) = α · r
ψ(h, r, s) = s/r λs(α, β, r) = β · r
σ(h, r, v, k) = (k · r − h)/v λr(α, β, h) = α−1 · h
µh(s, r, v, k) = k · r − v · s

– KCDSAadd category. Let H ⊂ Zq, R = K = S = A = B = Zq and
V = Z×q . (p3) is equivalent to add-collision-resistance of H. (g1) and
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(g2) hold. (m2) and (h2) hold with εm = 1 and εh = |H|
q
.

φ(h, r, s) = h+ r λh(α, β, r) = α− r
ψ(h, r, s) = s λs(α, β, r) = β
σ(h, r, v, k) = (k − (h+ r))/v λr(α, β, h) = α− h
µh(s, r, v, k) = (k − v · s)− r

– KCDSAxor category. Let H = R = A = [Zq]#, K = S = B = Zq
and V = Z×q . (p3) is equivalent to xor-collision-resistance of H. (g1)
and (g2) hold. (m2) and (h2) hold with εm = 1 and εh = 1.

φ(h, r, s) = h⊕ r λh(α, β, r) = α⊕ r
ψ(h, r, s) = s λs(α, β, r) = β
σ(h, r, v, k) = (k − (h⊕ r))/v λr(α, β, h) = α⊕ h
µh(s, r, v, k) = (k − v · s)⊕ r

– Schnorr category. Let H ⊂ Zq, V = K = S = A = Zq and B = H.
The variable t is not used and is taken from an arbitrary set R. (p3)
is implied by the collision-resistance of H. (g1) and (g2) do not hold
because λr cannot be defined. (o3) needs the restriction V = Z×q . (m2)
and (h2) hold with εm = 1 and εh = 1.

φ(h, r, s) = s λh(α, β, r) = β
ψ(h, r, s) = h λs(α, β, r) = α
σ(h, r, v, k) = k − v · h
µh(s, r, v, k) = (k − s)/v

– Swapped-Schnorr category. Let H ⊂ Zq, K = S = B = Zq, V =
Z×q and A = H. The variable t is not used and is taken from an
arbitrary set R. (p3) is implied by the collision-resistance of H. (g1)
and (g2) do not hold because λr cannot be defined. (m2) and (h2)
hold with εm = 1 and εh = 1.

φ(h, r, s) = h λh(α, β, r) = α
ψ(h, r, s) = s λs(α, β, r) = β
σ(h, r, v, k) = (h− k)/v
µh(s, r, v, k) = v · s+ k

3.6 Examples of published signature schemes

– ElGamal scheme [11] is defined on the multiplicative group Z×p , with
a slight variant of ElGamal category (where −r replaces r), ElGamal
projection and type I hash.
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– DSA scheme [25] is defined on a prime order subgroup of the multi-
plicative group Z×p , with ElGamal category, DSA projection and type
I hash.

– ECDSA scheme [17] is defined on a prime order elliptic curve subgroup
with ElGamal category, ECxq projection and type I hash.

– GOST 34.10 scheme [22] is defined on a prime order multiplicative
subgroup of Zp, with a slight variant of GOST category (where −r
replaces r), DSA projection and type I.

– KCDSA scheme [18] is defined on a prime order multiplicative sub-
group of Zp or on a prime order elliptic curve subgroup, with KCD-
SAxor category, KCDSA projection and type I hash, where some cer-
tification data is hashed together with the message.

– ECGDSA scheme [2] is defined on a prime order elliptic curve sub-
group, with GDSA category, ECxq projection and type I hash.

– DSA-II scheme [6] is defined on a prime order multiplicative subgroup
of Zp, with ElGamal category, KCDSA projection and type II hash.

– ECDSA-II scheme [19] is defined on a prime order elliptic curve sub-
group, with ElGamal category, ECxq projection and type II hash.

– ECDSA-III scheme [19] is defined on a prime order elliptic curve sub-
group, with ElGamal category, ECaddq projection and type II hash.

– Schnorr scheme [34] is defined on a prime order multiplicative sub-
group of Zp, with a slight variant of Schnorr category (where −h
replaces h), ElGamal projection and type II hash.

– Nyberg-Rueppel scheme [29, 30] is a scheme with total message re-
covery: no variable m. It is defined on a prime order multiplicative
subgroup of Zp, with Schnorr category, NR projection and type II
hash defined by H(r) = r mod q.

– PVSSR scheme (Pintsov-Vanstone Signature Scheme with message
Recovery [31]) is defined on a prime order elliptic curve subgroup with
a slight variant of Schnorr category (where −h replaces h), PVSSR
projection and type II hash.

– Naccache-Stern scheme [24] is defined on a prime order elliptic curve
subgroup with ElGamal category, NS projection based on ECxq pro-
jection and type I hash.

– Abe-Okamoto scheme [1] is a scheme with total message recovery: no
variable m. It is defined on a prime order elliptic curve subgroup with
Schnorr category, the xor variant of NS projection based on ECx2
projection and type II hash H(r).
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4 Security lemmas

4.1 Random oracle model and almost invertible functions

The random oracle model builds an oracle for a one-way function f, that
answers to queries for f(x) with some uniformly distributed value y. Suit-
able functions have uniform output, are collision-resistant, etc.

If the function f is almost invertible, then the random oracle model should
also allow queries for f−1(x).

Results that are proven for the random oracle model applied to collision-
resistant one-way functions with uniform output are also valid for the
random oracle model applied to collision-resistant almost invertible func-
tions with uniform output.

The simulator builds an input/output table for f in answer to the oracle
queries. To show that one-wayness is not required for the random oracle
model, and that almost-invertibility cannot change a security result, it is
sufficient to show that the answers given to f−1 queries have a negligible
influence to the answers given to f queries.

A f query is influenced by a previous f−1 query if either the input of the
f query was the output of the f−1 query or the output of the f query was
the input of f−1 query. The second event is unlikely since f is collision-
resistant. The first event does not learn to the attacker anything new.

4.2 The forking lemmas

This is a family of lemmas, found e.g. in [32], and is a tool for proofs of
security in the random oracle model. The forking lemmas holds when the
scheme has the following property: each forgery can be linked to a unique
“critical” query to the random oracle. The critical query is an input x

such that knowing x
f
7→ y is necessary to check if the forgery is valid.

The forking lemmas show that if a simulator can obtain a forgery with
respect to a given choice for the random oracle, then it is possible to use
the same simulator to obtain another forgery with same critical query but
a different choice for the random oracle.

The forking lemmas also holds in the random oracle model for a almost
invertible function, if the critical query hypothesis holds.
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Forking lemma with non-uniform security proof. This lemma is
taken from [32]. Let qS be the number of signature queries, qH the number
of oracle queries, nH the number of possible outputs for the random oracle
and ε the probability that the forger outputs a valid forgery.

There exists constants c0 and c1 such that if ε ≥ c0 ·qH/nH then after less
than of c1 · qH/ε replays of the simulation with different choices for the
random oracle, one can obtain (with some probability ε′) another forgery
with the same critical query having another uniform random answer.

In [32, Lemma 8 ] we have c0 = 7, c1 = 2(7 + 1
qH

) and ε′ = 3/25.

Forking lemma with expected running time. This lemma is taken
from [32].

There exists constants c0 and c1 such that if ε ≥ c0 · qH/nH then after an
expected number of c1·qH/ε replays of the simulation with different choices
for the random oracle, one can obtain (with probability 1) another forgery
with the same critical query having another uniform random answer.

In [32, Theorem 10 ] we have c0 = 7 and c1 = 84480.

The improved forking lemma with non-uniform security proof.
This lemma is taken from [6] and is used to idealize `+1-collision-resistant
functions.

There exists constants c0 and c1 such that if ε ≥ c0 · qH/nH then after
an expected number of c1 · qH/ε replays of the simulation with different
choices for the random oracle, one can obtain (with some probability ε′)
` other forgeries with the same critical query but having other uniform
random answers.

In [6, Lemma 10 ] we have c0 = 4/qH , c1 = 24` log(2`)+ 1
qH

and ε′ = 1/96.

4.3 Proofs of the forking lemmas

In the next version of this document, this section will review the results
from [32, 6] and explain the values for c0, c1 and ε′.
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5 Security proofs

Lemma (unique representation). If the discrete logarithm of V ∈
〈G〉 is hard to compute and if two representations R = GαV β and R =
Gα

′

V β′

have been computed then α = α′ and β = β′.

This is proven by (α− α′) = (β′ − β) · log V .

5.1 Security proof with idealized p

This proof is based on one of the results from [6]. In this proof, H may
be a Type I or Type II hash function, and p may be almost invertible.

A DL-based signature scheme is existentially unforgeable (and non-mal-
leable) under adaptive chosen message attacks if the discrete logarithm is
hard, if H is collision-resistant, if p is a random oracle and if the category
has properties (o1), (o2), (p2), (p1), and (p3). The security reduction is
loose.

To answer a signature query for m, the simulator generates a random r
and a random s, computes h = H(m, r) and R = Gφ(h,r,s)V ψ(h,r,s). With
property (p2), the value R is uniformly distributed and with property
(p1) the value s has same distribution as for the signing algorithm. The
simulator sets the oracle table p(R) := r. The signed message is (m, r, s).
p-oracle queries that were not defined by a signature query are answered
with a random value. If p is almost invertible, then p−1-oracle queries are
answered with some R = Gα

′

V β′

for random α′ and β′. The probability
that the oracle table cannot be set is the probability of a collision in R,
which is low if (qH + qS)

2 ≤ q.

When the forger outputs its forgery (m, r, s), the critical query is the
value R = GαV β where α = φ(h, r, s), β = ψ(h, r, s) and h = H(m, r).
Let us suppose that the critical query was part of a signature query for
some m′ that answered (m′, r′, s′) 6= (m, r, s). We define h′ = H(m′, r′),
α′ = φ(h′, r′, s′) and β = ψ(h′, r′, s′). Validity of the signature means
that R = Gα

′

V β′

and the unique representation of R implies α′ = α
and β′ = β. We also have r′ = r = p(R) and property (o1) implies
h = λh(α, β, r) = h′ and property (o2) implies s = λs(α, β, r) = s′.
Therefore (m′, r′, s′) 6= (m, r, s) impliesm′ 6= m with H(m′, r′) = H(m, r′).
We found a collision in H.

Let us suppose that the critical query was a p-oracle query for R. The
forking lemma allows to have another forgery (m′, r′, s′) 6= (m, r, s) with
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same critical R but a different oracle for p. The unique representation of
R implies α′ = α and β′ = β. Therefore the simulator got α, β, m and m′

such that λh(α, β, r) = H(m, r) and λh(α, β, r
′) = H(m′, r′) for random r

and r′, which is intractable if (p3) holds.

Let us suppose that the critical query was an p−1-oracle query that re-
turned R = Gα

′

V β′

. The unique representation of R implies α′ = α and
β′ = β, which is very unlikely because α′ and β′ were kept secret.

5.2 Security proof with idealized H

This proof is based on one of the results from [6]. In this proof, H is a
type II hash function.

A DL-based signature scheme is existentially unforgeable under adaptive
chosen message attacks if the discrete logarithm is hard, if H is a random
oracle with large output set, if p is almost uniform and ` + 1-collision-
resistant and if the category has properties (o1), (o2), (h1), and (h2).
Collision-resistance of p also implies non malleability. The security re-
duction is loose.

To answer a signature query, the simulator generates random α ∈ A
and β ∈ B and computes R = GαV β , r = p(R), h = λh(α, β, r) and
s = λs(α, β, r), until h ∈ H and s ∈ S. This is equivalent to using the
signature generation algorithm with k = α+v ·β therefore this simulation
has the same output distribution. Property (h2) says that the expected
number of random α, β needed is less than 1

εh
. The simulator sets the

oracle table H(m, r) := h. The signed message is (m, r, s).
Oracle queries that were not defined by a signature query are answered
with a random value. The value of R is uniformly distributed for random
α and β. If p is 1

n
-almost uniform then the probability that the oracle table

cannot be set is bounded by the probability of a collision in r, which is
low if (qH + qS)

2 ≤ n.

When the forger outputs its forgery (m, r, s), the critical query is the
H-oracle query of (m, r).
Let us suppose that the critical query was part of a signature query. It
returned a valid (m, r, s′) with the same oracle. Therefore h′ = h. If p

is collision-resistant, then R = R′ and its unique representation implies
α′ = α and β′ = β and property (o2) implies s′ = s.

Let us suppose that the critical query was an oracle query for (m, r).
The improved forking lemma allows to have ` other forgeries (m, r, si)
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with same critical (m, r) but different oracle for H. Since all p(Ri) = r,
the ` + 1 collision-resistance of p implies that there exist a pair where
Ri = Rj . Unique representation implies αi = αj and βi = βj . Property
(o1) implies a unique possible value hi = hj , which is unlikely to be the
one given by the two different oracles for H, because the output set is
large.

5.3 Security proof with idealized 〈G〉

The generic group model was introduced by Shoup [36] and extended by
Brown [7] to prove the security of ECDSA.

A DL-based signature scheme is existentially unforgeable under adaptive
chosen message attacks in the generic group model if H is uniform and
collision-resistant, if p is almost uniform and almost invertible and if the
category has properties (g1) and (g2). The security reduction is tight.

We don’t include in this document the proof given in [7] but we show
below how it can be adapted to other schemes than ECDSA, using our
general framework.
The proof was written for a type I hash function, but it also works for
a type II hash. It was written for ElGamal category, but it works for all
category with properties (g1) and (g2).
– In [Table 1] step 3 of Hint is replaced with

sm+1 = z1 · σ(hm+1, p(Am+1), z2z
−1
1 , zm+1).

– In [Table 2] steps 1 and 2 of Hint are replaced with
C(m+1)1 = φ(hm+1, p(Am+1), sm+1) and
C(m+1)2 = ψ(hm+1, p(Am+1), sm+1).

– In [Table 4] step 2.b should use p−1(λr(Ci1, Ci2, e)).
– In [Table 7] step 1.b.iii should use p−1(λr(Ci1, Ci2, êi)).
Property (g2) is used when the proof shows that
r = ... = λr(Cm1, Cm2, êi) = λr(φ(H(m), r, sm), ψ(H(m), r, sm), êi)

and then deduces that êi = H(m).

6 The PECDSA proposal

6.1 Comments on the security proofs

Comparison with the results from [6]. Two above results follow
closely the proofs from [6], but their interaction with the components
of the scheme are more clearly detailed. Property (p3) was not clearly
defined in term of interaction between the category and H.
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Moreover, we showed that the proof with an idealized p also works if p is
almost invertible.

Comparison with the results from [7]. Our result is more general but
overlooked some details that are found in [7]. For example we don’t con-
sider zero-finder-resistance, because our toolbox restricts ElGamal cate-
gory to H ⊂ Z×q to meet properties (g1) and (g2).

6.2 Comments on the toolbox

Projections. None of the projections previously proposed in the liter-
ature have all the required properties for our three proofs. This is the
reason why we described how to build a permuted projection. The per-
muted EC projections probably have all the required properties.
If partial message recovery is useful, Group projections are the best can-
didates.

Categories. ElGamal category is the choice with worst properties, even
if it is the most widely used in practice.
Schnorr category is the simplest choice, but it has some drawbacks: it
does not allow to build schemes proven with an idealized 〈G〉 and its use
may be patented. Swapped-Schnorr only has the first drawback.

NB: for Schnorr category, the order q can have intractable factorization,
because no inverse is computed. For the KCDSA categories and Swapped-
Schnorr category, computing inverses in Z×q is only needed for key genera-
tion. If the signer’s only private information is v−1, neither the verifier nor
the signer need to know the factorization of q. Intractable factorization
might be useful for an identity based scheme [21].

6.3 Description of PECDSA

Rationale for our design. PECDSA means Provable Elliptic Curve
Digital Signature Algorithm.
Taking the best for each component, we propose a Type II signature
scheme, with H = [Zq]# so we can rely on standard hash functions, with
permuted EC projection and with KCDSAxor category. This scheme is
proven secure against existential forgery in a chosen message attack if any
one of the components 〈G〉, H or p is idealized.
To be secure in the multi key setting and against parameter manipula-
tion, the parameters for the curve and the public key are included in the
components H and P, as it is done for KCDSA [18]. See also [26, 12].
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– Domain parameters. The security parameter is an integer κ, e.g.
160. Let 〈G〉 be an elliptic curve group of known prime order q ∈
[2κ, 2κ+1] and known generator G, let H be a hash function with κ
bits of output and P a symmetric cipher on blocks of κ bits and with
key of κ bits.

– Key generation algorithm. The key generation algorithm chooses
a random v ∈ Z×q and sets pk = V = Gv and sk = v−1.
The certification value z is the κ bits long hash of the certification
data, which contains at least the description of 〈G〉 and the values G
and V .

– Verification algorithm. The verification of (m, r, s) ∈M× [Zq]#×
Zq begins with h = H(z,m, r), R = Gh⊕rV s, and checks if r ?=
Pz(Rx mod 2κ).

– Signing algorithm. To sign the message m one takes a random
k ∈ Zq, computes R = Gk, r = Pz(Rx mod 2κ), h = H(z,m, r) and
s = v−1 · (k − (h⊕ r)). The signed message is (m, r, s).

Variant with partial message recovery. If message recovery is useful,
then a group projection similar to NS projection (with XOR) is used.
The redundancy function ρ concatenates κ/2 zeroes at the end of a κ/2
message m̄.

– Verification algorithm. The verification of (m̂, r, s) ∈ M̂× [Zq]#×
Zq begins with h = H(z, m̂, r), R = Gh⊕rV s computes (m̄, t) = r ⊕
Pz(Rx mod 2κ) and checks if t ?= 0...0.

– Signing algorithm. To sign the message (m̂, m̄) one takes a random
k ∈ Zq, computes R = Gk, r = (m̄, 0...0) ⊕ Pz(Rx mod 2κ), h =
H(z, m̂, r) and s = v−1 · (k− (h⊕ r)). The signed message is (m̂, r, s).

The generation of k. If the initial seed k used for signature generation
is partilly known to the attacker, then it may be possible to break the
scheme [27, 28].
For this reason the use of an external generator of random numbers may
add weaknesses to some implementations of the scheme. A suggested tech-
nique similar to [12] is proposed: a random value ∆ is added to the secret
key, a hash function Hq with output in Zq is used. The signature genera-
tion for a message m computes h′ = H(z,m), then k = Hq(∆,h

′), R and r
as before and h = H(h′, r). The verification computes h = H(H(z,m), r).
It is straightforward to check that the security proofs still hold for this
deterministic variant.
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6.4 Why is it useful to propose this new scheme.

So many DL-based schemes have been proposed that a new one may seem
useless. However, we feel that this new scheme has important advantages.

– Security. The two actual de facto standards (DSA and ECDSA) have
no convincing security proof. ECDSA can be proven in the generic
group model [7] but an elliptic curve group has automorphisms and
the generic group model does not apply directly [37].
Most of the published weaknesses of DSA or ECDSA [5, 33, 37, 38] are
solved by KCDSA, but this scheme can only be proven with ideal-
ized p.
We feel that current advances in the field of provable security and the
long term security needed by some applications of digital signature
are a strong argument for a design where all components have the
best security properties.

Standardized hash functions don’t have their output in some Zq there-
fore H = [Zq]# should be used. The efficiency of the security proof
with idealized H is optimal if εh = 1, which is the case for Schnorr,
Swapped-Schnorr or KCDSAxor categories.

– Performance. In all these schemes, the running time is dominated
by the cost of exponentiations in 〈G〉 and eventually by the hashing of
a large message. Therefore the easyness of implementing the scheme
is a better evaluation.
Because there exist no simple technique to generate a valid k for the
ElGamal category, any implementation of DSA or ECDSA either may
fail to sign (with extremely low probability) or has to loop to choose
another k (which is required by the standards but complicates the
implementation).
Some categories need to avoid non invertible values for h or k or r.
The test is fast to implement but makes the code grow and can be
the source of errors. ElGamal category needs to compute inverses in
Zq both for signature and verification, GOST and GDSA categories
only need this for verification, KCDSA and Schnorr categories don’t.
Resistance against implementation-dependant attacks is also linked
to the simplicity of the implementation.
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