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Frank-Wolfe algorithm (FW) gained o \We extend several variants SP extension of FW with Similar hypothesis as AFW:
in popularity in the last couple of || of the FW algorithm to solve away step: ¢ £ smooth and strongly convex.
f k ' the saddle point problem. : :
years beca.use of some key properties p p e Linear rate with adaptive || ® X and ) polytopes.
(only requires LMO). e\WWe prove convergence cten sive v, e U N |
e We tried to extend FW nice proper- results for these methods over P = It t Additional assumption on
ties to solve saddle point problem. polytople domains ﬁvmg I?i? s < (1 . VZ%Z%) bilinearity:
e Straightforward extension but|| a partial answer to Ham- .
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Non trivial analysis \ mond’s conjecture [1]. ) oSubIl.near rate V\2/Ith universal Lo o | M| < 0
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g Details on the additional assumption §
Saddle Point Problem “Strong convexity (. big enough compared to the bilinear coupling || M ||"
Let L : X x Y — R, where X’ and ) are convex and compact. L(x,y) = f(x)+ a:TMy —g(y).
Saddle point problem solve L I;leajgcﬁ(m,y) \D = max{diam(X), diam()Y)}, ¢ := min{ PWidth(X), PWidth(y)}j

A solution (x*,y*) is called a Saddle Point.
Difficulties for SP
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Same derivation for SP
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The gradient is L-Lipschitz,

- ) e Cannot control oscillations of L.
Global solution if L convex-concave: ¥(x,y) € X X Y Set v = %, decreasing scheme: || @ Must introduce other quantities.
x' — L(x' y)is convex and y' — L(x,y’) is concave. g2 h? e Proof use recent advances on
hiv1 < Ry e < hy 50 AFW [3]
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Simple method to solve SP
Conjectures related

rojected gradient ' - ' , .
§ proj g N projected extra-gradient Karlin's conjecture Hammond's conjecture

Slmple élg?rlthm.to solve Saddle T = Py(x —nV.L(z,y)) "SP-FW is equivalent to the ficti- || Hammond [1] conjectured that for
point optimization: gy = Py(y+ 1V, L(z,y)) tious play algorithm [4] when Variational inequalities:
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T = PX(m _ vaﬁ(ma y)) 4+ VR T Yy = % and L(w) y) :;UTMy |t g Is uniformly monotone and
y' = Pyly +nV,L(z,y)) v = Felw=nV.L(z,y) o the constraints is a bounded
T "= Pyly +nV,L(z,y)) Karlin [2] conjectured that: o
Non-smooth function: J Y YA ariin-j2f conjectured that. polyhedron, then the fictitious
hp Faster for Smooth function: o< O (%) play algorithm will solve the vari-
L (¢) (t)) (2 o g t ational inequality problem.
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