

Frank-Wolfe Algorithm for Saddle Point Problems

Gauthier Gidel¹, Tony Jebara² and Simon Lacoste-Julien³ ¹Sierra Project-team - INRIA, ²Columbia University, ³Université de Montréal

Overview		Theoretical contribution	
 Summary Frank-Wolfe algorithm (FW) gained in popularity in the last couple of years because of some key properties (only requires LMO). We tried to extend FW nice properties to solve saddle point problem. Straightforward extension but Non trivial analysis. 	 • We extend several variants of the FW algorithm to solve the saddle point problem. • We prove convergence results for these methods over polytope domains giving a partial answer to Hammond's conjecture [1]. 	ConvergenceHypothesisSP extension of FW with away step:Similar hypothesis as AFW:• Linear rate with adaptive step size $\gamma_t := \frac{\nu}{LD^2}g_t$. $\min_{s \le t} g_s \le \left(1 - \nu^2 \frac{\delta^2}{D^2 2L}\right)^t$ Similar hypothesis as AFW:• \mathcal{X} and \mathcal{Y} polytopes. Additional assumption on bilinearity:Additional assumption on bilinearity:• Sublinear rate with universal step size $\gamma_t := \frac{2}{2}$ $\nu := \frac{1}{2} - \frac{\sqrt{2} M D}{\mu} > 0$	vex.

$$\boldsymbol{x}^{+} = P_{\mathcal{X}}(\boldsymbol{x} - \eta \nabla_{x} \mathcal{L}(\boldsymbol{x}, \boldsymbol{y}))$$
$$\boldsymbol{y}^{+} = P_{\mathcal{Y}}(\boldsymbol{y} + \eta \nabla_{y} \mathcal{L}(\boldsymbol{x}, \boldsymbol{y}))$$

Non-smooth function:

$$\frac{1}{T} \sum_{t=1}^{T} \left(\boldsymbol{x}^{(t)}, \boldsymbol{y}^{(t)} \right) \xrightarrow[T \to \infty]{} (\boldsymbol{x}^*, \boldsymbol{y}^*)$$

$$\bar{\boldsymbol{x}} = P_{\mathcal{X}}(\boldsymbol{x} - \eta \nabla_{x} \mathcal{L}(\boldsymbol{x}, \boldsymbol{y}))$$

$$\bar{\boldsymbol{y}} = P_{\mathcal{Y}}(\boldsymbol{y} + \eta \nabla_{y} \mathcal{L}(\boldsymbol{x}, \boldsymbol{y}))$$

$$\boldsymbol{x}^{+} = P_{\mathcal{X}}(\boldsymbol{x} - \eta \nabla_{x} \mathcal{L}(\bar{\boldsymbol{x}}, \bar{\boldsymbol{y}}))$$

$$\boldsymbol{y}^{+} = P_{\mathcal{Y}}(\boldsymbol{y} + \eta \nabla_{y} \mathcal{L}(\bar{\boldsymbol{x}}, \bar{\boldsymbol{y}}))$$

Faster for **Smooth** function:

$$(\boldsymbol{x}^{(T)}, \boldsymbol{y}^{(T)}) \xrightarrow[T
ightarrow \infty]{} (\boldsymbol{x}^*, \boldsymbol{y}^*)$$

SP-FW is equivalent to the fictitious play algorithm [4] when $\gamma_t = \frac{1}{1+t}$ and $\mathcal{L}(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{x}^\top M \boldsymbol{y}$ Karlin [2] conjectured that: $g_t \leq O\left(\frac{1}{\sqrt{t}}\right)$ Hammond [1] conjectured that for Variational inequalities:

If g is **uniformly** monotone and the constraints is a **bounded polyhedron**, then the **fictitious play algorithm** will solve the variational inequality problem.

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{y}) := \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{x}^*\|_2^2 + (\boldsymbol{x} - \boldsymbol{x}^*)^\top M(\boldsymbol{y} - \boldsymbol{y}^*) - \frac{\mu}{2} \|\boldsymbol{y} - \boldsymbol{y}^*\|_2^2$$

• $\mathcal{X} = \mathcal{Y} := [0, 1]^d$ • $d = 30$ • $C := 2LD^2$ • $L = \mu$
References
[1] J. H. Hammond. Solving asymmetric variational inequality problems and systems of equations with generalized nonlinear programming algorithms. PhD thesis, Massachusetts Institute of Technology, 1984.
[2] S. Karlin. Mathematical methods and theory in games, programming and economics, 1960.
[3] S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe optimization variants. In *NIPS*, 2015.
[4] J. Robinson. An iterative method of solving a game. Annals of mathematics, 1951.