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Summary
Frank-Wolfe algorithm (FW) gained
in popularity in the last couple of
years because of some key properties
(only requires LMO).
•We tried to extend FW nice proper-

ties to solve saddle point problem.
•Straightforward extension but

Non trivial analysis.

Contributions
•We extend several variants

of the FW algorithm to solve
the saddle point problem.
•We prove convergence

results for these methods over
polytope domains giving
a partial answer to Ham-
mond’s conjecture [1].

Overview

Let L : X × Y → R, where X and Y are convex and compact.

Saddle point problem solve min
x∈X

max
y∈Y
L(x,y)

A solution (x∗,y∗) is called a Saddle Point.
Stationary conditions

〈x− x∗, ∇xL(x∗,y∗)〉 ≥ 0

〈y − y∗,−∇yL(x∗,y∗)〉 ≥ 0

Variational inequality
∀z ∈ X × Y 〈z − z∗, g(z∗)〉 ≥ 0

where g(z) = (∇xL(z),−∇yL(z))

and (x∗,y∗) = z∗

Global solution if L convex-concave: ∀(x,y) ∈ X × Y

x′ 7→ L(x′,y) is convex and y′ 7→ L(x,y′) is concave.

Saddle Point Problem

projected gradient
Simple algorithm to solve Saddle
point optimization:

x+ = PX (x− η∇xL(x,y))

y+ = PY(y + η∇yL(x,y))

Non-smooth function:

1

T

T∑
t=1

(
x(t),y(t)

)
−→
T→∞

(x∗,y∗)

projected extra-gradient

x̄ = PX (x− η∇xL(x,y))

ȳ = PY(y + η∇yL(x,y))

x+ = PX (x− η∇xL(x̄, ȳ))

y+ = PY(y + η∇yL(x̄, ȳ))

Faster for Smooth function:

(x(T ),y(T )) −→
T→∞

(x∗,y∗)

Simple method to solve SP

Update rule

Update
r(z) :=

(
∇xL(z)

−∇yL(z)

)
s ∈ argmin

z∈X×Y
〈z, r(z)〉

z+ := (1− γ)z + γs

Stopping criterion:

gt := 〈r(z), z − s〉 ≤ ε

Properties
Only LMO.

•Gap certificate for free.
•Algorithm affine invariant.
•Universal step size
γt := 2

2+t and adaptive
step size γt ∼ gt.
•No line-search.
•Sparsity of the iterates.

Away step
v ∈ arg max

v′∈Sx×Sy
〈r(z),v′〉 , dA := z − v and gA

t := 〈dA,−r(z)〉

SP-FW

Convergence
SP extension of FW with

away step:
•Linear rate with adaptive

step size γt := ν
LD2gt.

min
s≤t

gs ≤
(

1− ν2 δ2

D2
µ

2L

)t
•Sublinear rate with universal

step size γt := 2
2+k(t).

Hypothesis
Similar hypothesis as AFW:

•L smooth and strongly convex.
•X and Y polytopes.

Additional assumption on
bilinearity:

ν :=
1

2
−
√

2‖M‖
µ

D

δ
> 0

Details on the additional assumption
“Strong convexity µ big enough compared to the bilinear coupling ‖M‖”

L(x,y) = f (x) + x>My − g(y).

D := max{diam(X ), diam(Y)}, δ := min{PWidth(X ), PWidth(Y)}

Theoretical contribution

FW proof technique
The gradient is L-Lipschitz,

ht+1 ≤ ht − γtgt + γ2
t

L‖d(t)‖2

2
Set γt = gt

C , decreasing scheme:

ht+1 ≤ ht −
g2
t

2C
≤ ht −

h2
t

2C

Same derivation for SP

Lt+1 ≤ Lt−γt (g
(x)
t − g

(y)
t )︸ ︷︷ ︸

arbitrary sign
+γ2

t

LD2

2

•Cannot control oscillations of Lt.
•Must introduce other quantities.
•Proof use recent advances on

AFW [3].

Difficulties for SP

Karlin’s conjecture
SP-FW is equivalent to the ficti-
tious play algorithm [4] when
γt = 1

1+t and L(x,y)=x>My

Karlin [2] conjectured that:

gt ≤ O

(
1√
t

)

Hammond’s conjecture
Hammond [1] conjectured that for

Variational inequalities:
If g is uniformly monotone and
the constraints is a bounded
polyhedron, then the fictitious
play algorithm will solve the vari-
ational inequality problem.

Conjectures related
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ν = 0.09 γ = 2
2+k(t)

ν = 0.09 γ = adaptive

ν = 0.19 γ = adaptive
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Theoretical: γt =
ν

C
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Iteration (×104)
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ν = −5 · 104 γ = heuristic

ν = −5 · 104 γ = 2
2+k(t)

ν = −4 · 102 γ = heuristic

ν = −50 γ = heuristic

ν = −4 γ = heuristic

Heuristic: γt =
gt

C + 2‖M‖
2D2

µ

L(x,y) :=
µ

2
‖x− x∗‖2

2 + (x− x∗)>M(y − y∗)− µ
2
‖y − y∗‖2

2

•X = Y := [0, 1]d • d = 30 • C := 2LD2 • L = µ

Toy experiments
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