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Overview Theoretical contribution
Summary Hypothesis
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Frank-Wolfe algorithm (FW) gained in popularity in the last couple of SP extension of FW with Similar hypothesis as AFW:
years because of some key properties allowing it to cheaply exploit the away step: e [-smooth, j-strongly convex.

structured constraint sets appearing in machine learning applications.
e \We tried to extend FW nice properties to solve saddle point problem.

o Linear rate with adaptive || ® X and ) polytopes.

step size V; 1= +=0;. - -
_ e Straightforward extension but Non trivial analysis. ) P 7t It t Additional assumption on
. 2.0 bilinearity:
) | \ min g, < (1- "4 ) y
e Extend several variants of the FW algorithm to solve SP problem. . .
e Sublinear rate with universal 1 V2[M|D 0
e Prove convergence results for these methods over polytope do- . 5 v =5 5 >
. .. : : i step size 7y 1= TR 5
mains giving a partial answer to Hammond’s conjecture [1]. L i PAN y
e Introduce application with fast linear minimization oracle (LMO) p Details on the additional assumption N
Call for applications “Strong convexity (i big enough compared to the bilinear coupling || M ||"
- g L(x,y) = f(x)+x My —g(y).
_ D = max{diam(X), diam())}, 0 := min{ PWidth(X'), PWidth())}
Saddle Point (SP) Problem \ /

Let £L: X XY — R, where X’ and ) are convex and compact.
Difficulties for SP

Saddle point problem = solve min tmax L(x,y) FW proof technique Same derivation for SP
L Yy

. . : b, — (t) . Lot < Li— (x) _ (y)) | ,LD"
A solution z* = (x*, y*) is called a Saddle Point. = fla) — o flx) tH1 = Lt =7 (G 9t TN
§ Variational inequality § D e ,L||dV]]? arbitrary sign
. . . . tH S = NG % e Cannot control oscillations of L;.
(x —x*, V.L(x",y")) >0 N (z —2",7r(2") >0, Vz = (z,y) Set v, = %, decreasing scheme: || @ Must introduce other quantities.
y—y,—V,L(x"y)) =0 r(z) = (V.L(2), =V,L(2)) g7 h? e Proof use recent advances on
- __ 7 g hiv1 < hy < Iy AFW [4].
Global solution if L convex-concave: ¥(x,y) € X X Y N 2C 2¢ U Y

x' — L(x',y)is convex and vy — L(x,vy’) is concave. _
Related conjectures

Standard method to solve SP Karlin's conjecture

) . Hammond’s conjecture
SP-FW is equivalent to the ficti- || Hammond [1] conjectured that for

p projected gradient N projected extra-gradient tious play algorithm [5] when Variational inequalities:

Simple algorithm to solve Saddle
point optimization:
" = Py(x —vV.L(x,y))
y =DPyy+7V,L(z,y))

Ve = 1%75 and L(w,y):wTMy If g is uniformly monotone and
the constraints is a bounded

polyhedron, then the fictitious

g <O <L> play algorithm will solve the vari-
B Vi ational inequality problem.

Karlin [3] conjectured that:

Non-smooth function: - 7N g
T Faster for Smooth function: Toy experiments
~ > (az“% y“)) — (", y") 1) T sy (2% 2 .
T T—00 (" y) o (", y") For the Poster: we compared with EG by He and Harchaoui [2] (fig. on
\ — AN J : : : : : . :
the left) performing projected extra-gradient with approximate projections.
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v = —5-10* v = heuristic
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e Gap certificate for free. SR = I \M
I \
Update ! e Algorithm affine invariant. | Y
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step size 7 ~ gr. Theoretical: | v, = 9 Heuristic: | 7, = D
e No line-search. C +2
e Sparsity of the iterates. v 112 T o M 119
/N ’ La,y) =Tlz—z |+ (@—2) My -y’) - Slly -yl
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