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Abstract

Generative modeling of high dimensional data
like images is a notoriously difficult and ill-
defined problem. In particular, how to evalu-
ate a learned generative model is unclear. In
this paper, we argue that adversarial learning,
pioneered with generative adversarial networks
(GANs), provides an interesting framework to
implicitly define more meaningful task losses for
unsupervised tasks, such as for generating “vi-
sually realistic” images. By unifying GANs and
structured prediction under the framework of sta-
tistical decision theory, we put into light links
between recent advances in structured prediction
theory and the choice of the divergence in GANs.
We argue that the insights about the notions of
“hard” and “easy” to learn losses can be analo-
gously extended to adversarial divergences. We
also discuss the attractive properties of adver-
sarial divergences for generative modeling, and
perform experiments to show the importance of
choosing a divergence that reflects the final task.

1. Introduction
For structured prediction and data generation the notion of
final task is at the same time crucial and not well defined.
Consider machine translation; the goal is to predict a good
translation, but even humans might disagree on the correct
translation of a sentence. Moreover, even if we settle on a
ground truth, it is hard to define what it means for a can-
didate translation to be close to the ground truth. In the
same way, for data generation, the task of generating pretty
pictures or more generally realistic samples is not well de-
fined. Nevertheless, both for structured prediction and data
generation, we can try to define criteria which characterize
good solutions such as grammatical correctness for trans-
lation or non-blurry pictures for image generation. By in-
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corporating enough criteria into a task loss, one can hope
to approximate the final task, which is otherwise hard to
formalize.

Supervised learning and structured prediction are well-
defined problems once they are formulated as the mini-
mization of such as task loss. The usual task loss in ob-
ject classification is the generalization error associated with
the classification error, or 0-1 loss. In machine transla-
tion, where the goal is to predict a sentence, a structured
loss, such as the BLEU score (Papineni et al., 2002), for-
mally specifies how close the predicted sentence is from the
ground truth. The generalization error is defined through
this structured loss. In both cases, models can be objec-
tively compared and evaluated with respect to the task loss
(i.e., generalization error). On the other hand, we will show
that it is not as obvious in generative modeling to define a
task loss that correlates well with the final task of generat-
ing realistic samples.

Traditionally in statistics, distribution learning is formu-
lated as density estimation where the task loss is the ex-
pected negative-log-likelihood. Although log-likelihood
works fine in low-dimension, it was shown to have
many problems in high-dimension (Arjovsky et al., 2017).
Among others, because the Kullback-Leibler is too strong
of a divergence, it can easily saturate whenever the distri-
butions are too far apart, which makes it hard to optimize.

In this work we give insights on how adversarial diver-
gences (Liu et al., 2017) can be considered as task losses
and how they address many problems of the KL by indi-
rectly incorporating hard-to-define criteria. We define neu-
ral adversarial divergences1 as the following :

DivNN(p||qθ)=̂ sup
φ∈Φ

E(x,x′)∼p⊗qθ [∆(fφ(x), fφ(x′))] (1)

where {fφ : X → Rd′ ; φ ∈ Φ} is a class of parametrized
neural networks, called the discriminators in the Gener-
ative Adversarial Network (GAN) framework (Goodfel-
low et al., 2014). The constraints Φ and the function
∆ : Rd′ × Rd′ → R determine properties of the result-
ing divergence. Using these notations, training a GAN can

1In this work we simply call them adversarial divergences
since we are interested in GANs, but note that in a more general
setting, any parametric discriminator could be considered.
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be seen as training a generator network qθ (parametrized
by θ) to minimize the adversarial divergence DivNN(p||qθ),
where the generator network defines the probability distri-
bution qθ over x.

Our contributions are the following:

• We argue that compared to traditional divergences, ad-
versarial divergences are a good compromise in terms
of sample complexity, computation, ability to inte-
grate prior knowledge, flexibility and ease of opti-
mization.

• We unify structured prediction and generative adver-
sarial networks using statistical decision theory, and
show that they both amount to formalizing a final task
into the minimization of a statistical task loss.

• We explain why it is necessary to choose a divergence
that adequately reflects our final task in generative
modeling. We make a parallel with results in struc-
tured learning (also dealing with high-dimensional
data), which quantify the importance of choosing a
good objective in a specific setting.

• We explore with some simple experiments how the
properties of the discriminator transfer to the adver-
sarial divergence. Our experiments suggest that adver-
sarial divergences are especially adapted to problems
such as image generation, where it is hard to formally
define a perceptual loss that correlates well with hu-
man judgment.

2. Background
Here we briefly introduce the structured prediction frame-
work because it can be related to generative modeling in
some ways. We will later unify them formally, and present
insights from recent theoretical results to choose a better
divergence. We also unify adversarial divergences with tra-
ditional divergences in order to compare them in the next
section.

2.1. Structured Prediction

The goal of structured prediction is to learn a classifier
hθ : X → Y which predicts a structured output y from
an input x. The key difficulty is that Y usually has an ex-
ponential size2 (e.g. it could be all possible sequence of
symbols with a given length). Being able to handle this ex-
ponentially large set of outputs is one of the key challenges
in structured prediction because it makes traditional multi-
class classification methods unusable in general.3 Stan-

2Additionally, Y might depend on the input x, but we ignore
this effect for clarity of exposition.

3Such as ones based on maximum likelihood.

dard practice in structured prediction (Taskar et al., 2003;
Collins, 2002; Pires et al., 2013) is to consider predictors
based on score functions hθ(x)=̂ arg maxy′∈Y sθ(x,y

′),
where sθ : X × Y → R, called the score/energy func-
tion (LeCun et al., 2006), assigns a score to each pos-
sible label y for an input x. Typically, as in structured
SVMs (Taskar et al., 2003), the score function is linear:
sθ(x,y) = 〈θ, g(x,y)〉, where g(·) is a predefined fea-
ture map. Alternatively, the score function could also be a
learned neural network (Belanger & McCallum, 2016).

In order to evaluate the predictions objectively, we need to
define a task-dependent structured loss `(y′,y ;x) which
expresses the cost of predicting y′ for x when the ground
truth is y. We discuss the relation between the loss function
and the actual final task in Section 4.2 . The goal is then
to find a parameter θ which minimizes the generalization
error:

min
θ∈Θ

E(x,y)∼p [`(hθ(x),y,x)] (2)

Directly minimizing (2) is often an intractable problem;
this is the case when the structured loss ` is the 0-1
loss (Arora et al., 1993). Instead, the usual practice is to
minimize surrogate losses L (Bartlett et al., 2006) which
have nicer properties such as (sub-)differentiability or con-
vexity, to get a tractable optimization problem:

min
θ∈Θ

E(x,y)∼p [L(sθ(x,y),x,y)] . (3)

If L is continuous and bounded from below then (3) is a
well defined problem. The surrogate loss is said to be con-
sistent (Osokin et al., 2017) when its minimizer is also a
minimizer of the task loss.

A simple example of structured prediction task is machine
translation. Suppose we want to translate French sentences
to English; the input x is then a sequence of French words,
and the output y is a sequence of English words belonging
to a dictionary D with typically |D| ≈ 10000 words. If we
restrict the output sequence to be shorter than T words, then
|Y| = |D|T , which is exponential. A desirable criterion
is to have a translation with many words in common with
the ground truth, which is typically enforced using BLEU
scores to define the task loss.

2.2. Adversarial and Traditional Divergences

Because we will compare properties of adversarial and tra-
ditional divergences throughout this paper, we choose to
first unify them with a formalism similar to Sriperumbudur
et al. (2012); Liu et al. (2017):

Div(p||qθ)=̂ sup
f∈F

E(x,x′)∼p⊗qθ [∆(f(x), f(x′))] (4)

Under this framework we give some examples of tradi-
tional divergences:
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• ψ-divergences with generator function ψ (which
we call f-divergences) can be written in dual
form (Nowozin et al., 2016)4

Divψ(p||q)=̂ sup
f :X→R

Ex∼p[f(x)]−Ex′∼qθ [ψ∗(f(x′))]

(5)
where ψ∗ is the convex conjugate. Depending on ψ,
one can obtain any ψ-divergence such as the (reverse)
Kullback-Leibler, the Jensen-Shannon, the Total Vari-
ation, the Chi-Squared5.

• Wasserstein-1 distance induced by an arbitrary norm
‖·‖ (Sriperumbudur et al., 2012):

W (p||q) =̂ sup
f :X→R
∀x∈X ,

||f ′(x)||∗≤1

Ex∼p[f(x)]−Ex′∼qθ [f(x′)]

(6)
which can be interpreted as the cost to transport all
probability mass of p into q, where ‖x− x′‖ is the
unit cost of transporting x to x′.

• Maximum Mean Discrepancy (Gretton et al., 2012):

MMD(p||q)=̂ sup
f∈H
||f ||H≤1

Ex∼p[f(x)]−Ex′∼qθ [f(x′)]

(7)
where (H,K) is a Reproducing Kernel Hilbert
Space induced by a Kernel K(x,x′) on X . The
MMD has many interpretations in terms of moment-
matching (Li et al., 2017).

In the optimization problems (5) and (6), whenever f is
additionally constrained to be a neural network with spe-
cific architecture,6 then we talk about neural adversar-
ial divergences, or just adversarial divergences For in-
stance, the adversarial Jensen-Shannon optimized in GANs
corresponds to (5) with specific ψ (Nowozin et al., 2016),
while the adversarial Wasserstein optimized in WGANs
corresponds to (6) where f is a neural network. See (Liu
et al., 2017) for interpretations and a review and interpreta-
tion of other divergences like the Wasserstein with entropic
smoothing (Aude et al., 2016), energy-based distances (Li
et al., 2017) which can be seen as adversarial MMD, and
the WGAN-GP (Gulrajani et al., 2017) objective.

4The standard form is Ex∼qθ [ψ(
p(x)
qθ(x)

)].
5 For instance the Kullback-Leibler Ex∼p[log p(x)

qθ(x)
] has the

dual form supf :X→R Ex∼p[f(x)] − Ex′∼qθ [exp(f(x
′) − 1)].

Some ψ require additional constraints, such as ||f ||∞ ≤ 1 for the
Total Variation.

6In the nonparametric limit where all neural network architec-
tures are considered, adversarial divergences degenerate to their
traditional counterparts.

3. Why Should We Use the Adversarial
Divergence?

We argue that adversarial divergences have many good
properties which make them attractive for generative mod-
eling. In this section, we compare adversarial divergences
to traditional divergences in terms of statistical efficiency,
computational cost, ability to integrate criteria related to
the final task, and whether they constrain the form of the
generator.

Divergence Sample Comp. Computation
f-Div (EXPL) O(1/ε2) MC, O(n)
f-Div (IMPL) N/A N/A
Wasserstein O(1/εd+1) Sinkhorn, O(n2)
MMD O(1/ε2) analytic, O(n2)
Adversarial O(p/ε2) SGD

Table 1. Statistical and Computational Properties of Divergences.
EXPL and IMPL stand for explicit and implicit models (whether
the density qθ(x) can be computed).

3.1. Statistical and Computational Efficiency

Since we want to learn from finite data, we would like to
know how well empirical estimates of a divergence approx-
imate the population divergence, i.e., how many samples n
we need to have with high probability that |Div(p||q) −
Div(p̂n||q̂n)| ≤ ε, where ε > 0, and p̂n, q̂n are empirical
distributions associated with p, q. Convergence rates for
adversarial and traditional divergences are summarized in
Table 1.

For explicit models which allow evaluating the density
qθ(x), one could use Monte-Carlo to evaluate the f-
divergence with sample complexity n = O(1/ε2), accord-
ing to the Central-Limit theorem. However, with implicit
models, one has to resort to the dual form (5), which typ-
ically requires approximating with a neural network, and
thus becomes an adversarial f-divergence.

Adversarial divergences can be formulated as a classifica-
tion/regression problem with a loss depending on the spe-
cific adversarial divergence. Therefore, they have a rea-
sonable sample complexity of O(p/ε2), where p is the
VC-dimension/number of parameters of the discrimina-
tor (Arora et al., 2017), and can be solved using classic
stochastic gradient methods.

A straightforward estimator of the Wasserstein is simply
the Wasserstein distance between the empirical distribu-
tions p̂n and q̂n, for which smoothed versions can be
computed in O(n2) using specialized algorithms such as
Sinkhorn’s algorithm (Cuturi, 2013) or iterative Bregman
projections (Benamou et al., 2015). However, the em-
pirical Wasserstein estimator has sample complexity n =
O(1/εd+1) which is exponential in the number of dimen-
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sions (see Sriperumbudur et al., 2012, Corollary 3.5). Thus
the empirical Wasserstein is not a viable estimator in high-
dimensions.

Maximum Mean Discrepancy admits an estimator with
sample complexity n = O(1/ε2), which can be computed
analytically in O(n2). More details are given in the orig-
inal MMD paper (Gretton et al., 2007). As the sample
complexity is independent of the dimension of the data,
one might believe that the MMD estimator behaves well
in high dimensions. However, it was experimentally illus-
trated in Dziugaite et al. (2015) that MMD performs poorly
for MNIST and Toronto face datasets, as the images gen-
erated have many artifacts and are clearly distinguishable
from the training dataset. It was also shown theoretically
in (Reddi et al., 2014) that the power of the MMD statisti-
cal test drops polynomially with increasing dimension.

Note that comparing divergences in terms of sample com-
plexity can give good insights on what is a good diver-
gence, but should be taken with a grain of salt as well. On
the one hand, the sample complexities we give are upper-
bounds, which means the estimators could potentially con-
verge faster. On the other hand, one might not need a very
good estimator of the divergence in order to learn in some
cases. This is illustrated in our experiments with the em-
pirical Wasserstein (Section 5) which has bad sample com-
plexity but yields reasonable results.

3.2. Ability to Integrate Final Task

In Section 4, we will argue that in structured prediction,
optimizing for the right task losses is more meaningful and
can make learning considerably easier. Similarly in gen-
erative modeling, we would like divergences to integrate
criteria that characterize the final task. We discuss that al-
though not all divergences can easily integrate final task-
related criteria, adversarial divergences provide a way to
do so.

Pure f-divergences cannot directly integrate any notion of
final task,7 at least without tweaking the generator. The
Wasserstein distance and MMD are respectively induced
by a base metric d(x,x′) and a kernel K(x,x′). The met-
ric and kernel give us the opportunity to specify a task by
letting us express a (subjective) notion of similarity. How-
ever, the metric and kernel generally have to be defined
by hand, as there is no obvious way to learn them end-to-
end. For instance, Genevay et al. (2017) learn to generate
MNIST by minimizing a smooth Wasserstein based on the

7As pointed out by a reviewer, one could also attempt to in-
duce properties of interest by adding a regularization term to the
f-divergence. However, if we assume that maximum likelihood
is itself often not a meaningful task loss, then there is no guaran-
tee that minimizing a tradeoff between maximum likelihood and
a regularization term is more meaningful or easier.

L2-distance, while Dziugaite et al. (2015); Li et al. (2015)
also learn to generate MNIST by minimizing the MMD in-
duced by kernels obtained externally: either generic ker-
nels based on the L2-distance or on autoencoder features.
However, the results seems to be limited to simple datasets.
Recently there has been a surge in doing MMD with ker-
nel learning, with convincing results on LSUN, CelebA and
Imagenet images. Mroueh et al. (2017) learn a feature map
and try to match its mean and covariance, Li et al. (2017)
learn kernels end-to-end, while Bellemare et al. (2017) do
end-to-end learning of energy distances, which are closely
related to MMD.

Adversarial divergences are defined with respect to a class
of discriminators. Thus, changing the properties of the
discriminator will likely affect the associated adversarial
divergence. Additionally, the adversarial Wasserstein dis-
tance (Arjovsky et al., 2017) can also incorporate a custom
metric. In Section 5 we give interpretations and experi-
ments to assess the relation between the discriminator and
the divergence.

3.3. Ease of Optimization and Stability

While adversarial divergences are learned and thus poten-
tially much more powerful than traditional divergences, the
fact that they are the solution to a hard, non-convex prob-
lem can make GANs unstable. Not all adversarial diver-
gences are equally stable: Arjovsky et al. (2017) claimed
that the adversarial Wasserstein gives more meaningful
learning signal than the adversarial Jensen-Shannon, in the
sense that it correlates well with the quality of the sam-
ples, and is less prone to mode dropping. We show ex-
perimentally on a simple setting that indeed the adversar-
ial Wasserstein consistently give more meaningful learning
signal than the adversarial Jensen-Shannon, regardless of
the architecture discriminator (Section 5). Similarly to the
WGAN, the MMD-GAN divergence (Li et al., 2017) was
shown to correlate well with the quality of samples and to
be robust to mode collapse.

3.4. Avoiding Generators with Special Structure

In some cases, imposing a certain structure on the gener-
ator yields a Kullback-Leibler divergence which involves
some form of component-wise distance between samples,
reminiscent of the Hamming loss (later defined in Sec-
tion 4.3) used in structured prediction. However, doing
maximum likelihood on generators having an imposed spe-
cial structure can have drawbacks which we detail here.
For instance, the generative model of a typical variational
autoencoder can be seen as an infinite mixture of Gaus-
sians (Kingma & Welling, 2013). The log-likelihood re-
duces to a reconstruction loss, i.e., a pixel-wise L2 distance
between images analogous to the Hamming loss, which
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makes the training relatively easy and very stable. How-
ever, the Gaussians make the VAE unable to learn sharp
distributions. Indeed it is a known problem that VAEs pro-
duce blurry samples (Arjovsky et al., 2017). Other ex-
amples are autoregressive models such as recurrent neural
networks (Mikolov et al., 2010) which factorize naturally
as log qθ(x) =

∑
i log qθ(xi|x1, .., xi−1). Training us-

ing maximum likelihood results in teacher-forcing (Lamb
et al., 2016): each ground-truth symbol is fed to the RNN,
which then has to maximize the likelihood of the next sym-
bol. Since teacher-forcing induces a lot of supervision, it is
possible to learn using maximum-likelihood. Once again,
there are similarities with the Hamming loss because each
predicted symbol is compared with its associated ground
truth symbol. However, among other problems, there is
a discrepancy between training and generation. Sampling
from qθ would require iteratively sampling each symbol
and feeding it back to the RNN, giving the potential to ac-
cumulate errors, which is not something that is accounted
for during training. See Leblond et al. (2017) and refer-
ences therein for more principled approaches to sequence
prediction.

3.5. Sampling from Generator is Sufficient

Maximum-likelihood typically requires computing the
density qθ(x), which is not possible for implicit models
such as GANs, from which it is only possible to sample.
On the other hand, adversarial divergences can be estimated
with reasonable sample complexity (see Section 3.1) only
by sampling from the generator, without any assumption
on the form of the generator. This is also true for MMD
but generally not the case for the empirical Wasserstein,
which has bad sample complexity as stated previously. An-
other issue of f-divergences such as the Kullback-Leibler
or the Jensen-Shannon, is that they are either not defined
or uninformative when p is not absolutely continuous w.r.t.
qθ (Nowozin et al., 2016), which makes them unusable
for learning sharp distributions such as manifolds. On
the other hand, some integral probability metrics, such as
the Wasserstein, MMD, or their adversarial counterparts,
are well defined for any distributions p and qθ. In fact,
even though the Jensen-Shannon is ill-defined for mani-
folds, the adversarial Jensen-Shannon used in the original
GANs (Goodfellow et al., 2014) still allows learning realis-
tic samples, even though the process is unstable (Salimans
et al., 2016).

4. Choosing Better Task Losses
In this section, we try to provide insights in order to de-
sign the best adversarial divergence for our final task. Af-
ter unifying structured prediction and generative adversar-
ial networks, we review theoretical results on the choice of

objectives in structured prediction, and discuss their inter-
pretation in generative modeling.

4.1. Unifying Structured Prediction and Generative
Adversarial Networks

We unify structured prediction and GANs using the frame-
work of statistical decision theory. Assume that we are in a
world with a set P of possible states and that we have a set
A of actions. When the world is in the state p ∈ P , the cost
of playing action a ∈ A is the (statistical) task loss Lp(a).
The goal is to play the action minimizing the task loss.

Generative models with Maximum Likelihood. The
set P of possible states is the set of available distributions
{p} for the data x. The set of actions A is the set of pos-
sible distributions{qθ ; θ ∈ Θ} for the model and the task
loss is the negative log-likelihood,

Lp(θ)=̂Ex∼p [− log(qθ(x))] (8)

Structured prediction. The set P of possible states is
the set of available distribution {p} for (x,y). The set of
actions A is the set of prediction functions {hθ ; θ ∈ Θ}
and the task loss is the generalization error:

Lp(θ)=̂E(x,y)∼p [`(hθ(x),y,x)] (9)

where ` : Y × Y × X → R is a structured loss function.

GANs. The set P of possible states is the set of available
distributions {p} for the data x. The set of actions A is the
set of distributions {qθ ; θ ∈ Θ} that the generator can
learn, and the task loss is the adversarial divergence

Lp(θ)=̂ sup
f∈F

E(x,x′)∼p⊗qθ [∆(f(x), f(x′))] (10)

Under this unified framework, the prediction function hθ
is analogous to the generative model qθ, while the choice
of the right structured loss ` can be related to the choice
of the discriminators F which will induce a good adver-
sarial divergence. We will further develop this analogy in
Section 4.2.

4.2. Link Between Structured Losses and Adversarial
Divergences

As discussed in the introduction, structured prediction and
data generation involve a notion of final task which is at
the same time crucial and not well defined. Nevertheless,
for both we can try to define criteria which characterize
good solutions. We would like the statistical task loss (in-
troduced in Section 4.1), which corresponds to the gener-
alization error in structured prediction, and the adversar-
ial divergence in generative modeling, to incorporate task-
related criteria. One way to do that is to choose a structured
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loss that reflects the criteria of interest, or analogously to
choose a class of discriminators, like a CNN architecture,
such that the resulting adversarial divergence has good in-
variance properties. The whole process of building statisti-
cal task losses adapted to a final task, using the right struc-
tured losses or discriminators, is represented in Figure 1.

Figure 1. Formalizing a final task into the minimization of a sta-
tistical task loss.

For many prediction problems, the structured prediction
community has engineered structured loss functions which
induce properties of interest on the learned predictors. In
machine translation, a commonly considered property of
interest is for candidate translations to contain many words
in common with the ground-truth; this has given rise to
the BLEU score which counts the percentage of candidate
words appearing in the ground truth. In the context of im-
age segmentation, Osokin & Kohli (2014) have compared
various structured loss functions which induces different
properties on the predicted mask.

In the same vein as structured loss functions, adversar-
ial divergences can be built to induce certain properties
on the generated data. We are more concerned with gen-
erating realistic samples than having samples which are
very similar with the training set; we actually want to ex-
trapolate some properties of the true distribution from the
training set. For instance, in the DCGAN (Radford et al.,
2015), the discriminator has a convolutional architecture,
which makes it potentially robust to small deformations
that would not affect the visual quality of the samples sig-
nificantly, while still making it able to detect blurry sam-
ples, which is aligned with our objective of generating re-
alistic samples.

4.3. Some Task Losses are Easier to Learn

In this section we get insights from the convergence results
of Osokin et al. (2017) in structured prediction. They show
in a specific setting that some weaker structured loss func-

tions are easier to learn than some stronger loss functions.
In some sense, their results formalize the intuition in gen-
erative modeling that learning with weaker divergences is
easier (Arjovsky et al., 2017) and more intuitive (Liu et al.,
2017) than stronger divergences.

Intuition to Prove. Intuitively, strong losses such as the
0-1 loss are hard to learn because they do not give any flex-
ibility on the prediction; the 0-1 loss only tells us whether a
prediction is correct or not, and consequently does not give
any clue about how close the prediction is to the ground
truth. To get enough learning signal, we roughly need as
many training examples as the number of possible outputs
|Y|, which is exponential in the dimension of y and thus in-
efficient. Conversely, weaker losses like the Hamming loss
have more flexibility; because they tell us how close a pre-
diction is to the ground truth, less example are needed to
generalize well. The theoretical results proved by Osokin
et al. (2017) formalize that intuition in a specific setting.

Theory to Back the Intuition. In a non-parametric set-
ting (details in next paragraph), Osokin et al. (2017)
formalize the intuition that weaker structured loss func-
tions are easier to optimize. Specifically, they compare
the 0-1 loss `0−1(y,y′)=̂1 {y 6= y′} to the Hamming loss
`Ham(y,y′)=̂ 1

T

∑T
t=1 1{yt 6= y′t}, when y decomposes

as T = log2 |Y| binary variables (yt)1≤t≤T . They derive
a worst case sample complexity needed to obtain a fixed
error ε > 0. For the 0-1 loss, they obtain a sample com-
plexity ofO(|Y |/ε2) which is exponential in the dimension
of y. However, for the Hamming loss, under certain con-
straints (see Osokin et al., 2017, section on exact calibra-
tion functions) they obtain a much better sample complex-
ity ofO(log2 |Y |/ε2) which is polynomial in the number of
dimensions, whenever certain constraints are imposed on
the score function. Thus their results suggest that choosing
the right structured loss might make training exponentially
faster.

Limitations of the Theory. Although Osokin et al.
(2017) give a lot of insights, their results must be taken
with a grain of salt. Their analysis ignores the dependence
on x and is non-parametric, which means that they con-
sider the whole class of possible score functions for each
given x. Additionally, they only consider convex consis-
tent surrogate losses in their analysis, and they give upper
bounds but not lower bounds on the sample complexity. It
is possible that optimizing approximately-consistent surro-
gate losses instead of consistent ones, or making additional
assumptions on the distribution of the data could yield bet-
ter sample complexities.

Insights. Those theoretical results are consistent with our
intuition that weaker losses are easier to optimize, and
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Figure 2. Images generated by the network after training with the
Sinkorn-Autodiff algorithm on MNIST dataset (left) and CIFAR-
10 dataset (right).

quantify in a specific setting how much harder it is to learn
with strong structured loss functions like the 0-1 loss than
weaker ones like the Hamming loss (here, exponentially
harder).

Relation with Adversarial Divergences. Under the uni-
fied framework we introduced in Section 4.2, choosing a
structured loss function is analogous to choosing a class
of discriminators to define a statistical task loss. In both
cases (9) and (10) are designed to induce properties of in-
terest on the solution of the optimization problem. Addi-
tionally, the fact that flexible statistical task losses, which
can “smoothly” distinguish between good and bad mod-
els, are easier to optimize in the context of structured pre-
diction, can be related to the belief that weaker adversar-
ial divergences are easier to optimize in generative mod-
eling. Arjovsky et al. (2017); Liu et al. (2017) compare
traditional divergences in terms of strength, and give argu-
ments why it might be easier to learn in weaker topologies
than in stronger ones. For instance, distributions with dis-
joint support can be compared in weaker topologies like
the Wasserstein but not in stronger ones like the Jensen-
Shannon. They also show that the WGAN, based on the ad-
versarial Wasserstein, is much more stable than the GAN,
based on the adversarial Jensen-Shannon.

5. Experimental results
Importance of Sample Complexity. Since the sample
complexity of the empirical Wasserstein (Section 3.1) is
exponential in the dimension, we check experimentally
whether training a generator to minimize the empirical
Wasserstein distance fails in high dimensions. We im-
plement the Sinkhorn-AutoDiff algorithm (Genevay et al.,
2017) to compute the entropy-regularized L2-Wasserstein
distance between minibatches of training images and gen-
erated images. Figure 2 shows generated samples af-
ter training with the Sinkhorn-Autodiff algorithm on both
MNIST and CIFAR-10 dataset. On MNIST, the network
manages to produce decent but blurry images. However,
on CIFAR-10, which is a much more complex dataset, the
network fails to produce meaningful samples, which would
suggest that indeed the empirical Wasserstein should not be
used for high-dimensional generative modeling.
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Figure 3. Top (a) and (b): divergences between MNIST and
rotated MNIST. Bottom (c): divergences between MNIST and
noisy MNIST. AdvW plots for each model were rescaled, but us-
ing the same scaling factor across plots. When comparing differ-
ent models/divergences, only the shape (but not the scale) of the
curve matters, while for a same model the scale across different
transformations does matter.

Robustness to Transformations. Intuitively, small rota-
tions should not significantly affect the realism of images,
while additive noise should. We study the effects of ro-
tations and additive noise by plotting, for different am-
plitudes of transformation, various adversarial divergences
between MNIST and rotated/noisy versions of it: three dis-
criminators (linear, 1-layer-dense, 2-layer-cnn) combined
with adversarial Jensen-Shannon (AdvJS) and adversarial
Wasserstein (AdvW) formulations. Ideally, good diver-
gences should vary smoothly (be robust) with respect to
the amplitude of the transformation. For rotations (Fig-
ures 3a and 3b) and all discriminators except the linear,
AdvJS saturates at its maximal value, even for small values
of rotation, whereas the Wasserstein distance varies much
more smoothly, which is consistent with Arjovsky et al.
(2017). The fact that the linear AdvJS does not saturate
for rotations shows that the architecture of the discrimina-
tor has a significant effect on the induced adversarial diver-
gence, which confirms that there is a conceptual difference
between the true JS and AdvJS, and even among different
AdvJS. For additive Gaussian noise (Figure 3c), the lin-
ear discriminator is unable to distinguish the two distribu-
tions (it only sees the means of the distributions), whereas
more complex architectures like CNNs do. In that sense
the linear discriminator is too weak for the task, or not strict
enough (Liu et al., 2017), which suggests that a better diver-
gence involves trading off between robustness and strength.
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Figure 4. Prototypes learned using linear discriminator (left),
dense discriminator (middle), and CNN discriminator (right).

Learnability of Divergences. Since the final task is gen-
erative modeling, and because it is not easy to objectively
compare divergences without talking of data generation,
we design an experiment, inspired from the GAN frame-
work, to evaluate the quality of samples learned using dif-
ferent divergences. We consider one of the simplest non-
trivial generator one can think of,8 a mixture of Diracs
qθ(x) = 1

K

∑
z δ(x − xz), parametrized by prototypes

θ = (xz)1≤z≤K . The generative process consists in sam-
pling a discrete random variable z ∈ {1, ...,K}, and re-
turning the prototype xz . We now train qθ by minimizing
various divergences, and compare the learned prototypes
(xz) in terms of quality and diversity of learned samples,
which is our final task. Unlike typical GAN generators,
our generator is so simple that any difference of quality in
learned samples is likely to come from the divergence used
to train it, and not from issues in optimizing the genera-
tor. We train mixtures of 100 prototypes by minimizing
WGAN-GP (Gulrajani et al., 2017) divergences based on
discriminators with linear, 1-hidden-layer dense, and CNN
architectures (learned prototypes in Figure 4). The first ob-
servation is that the linear discriminator is too weak of a di-
vergence: all prototypes only learn the mean of the training
set. Now, the dense discriminator learns prototypes which
sometimes look like digits, but are blurry or unrecogniz-
able most the time. The samples from the CNN discrimi-
nator are never blurry and recognizable in the majority of
cases. Our results suggest that indeed, even for simplistic
models like a mixture of Diracs, using a CNN discrimina-
tor provides a better task loss for generative modeling of
images.

6. Related Work
Most of the literature aiming at better understanding (ad-
versarial) divergences and GANs has focused on specific
issues, detailed below, which can make it hard to have a
global view of adversarial divergences. In our paper we
review those results and put them in perspective in an at-
tempt to provide a more principled view of the nature and
usefulness of adversarial divergences, with respect to tradi-
tional divergences. To the best of our knowledge, we are

8A mixture of Diracs can be seen as a Gaussian Mixture Model
with covariance matrices equal to zero.

also the first to make a link between the generalization er-
ror of structured prediction and the adversarial divergence
in generative modeling.

Work has been done to better understand the GAN objec-
tive in order to improve its stability Salimans et al. (2016).
In particular Arjovsky et al. (2017) introduce the adversar-
ial Wasserstein distance which makes training much more
stable, and Gulrajani et al. (2017) improve the objective to
make it more practical. There have been successive unifi-
cations of GAN objectives and divergences in order to gain
better insights. For instance, Nowozin et al. (2016) gen-
eralize the GAN objective to any adversarial f-divergence.
Sriperumbudur et al. (2012) unify traditional IPMs, ana-
lyze their statistical properties, and propose to view them
as classification problems. However, the first papers to ac-
tually study the effect of restricting the discriminator to be
neural network instead of any function are the MMD-GAN
papers: Li et al. (2015); Dziugaite et al. (2015); Li et al.
(2017); Mroueh et al. (2017); Bellemare et al. (2017) give
interpretations of their framework in terms of moment
matching. Liu et al. (2017) unify adversarial divergences
with traditional divergences, introduce the notion of strong
and weak divergence, and give a moment-matching inter-
pretation of adversarial divergences. As for statistical prop-
erties, Arora et al. (2017) show that a optimal discriminator
analysis does not really make sense, because the adversarial
divergence relies on the limited capacity of the discrimina-
tor in order to generalize from finite data. Concerning the-
oretical understanding of learning in structured prediction,
some recent papers are devoted to theoretical understand-
ing of structured prediction such as (Cortes et al., 2016)
and (London et al., 2016) which propose generalization er-
ror bounds in the same vein as Osokin et al. (2017) but with
data dependencies.

7. Conclusion
We gave arguments in favor of using adversarial diver-
gences rather than traditional divergences for generative
modeling, the most important of which being the ability to
account for the final task. After linking and unifying struc-
tured prediction and generative modeling under the frame-
work of statistical decision theory, we interpreted recent
results from structured prediction, and related them to the
notions of strong and weak divergences. Moreover, view-
ing adversarial divergences as statistical task losses led us
to believe that some adversarial divergences could be used
as evaluation criteria in the future, replacing hand-crafted
criteria which cannot usually be exhaustive. In some sense,
we want to extrapolate a few desirable properties into a
meaningful task loss. In the future we would like to in-
vestigate how to define meaningful evaluation criteria with
minimal human intervention.
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Wasserstein GAN. arXiv preprint arXiv:1701.07875,
2017.

Arora, Sanjeev, Babai, László, Stern, Jacques, and
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Leblond, Rémi, Alayrac, Jean-Baptiste, Osokin, Anton,
and Lacoste-Julien, Simon. Searnn: Training rnns with
global-local losses. arXiv preprint arXiv:1706.04499,
2017.

LeCun, Yann, Chopra, Sumit, Hadsell, Raia, Ranzato, M,
and Huang, F. A tutorial on energy-based learning. Pre-
dicting structured data, 2006.

Li, Chun-Liang, Chang, Wei-Cheng, Cheng, Yu, Yang,
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