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Abstract

We extend the Frank-Wolfe (FW) optimiza-
tion algorithm to solve constrained smooth
convex-concave saddle point (SP) problems.
Remarkably, the method only requires access
to linear minimization oracles. Leveraging re-
cent advances in FW optimization, we provide
the first proof of convergence of a FW-type
saddle point solver over polytopes, thereby
partially answering a 30 year-old conjecture.
We also survey other convergence results and
highlight gaps in the theoretical underpin-
nings of FW-style algorithms. Motivating
applications without known efficient alterna-
tives are explored through structured predic-
tion with combinatorial penalties as well as
games over matching polytopes involving an
exponential number of constraints.

1 Introduction

The Frank-Wolfe (FW) optimization algorithm (Frank
and Wolfe, 1956), also known as the conditional gra-
dient method (Demyanov and Rubinov, 1970), is a
first-order method for smooth constrained optimiza-
tion over a compact set. It has recently enjoyed a surge
in popularity thanks to its ability to cheaply exploit
the structured constraint sets appearing in machine
learning applications (Jaggi, 2013; Lacoste-Julien and
Jaggi, 2015). A known forte of FW is that it only
requires access to a linear minimization oracle (LMO)
over the constraint set, i.e., the ability to minimize
linear functions over the set, in contrast to projected
gradient methods which require the minimization of
quadratic functions or other nonlinear functions. In
this paper, we extend the applicability of the FW al-
gorithm to solve the following convex-concave saddle
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point problems:

min
x∈X

max
y∈Y
L(x,y), (1)

with only access to LMO(r) ∈ arg min
s∈X×Y

〈s, r〉 ,

where L is a smooth (with L-Lipschitz continuous gradi-
ent) convex-concave function, i.e., L(·,y) is convex for
all y ∈ Y and L(x, ·) is concave for all x ∈ X . We also
assume that X × Y is a convex compact set such that
its LMO is cheap to compute. A saddle point solution
to (1) is a pair (x∗,y∗) ∈ X × Y (Hiriart-Urruty and
Lemaréchal, 1993, VII.4) such that: ∀x ∈ X , ∀y ∈ Y,

L(x∗,y) ≤ L(x∗,y∗) ≤ L(x,y∗). (2)

Examples of saddle point problems. Taskar et al.
(2006) cast the maximum-margin estimation of struc-
tured output models as a bilinear saddle point problem
L(x,y) = x>My, where X is the regularized set of
parameters and Y is an encoding of the set of possible
structured outputs. They considered settings where
the projection on X and Y was efficient, but one can
imagine many situations where only LMO’s are effi-
cient. For example, we could use a structured sparsity
inducing norm (Martins et al., 2011) for the parame-
ter x, such as the overlapping group lasso for which
the projection is expensive (Bach et al., 2012), while Y
could be a combinatorial object such as a the ground
state of a planar Ising model (without external field)
which admits an efficient oracle (Barahona, 1982) but
has potentially intractable projection.

Similarly, two-player games (Von Neumann and Mor-
genstern, 1944) can often be solved as bilinear minimax
problems. When a strategy space involves a polynomial
number of constraints, the equilibria of such games can
be solved efficiently (Koller et al., 1994). However,
in situations such as the Colonel Blotto game or the
Matching Duel (Ahmadinejad et al., 2016), the strategy
space is intractably large and defined by an exponential
number of linear constraints. Fortunately, despite this
apparent prohibitive structure, some linear minimiza-
tion oracles such as the blossom algorithm (Edmonds,
1965) can efficiently optimize over the matching poly-
topes.
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Robust learning is also often cast as a saddle point
minimax problem (Kim et al., 2005). Once again,
a FW implementation could leverage fast linear ora-
cles while projection methods would be plagued by
slower or intractable sub-problems. For instance, if the
LMO is max-flow, it could have almost linear runtime
while the corresponding projection would require cubic
runtime quadratic programming (Kelner et al., 2014).
Finally, note that the popular generative adversarial
networks (Goodfellow et al., 2014) are formulated as a
(non-convex) saddle point optimization problem.

Related work. The standard approaches to solve
smooth constrained saddle point problems are
projection-type methods (surveyed in Xiu and Zhang
(2003)), with in particular variations of Korpele-
vich’s extragradient method (Korpelevich, 1976), such
as (Nesterov, 2007) which was used to solve the struc-
tured prediction problem (Taskar et al., 2006) men-
tioned above. There is surprisingly little work on FW-
type methods for saddle point problems, although they
were briefly considered for the more general variational
inequality problem (VIP):

find z∗ ∈ Z s.t. 〈r(z∗), z − z∗〉 ≥ 0, ∀z ∈ Z, (3)

where r is a Lipschitz mapping from Rp to itself
and Z ⊆ Rp. By using Z = X × Y and r(z) =
(∇xL(z),−∇yL(z)), the VIP (3) reduces to the equiv-
alent optimality conditions for the saddle point prob-
lem (1). Hammond (1984) showed that a FW algorithm
with a step size of O(1/t) converges for the VIP (3)
when the set Z is strongly convex, while FW with
a generalized line-search on a saddle point problem
is sometimes non-convergent when Z is a polytope
(see also (Patriksson, 1999, § 3.1.1)). She conjectured
though that using a step size of O(1/t) was also con-
vergent when Z is a polytope – a problem left open up
to this point. More recently, Juditsky and Nemirovski
(2016) (see also Cox et al. (2015)) proposed a method
to transform a VIP on Z where one has only access
to a LMO, to a “dual” VIP on which they can use a
projection-type method. Lan (2013) proposes to solve
the saddle point problem (1) by running FW on X on
the smoothed version of the problem maxy∈Y L(x,y),
thus requiring a projection oracle on Y. In contrast,
in this paper we study simple approaches that do not
require any transformations of the problem (1) nor any
projection oracle on X or Y . Finally, He and Harchaoui
(2015) introduced an interesting extragradient-type
method to solve (3) by approximating the projections
using linear oracles. In contrast to our proposal, their
work does not cover the geometric convergence for the
strongly convex case.

Contributions. In § 2, we extend several variants
of the FW algorithm to solve the saddle point prob-
lem (1) that we think could be of interest to the machine

learning community. In § 3, we give a first proof of
(geometric) convergence for these methods over poly-
tope domains under the assumptions of sufficient strong
convex-concavity of L, giving a partial answer to the
conjecture from Hammond (1984). In § 4, we extend
and refine the previous convergence results when X
and Y are strongly convex sets and the gradient of L is
non-zero over X ×Y , while we survey the pure bilinear
case in § 5. We finally present illustrative experiments
for our theory in § 6, noticing that the convergence
theory is still incomplete for these methods.

2 Saddle point Frank-Wolfe (SP-FW)

The algorithms. This article will explore three SP
extensions of the classical Frank-Wolfe (FW) algorithm
(Alg. 1) which are summarized in Alg. 2, 3 and 4.1

We denote by z(t) := (x(t),y(t)) the iterate computed
after t steps. We first obtain the saddle point FW
(SP-FW) algorithm (Alg. 2) by simultaneously doing
a FW update on both convex functions L(·,y(t)) and
−L(x(t), ·) with a properly chosen step size. As in
standard FW, the point z(t) has a sparse representation
as a convex combination of the points previously given
by the FW oracle, that is,

x(t) =
∑

vx∈S(t)
x

αvxvx and y(t) =
∑

vy∈S(t)
y

αvyvy. (4)

These two sets S(t)
x , S(t)

y of points are called the active
sets, and we can maintain them separately (thanks to
the product structure of X × Y) to run the other two
FW variants that we describe below (see L13 of Alg. 3).

If we assume that X and Y are the convex hulls of two fi-
nite sets of pointsA and B, we can also extend the away-
step Frank-Wolfe (AFW) algorithm (Guélat and Mar-
cotte, 1986; Lacoste-Julien and Jaggi, 2015) to saddle
point problems. As for AFW, this new algorithm can
choose an away direction dA to remove mass from “bad”
atoms in the active set, i.e. to reduce αv for some v (see
L9 of Alg. 3), thereby avoiding the zig-zagging prob-
lem that slows down standard FW (Lacoste-Julien and
Jaggi, 2015). Note that because of the special product
structure of the domain, we consider more away direc-
tions than proposed in (Lacoste-Julien and Jaggi, 2015)
for AFW (see Appendix A for more details). Finally,
a straightforward saddle point generalization for the
pairwise Frank-Wolfe (PFW) algorithm (Lacoste-Julien
and Jaggi, 2015) is given in Alg. 4. The proposed algo-
rithms all preserve several nice properties of previous
FW methods (in addition to only requiring LMO’s):
simplicity of implementation, affine invariance (Jaggi,
2013), gap certificates computed for free, sparse rep-
resentation of the iterates and the possibility to have

1Alg. 2 was already proposed by Hammond (1984) for
VIPs, while our step sizes and Alg. 3 & 4 are novel.
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Algorithm 1 Frank-Wolfe algorithm

1: Let x(0) ∈ X
2: for t = 0 . . . T do

3: Compute r(t) = ∇f(x(t))

4: Compute s(t) := argmin
s∈X

〈
s, r(t)

〉
5: Compute gt :=

〈
x(t) − s(t), r(t)

〉
6: if gt ≤ ε then return x(t)

7: Let γ = 2
2+t (or do line-search)

8: Update x(t+1) := (1− γ)x(t) + γs(t)

9: end for

Algorithm 2 Saddle point Frank-Wolfe algorithm: SP-FW

1: Let z(0) = (x(0),y(0)) ∈ X × Y
2: for t = 0 . . . T do

3: Compute r(t) :=

(
∇xL(x(t),y(t))
−∇yL(x(t),y(t))

)
4: Compute s(t) := argmin

z∈X×Y

〈
z, r(t)

〉
5: Compute gt :=

〈
z(t) − s(t), r(t)

〉
6: if gt ≤ ε then return z(t)

7: Let γ = min
(
1, ν

2C gt
)

or γ = 2
2+t

(ν and C set as

case (I) in Thm. 1)
8: Update z(t+1) := (1− γ)z(t) + γs(t)

9: end for

Algorithm 3 Saddle point away-step Frank-Wolfe algorithm: SP-AFW(z(0),A× B, ε)

1: Let z(0) = (x(0),y(0)) ∈ A× B, S(0)
x := {x(0)} and S(0)

y := {y(0)}
2: for t = 0 . . . T do
3: Let s(t) := LMOA×B

(
r(t)
)

and d
(t)
FW := s(t) − z(t) (r(t) as defined in L3 in Algorithm 2)

4: Let v(t) ∈ arg max
v∈S(t)

x ×S(t)
y

〈
r(t),v

〉
and d

(t)
A := z(t) − v(t) (the away direction)

5: if gFW
t :=

〈
−r(t),d

(t)
FW

〉
≤ ε then return z(t) (FW gap is small enough, so return)

6: if
〈
−r(t),d

(t)
FW

〉
≥
〈
−r(t),d

(t)
A

〉
then

7: d(t) := d
(t)
FW, and γmax := 1 (choose the FW direction)

8: else

9: d(t) := d
(t)
A , and γmax := min

{
α

v
(t)
x

1−α
v
(t)
x

,
α

v
(t)
y

1−α
v
(t)
y

}
(maximum feasible step size; a drop step is when γt = γmax)

10: end if
11: Let gPFW

t =
〈
−r(t),d

(t)
FW + d

(t)
A

〉
and γt = min

{
γmax,

νPFW

2C gPFW
t

}
(ν and C set as case (P) in Thm. 1)

12: Update z(t+1) := z(t) + γtd
(t) (and accordingly for the weights α(t+1), see Lacoste-Julien and Jaggi (2015))

13: Update S(t+1)
x := {vx ∈ A s.t. α

(t+1)
vx > 0} and S(t+1)

y := {vy ∈ B s.t. α
(t+1)
vy > 0}

14: end for

Algorithm 4 Saddle point pairwise Frank-Wolfe algorithm: SP-PFW(z(0),A× B, ε)

1: In Alg. 3, replace L6 to 10 by: d(t) := d
(t)
PFW := s(t) − v(t), and γmax := min

{
α
v
(t)
x
, α
v
(t)
x

}
.

adaptive step sizes using the gap computation. We
next analyze the convergence of these algorithms.

The suboptimality error and the gap. To estab-
lish convergence, we first define several quantities of
interest. In classical convex optimization, the sub-
optimality error ht is well defined as ht := f(x(t)) −
minx∈X f(x). This quantity is clearly non-negative and
proving that ht goes to 0 is enough to establish conver-
gence. Unfortunately, in the saddle point setting the
quantity L(x(t),y(t)) − L∗ is no longer non-negative
and can be equal to zero for an infinite number of
points (x,y) while (x,y) /∈ (X ∗,Y∗). For instance, if
L(x,y) = x · y with X = Y = [−1, 1], then L∗ = 0
and (X ∗,Y∗) = {(0, 0)}. But for all x ∈ X and y ∈ Y ,
x · 0 = 0 · y = L∗. The saddle point literature thus
considers a non-negative gap function (also known as
a merit function (Larsson and Patriksson, 1994; Zhu
and Marcotte, 1998) and (Patriksson, 1999, Sec 4.4.1))

which is zero only for optimal points, in order to quan-
tify progress towards the saddle point. We can define
the following suboptimality error ht for our saddle point
problem:

ht := L(x(t), ŷ(t))− L(x̂(t),y(t)),

where x̂(t) := arg min
x∈X

L(x,y(t)),

and ŷ(t) := arg max
y∈Y

L(x(t),y).

(5)

This is an example of primal-dual gap function by
noticing that

ht = L(x(t), ŷ(t))− L∗ + L∗ − L(x̂(t),y(t))

= p(x(t))− p(x∗) + g(y∗)− g(y(t)), (6)

where p(x) := maxy∈Y L(x,y) is the convex primal
function and g(y) := minx∈X L(x,y) is the concave
dual function. By convex-concavity, ht can be upper-
bounded by the following FW linearization gap (Jaggi,
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2011, 2013; Larsson and Patriksson, 1994; Zhu and
Marcotte, 1998):

gFW
t := max

sx∈X

〈
x(t) − sx,∇xL(x(t),y(t))

〉}
:= g

(x)
t

+ max
sy∈Y

〈
y(t) − sy,−∇yL(x(t),y(t))

〉}
:= g

(y)
t .

(7)

This gap is easy to compute and gives a stopping crite-
rion since gFW

t ≥ ht.

Compensation phenomenon and difficulty for
SP. Even when equipped with a suboptimality er-
ror and a gap function (as in the convex case), we
still cannot apply the standard FW convergence analy-
sis. The usual FW proof sketch uses the fact that the
gradient of f is Lipschitz continuous to get

ht+1 ≤ ht − γtgFW
t + γ2

t

L‖d(t)‖2

2
(8)

which then provides a rate of convergence. Roughly,
since gt ≥ ht by convexity, if γt is small enough then
(ht) will decrease and converge. For simplicity, in the
main paper, ‖ · ‖ will refer to the `2 norm of Rd. The
partial Lipschitz constants and the diameters of the
sets are defined with respect to this norm (see (40) in
Appendix B.1 for more general norms).

Using the L-Lipschitz continuity of L and letting Lt :=
L(x(t),y(t)) as a shorthand, we get

Lt+1 ≤ Lt + γt

〈
d(t)
x ,∇xLt

〉
+ γt

〈
d(t)
y ,∇yLt

〉
+ γ2

t

L‖d(t)‖2

2

(9)

where d
(t)
x = s

(t)
x − x(t) and d

(t)
y = s

(t)
y − y(t). Then

Lt+1−L∗ ≤ Lt−L∗−γt
(
g

(x)
t −g

(y)
t

)
+γ2

t

L‖d(t)‖2

2
. (10)

Unfortunately, the quantity gFW
t does not appear above

and we therefore cannot control the oscillation of the
sequence (the quantity g

(x)
t −g

(y)
t can make the sequence

increase or decrease). Instead, we must focus on more
specific SP optimization settings and introduce other
quantities of interest in order to establish convergence.

The asymmetry of the SP. Hammond (1984,
p. 165) showed the divergence of the SP-FW algorithm
with an extended line-search step-size on some bilinear
objectives. She mentioned that the difficulty for SP
optimization is contained in this bilinear coupling be-
tween x and y. More generally, most of the examples
of SP functions cited in the introduction can be written
in the form:

L(x,y) = f(x)+x>My−g(y), f and g convex. (11)

In this setting, the bilinear part M is the only term
preventing us to apply theorems on standard FW. Ham-
mond (1984, p. 175) also conjectured that the SP-FW
algorithm with γt = 1/(t+1) performed on a uniformly
strongly convex-concave objective function (see (12))
over a polytope should converge. We give a partial
answer to this conjecture in the following section.

3 SP-FW for strongly convex
functions

Uniform strong convex-concavity. In this sec-
tion, we will assume that L is uniformly (µX , µY)-
strongly convex-concave, which means that the follow-
ing function is convex-concave:

(x,y) 7→ L(x,y)− µX
2
‖x‖2 +

µY
2
‖y‖2. (12)

A new merit function. To prove our theorem, we
use a different quantity wt which is smaller than ht
but still a valid merit function in the case of strongly
convex-concave SPs (where (x∗,y∗) is thus unique);
see (14) below. For (x∗,y∗) a solution of (1), we define
the non-negative quantity wt:

wt := L(x(t),y∗)− L∗︸ ︷︷ ︸
:=w

(x)
t

+L∗ − L(x∗,y(t))︸ ︷︷ ︸
:=w

(y)
t

. (13)

Notice that w
(x)
t and w

(y)
t are non-negative, and that

wt ≤ ht since:

L(x(t), ŷ(t))−L(x̂(t),y(t)) ≥ L(x(t),y∗)−L(x∗,y(t)).

In general, wt can be zero even if we have not reached
a solution. For example, with L(x,y) = x · y and
X = Y = [−1, 1], then x∗ = y∗ = 0, implying wt = 0
for any (x(t),y(t)). But for a uniformly strongly convex-
concave L, this cannot happen and we can prove that wt
has the following nice property (akin to ‖x − x∗‖ ≤√

2/µ(f(x)− f(x∗)) for a µ-strongly convex function f ;
see Proposition 15 in Appendix B.6):

ht ≤
√

2PL
√
wt , (14)

where

PL ≤
√

2 sup
z∈X×Y

{
‖∇xL(z)‖X∗√

µX
,
‖∇yL(z)‖Y∗√

µY

}
. (15)

Pyramidal width and distance to the border.
We now provide a theorem that establishes conver-
gence in two situations: (I) when the SP belongs to the
interior of X × Y; (P) when the set is a polytope, i.e.
when there exist two finite sets such that X = conv(A)
and Y = conv(B)). Our convergence result holds when
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(roughly) the strong convex-concavity of L is big enough
in comparison to the cross Lipschitz constants LXY ,
LY X of ∇L (defined in (20) below) multiplied by geo-
metric “condition numbers” of each set. The condition
number of X (and similarly for Y) is defined as the
ratio of its diameter DX := supx,x′∈X ‖x − x′‖ over
the following appropriate notions of “width”:

border distance: δX := min
s∈∂X

‖x∗ − s‖ for (I), (16)

pyramidal width: δA := PWidth(A) for (P). (17)

The pyramidal width (17) is formally defined in Eq. 9
of Lacoste-Julien and Jaggi (2015) and in Appendix B.3.
Given the above constants, we can state below a non-
affine invariant version of our convergence theorem
(for simplicity). The affine invariant versions of this
theorem are given in Thm. 24 and 25 in Appendix D.2
(with proofs).

Theorem 1. Let L be a convex-concave function and
X×Y a convex and compact set. Assume that the gradi-
ent of L is L-Lipschitz continuous, that L is (µX , µY)-
strongly convex-concave, and that we are in one of the
two following situations:

The SP belongs to the interior of X×Y. In this
case, set gt = gFW

t (as in L5 of Alg. 3), δµ :=√
min(µX δ2

X , µYδ
2
Y) and a := 1. “Algorithm”

then refers to SP-FW.

(I)

The sets X and Y are polytopes. In this case,
set gt = gPFW

t (as in L11 of Alg. 3), δµ :=√
min(µX δ2

A, µYδ
2
B) and a := 1

2 . “Algorithm”
then refers to SP-AFW. Here δµ needs to use
the Euclidean norm for its defining constants.

(P)

In both cases, if ν := a −
√

2
δµ

max
{
DXLXY√

µY
, DYLYX√

µX

}
is positive, then the errors ht (5) of the iterates of the
algorithm with step size γt = min{γmax,

ν
2C gt} decrease

geometrically as

ht = O
(

(1− ρ)
k(t)
2

)
and min

s≤t
gFW
s = O

(
(1− ρ)

k(t)
2

)
where ρ := ν2 δ

2
µ

2C , C :=
LD2
X+LD2

Y
2 and k(t) is the

number of non-drop step after t steps (see L9 in
Alg. 3). In case (I) we have k(t) = t and in case (P)
we have k(t) ≥ t/3. For both algorithms, if δµ >

2 max
{
DXLXY
µX

, DYLYXµY

}
, we also obtain a sublinear

rate with the universal choice γt = min{γmax,
2

2+k(t)}.
This yields the rates:

min
s≤t

hs ≤ min
s≤t

gFW
s = O

(
1

t

)
. (18)

Clearly, the sublinear rate seems less interesting than
the linear one but has the added convenience that
the step size can be set without knowledge of various
constants that characterize L. Moreover, it provides a
partial answer to the conjecture from Hammond (1984).

Proof sketch. Strong convexity is an essential as-
sumption in our proof; it allows us to relate wt to how
close we are to the optimum. Actually, by µY -strong
concavity of L(x∗, ·), we have

‖y(t)−y∗‖≤

√
2

µY

(
L∗−L(x∗,y(t))

)
=

√
2

µY
w

(y)
t . (19)

Now, recall that we assumed that ∇L is Lipschitz
continuous. In the following, we will call L the Lipschitz
continuity constant of ∇L and LXY and LY X its (cross)
partial Lipschitz constants. For all x, x′ ∈ X , y, y′ ∈
Y, these constants satisfy

‖∇xL(x,y)−∇xL(x,y′)‖X∗ ≤ LXY ‖y − y′‖Y ,
‖∇yL(x,y)−∇yL(x′,y)‖Y∗ ≤ LY X‖x− x′‖X .

(20)

Note that LXY , LY X ≤ L if ‖(x,y)‖ := ‖x‖X + ‖y‖Y .
Then, using Lipschitz continuity of the gradient,

L(x(t+1),y∗) ≤ L(x(t),y∗) + γ〈d(t)
x ,∇xL(x(t),y∗)〉

+ γ2L‖d
(t)
x ‖2

2
. (21)

Furthermore, setting (x,y) = (x(t),y∗) and y′ = y(t)

in Equation (20), we have

w
(x)
t+1 ≤ w

(x)
t − γg

(x)
t + γDXLXY ‖y(t) − y∗‖

+ γ2LD
2
X

2
.

(22)

Finally, combining (22) and (19), we get

w
(x)
t+1 ≤ w

(x)
t − γg

(x)
t + γDXLXY

√
2

µY

√
w

(y)
t

+ γ2LD
2
X

2
.

(23)

A similar argument on −L(x∗,y(t+1)) gives a bound

on w
(y)
t much like (23). Summing both yields:

wt+1 ≤ wt − γgt + 2γmax
{
DXLXY√

µY
, DYLYX√

µX

}√
wt

+ γ2LD
2
X + LD2

Y
2

. (24)

We now apply recent developments in the convergence
theory of FW methods for strongly convex objectives.
Lacoste-Julien and Jaggi (2015) crucially upper bound
the square root of the suboptimality error on a convex
function with the FW gap if the optimum is in the
interior, or with the PFW gap if the set is a polytope
(Lemma 18 in Appendix C.2). We continue our proof
sketch for case (I) only:2

2µX δ
2
X

(
L(x(t),y(t))− L(x∗,y(t))

)
≤
(
g

(x)
t

)2

where δX := min
s∈∂X

‖x∗ − s‖.
(25)

2The idea is similar for case (P), but with the additional
complication of possible drop steps.
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We can also get the respective equation on y with
δY := miny∈∂Y ‖y∗ − y‖ and sum it with the previous
one (25) to get:

δµ
√

2wt ≤ gt where δµ :=
√

min(µX δ2
X , µYδ

2
Y). (26)

Plugging this last equation into (23) gives us

wt+1≤wt−νγgt+γ2C where C :=
LD2
X+LD2

Y
2

and ν :=1−
√

2
δµ

max
{
DXLXY√

µY
, DYLYX√

µX

}
.

(27)

The recurrence (27) is typical in the FW literature. We
can re-apply standard techniques on the sequence wt to
get a sublinear rate with γt = 2

2+t , or a linear rate with

γt = min
{
γmax,

νgt
2C

}
(which minimizes the RHS of (27)

and actually guarantees that wt will be decreasing).
Finally, thanks to strong convexity, a rate on wt gives
us a rate on ht (by (14)).

4 SP-FW with strongly convex sets

Strongly convex set. One can (roughly) define
strongly convex sets as sublevel sets of strongly convex
functions (Vial, 1983, Prop. 4.14). In this section, we
replace the strong convex-concavity assumption on L
with the assumption that X and Y are β-strongly con-
vex sets.

Definition 2 (Vial (1983); Polyak (1966)). A con-
vex set X is said to be β-strongly convex with re-
spect to ‖.‖ if for any x,y ∈ X and any γ ∈ [0, 1],
Bβ(γ,x,y) ⊂ X where Bβ(γ,x,y) is the ‖.‖-ball of

radius γ(1− γ)β2 ‖x− y‖
2 centered at γx+ (1− γ)y.

Frank-Wolfe for convex optimization over strongly con-
vex sets has been studied by Levitin and Polyak (1966);
Demyanov and Rubinov (1970) and Dunn (1979),
amongst others. They all obtained a linear rate for
the FW algorithm if the norm of the gradient is lower
bounded by a constant. More recently, Garber and
Hazan (2015) proved a sublinear rate O(1/t2) by re-
placing the lower bound on the gradient by a strong
convexity assumption on the function. In the VIP
setting (3), the linear convergence has been proved if
the optimization is done under a strongly convex set
but this assumption does not extend to X × Y which
cannot be strongly convex if X or Y is not reduced to
a single element. In order to prove the convergence, we
first prove the Lipschitz continuity of the FW-corner
function s(·) defined below. A proof of this theorem is
given in Appendix E.

Theorem 3. Let X and Y be β-strongly convex sets.
If min(‖∇xL(z)‖X∗ , ‖∇yL(z)‖Y∗) ≥ δ > 0 for all
z ∈ X × Y, then the oracle function z 7→ s(z) :=
arg mins∈X×Y 〈s, r(z)〉 is well defined and is 4L

δβ -

Lipschitz continuous (using the norm ‖(x,y)‖X×Y :=
‖x‖X + ‖y‖Y), where r(z) := (∇xL(z),−∇yL(z)).

Convergence rate. When the FW-corner func-
tion s(·) is Lipschitz continuous (by Theorem 3), we
can actually show that the FW gap is decreasing in
the FW direction and get a similar inequality as the
standard FW one (8), but, in this case, on the gaps:
gt+1 ≤ gt(1− γt) + γ2

t ‖s(t) − z(t)‖2Cδ. Moreover, one
can show that the FW gap on a strongly convex set X
can be lower-bounded by ‖s(t)

x − x(t)‖2 (Lemma 27 in
Appendix E), by using the fact that X contains a ball

of sufficient radius around the midpoint between s
(t)
x

and x(t). From these two facts, we can prove the fol-
lowing linear rate of convergence (not requiring any
strong convex-concavity of L).

Theorem 4. Let L be a convex-concave function
and X and Y two compact β-strongly convex sets.
Assume that the gradient of L is L-Lipschitz con-
tinuous and that there exists δ > 0 such that
min(‖∇xL(z)‖∗, ‖∇yL(z)‖∗) ≥ δ ∀z ∈ X × Y. Set

Cδ := 2L+ 8L2

βδ . Then the gap gFW
t (7) of the SP-FW

algorithm with step size γt =
gFW
t

‖s(t)−z(t)‖2Cδ
converges

linearly as gFW
t ≤ g0 (1− ρ)

t
, where ρ := βδ

16Cδ
.

5 SP-FW in the bilinear setting

Fictitious play. In her thesis, Hammond (1984,
§ 4.3.1) pointed out that for the bilinear setting:

min
x∈∆p

max
y∈∆q

x>My (28)

where ∆p is the probability simplex on p elements, the
SP-FW algorithm with step size γt = 1/ (1 + t) is equiv-
alent to the fictitious play (FP) algorithm introduced
by Brown (1951). The FP algorithm has been widely
studied in the game literature. Its convergence has
been proved by Robinson (1951), while Shapiro (1958)
showed that one can deduce from Robinson’s proof a
O(t−1/(p+q−2)) rate. Around the same time, Karlin
(1960) conjectured that the FP algorithm converged
at the better rate of O(t−1/2), though this conjecture
is still open and Shapiro’s rate is the only one we are
aware of. Interestingly, Daskalakis and Pan (2014) re-
cently showed that Shapiro’s rate is also a lower bound
if the tie breaking rule gets the worst pick an infinite
number of times. Nevertheless, this kind of adversarial
tie breaking rule does not seems realistic since this rule
is a priori defined by the programmer. In practical
cases (by setting a fixed prior order for ties or picking
randomly for example), Karlin’s Conjecture (Karlin,
1960) is still open. Moreover, we always observed an
empirical rate of at least O(t−1/2) during our exper-
iments, we thus believe the conjecture to be true for
realistic tie breaking rules.
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Rate for SP-FW. Via the affine invariance of the
FW algorithm and the fact that every polytope with
p vertices is the affine transformation of a probability
simplex of dimension p, any rate for the fictitious play
algorithm implies a rate for SP-FW.

Corollary 5. For polytopes X and Y with p and q
vertices respectively and L(x,y) = x>My, the SP-FW
algorithm with step size γt = 1

t+1 converges at the rate

ht = O
(
t−

1
p+q−2

)
.

This (very slow) convergence rate is mainly of theoreti-
cal interest, providing a safety check that the algorithm
actually converges. Moreover, if Karlin’s strong con-
jecture is true, we can get a O(1/

√
t) worst case rate

which is confirmed by our experiments.

6 Experiments

Toy experiments. First, we test the empirical con-
vergence of our algorithms on a simple saddle point
problem over the unit cube in dimension d (whose pyra-
midal width has the explicit value 1/

√
d by Lemma 4

from Lacoste-Julien and Jaggi (2015)). Thus X =
Y := [0, 1]d and the linear minimization oracle is sim-
ply LMO(·) = −0.5 · (sign(·) − 1). We consider the
following objective function:

µ

2
‖x−x∗‖22 +(x−x∗)>M(y−y∗)− µ

2
‖y−y∗‖22 (29)

for which we can control the location of the saddle
point (x∗,y∗) ∈ X × Y. We generate a matrix M
randomly as M ∼ U([−0.1, 0.1]d×d) and keep it fixed
for all experiments. For the interior point setup (I),
we set (x∗,y∗) ∼ U([0.25, 0.75]2d), while we set x∗ and
y∗ to some fixed random vertex of the unit cube for
the setup (P). With all these parameters fixed, the
constant ν is a function of µ only. We thus vary the
strong convexity parameter µ to test various ν’s.

We verify the linear convergence expected for the SP-
FW algorithm for case (I) in Figure 1a, and for the
SP-AFW algorithm for case (P) in Figure 1b. As the
adaptive step size (and rate) depends linearly on ν,
the linear rate becomes quite slow for small ν. In this
regime (in red), the step size 2/(2 + k(t)) (in orange)
can actually perform better, despite its theoretical
sublinear rate.

Finally, figure 1c shows that we can observe a linear
convergence of SP-AFW even if ν is negative by using
a different step size. In this case, we use the heuristic
adaptive step size γt := gt/C̃ where C̃ := LD2

X +
LD2
Y + LXY LY X

(
D2
X /µX +D2

Y/µY
)
. Here C̃ takes

into account the coupling between the concave and
the convex variable and is motivated from a different
proof of convergence that we were not able to complete.

The empirical linear convergence in this case is not
yet supported by a complete analysis, highlighting the
need for more sophisticated arguments.

Graphical games. We now consider a bilinear ob-
jective L(x,y) = x>My where exact projections on
the sets is intractable, but we have a tractable LMO.
The problem is motivated from the following setup.
We consider a game between two universities (A and
B) that are admitting s students and have to assign
pairs of students into dorms. If students are unhappy
with their dorm assignments, they will go to the other
university. The game has a payoff matrix M belong-
ing to R(s(s−1)/2)2 where Mij,kl is the expected tuition
that B gets (or A gives up) if A pairs student i with
j and B pairs student k with l. Here the actions x
and y are both in the marginal polytope of all per-
fect unipartite matchings. Assume that we are given
a graph G = (V,E) with vertices V and edges E. For
a subset of nodes S ⊆ V , let the induced subgraph
G(S) = (S,E(S)). Edmonds (1965) showed that any
subgraph forming a triangle can contain at most one
edge of any perfect matching. This forms an exponen-
tial set of linear equalities which define the matching
polytope P(G) ⊂ RE as

{x|xe≥0,
∑

e∈E(S)

xe≤k,∀S⊆V, |S|=2k+1,∀e∈E}. (30)

While this strategy space seems daunting, the LMO
can be solved in O(s3) time using the blossom algo-
rithm (Edmonds, 1965). We run the SP-FW algorithm
with γt = 2/(t+2) on this problem with s = 2j stu-
dents for j = 3, . . . , 8 with results given in Figure 1d
(d = s(s − 1)/2 in the legend represents the dimen-
sionality of the x and y variables). The order of the
complexity of the LMO is then O(d3/2). In Figure 1d,
the observed empirical rate of the SP-FW algorithm
(using γt = 2/(t+2)) is O(1/t2). Empirically, faster rates
seem to arise if the solution is at a corner (a pure equi-
librium, to be expected for random payoff matrices in
light of (Bárány et al., 2007)).

Sparse structured SVM. We finally consider a
challenging optimization problem arising from struc-
tured prediction. We consider the saddle point for-
mulation (Taskar et al., 2006) for a `1-regularized
structured SVM objective that minimizes the primal
cost function p(w) := 1

n

∑n
i=1 H̃i(w), where H̃i(w) =

maxy∈Yi Li(y)−〈w,ψi(y)〉 is the structured hinge loss
(using the notation from Lacoste-Julien et al. (2013)).
We only assume access to the linear oracle computing
H̃i(w). Let Mi have

(
ψi(y)

)
y∈Yi

as columns. We can

rewrite the minimization problem as a bilinear saddle
point problem:
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Figure 1: On Figures 1a, 1b and 1c, we plot on a semilog scale the best gap observed mins≤t g
FW
s as a function of t. For

experiments 1d, 1e and 1f, the objective function is bilinear and the convergence is sublinear. An effective pass is one
iteration for SP-FW or the subgradient method and n iterations for SP-BCFW or SSG. We give more details about these
experiments in Appendix F.

min
‖w‖1≤R

1

n

∑
i

(
max
yi∈Yi

L>i yi −w>Miyi

)
= min
‖w‖1≤R

1

n

∑
i

(
max

αi∈∆(|Yi|)
L>i αi −w>Miαi

)
.

(31)

Projecting onto ∆(|Yi|) is normally intractable as
the size of |Yi| is exponential, but the linear ora-
cle is tractable by assumption. We performed ex-
periments with 100 examples from the OCR dataset
(dω = 4028) (Taskar et al., 2003). We encoded the
structure Yi of the ith word with a Markov model: its
kth character Y(k)

i only depends on Yk−1
i and Yk+1

i .
In this case, the oracle function is simply the Viterbi
algorithm Viterbi (1967). The average length of a
word is approximately 8, hence the dimension of Yi
is dYi ≈ 262 · 8 = 5408 leading to a large dimension
for Y, dY :=

∑n
i=1 dYi ≈ 5 · 105. We run the SP-

FW algorithm with step size γt = 1/(1 + t) for which
we have a convergence proof (Corollary 5), and with
γt = 2/(2 + t), which normally gives better results for
FW optimization. We compare with the projected sub-
gradient method (projecting on the `1-ball is tractable
here) with step size O(1/

√
t) (the subgradient of H̃i(w)

is −ψi(y∗i )). Following Lacoste-Julien et al. (2013), we
also implement a block-coordinate (SP-BCFW) version
of SP-FW and compare it with the stochastic projected
subgradient method (SSG). As some of the algorithms

only work on the primal and to make our result com-
parable to Lacoste-Julien et al. (2013), we choose to
plot the primal suboptimality error p(wt)− p∗ for the
different algorithms in Figure 1e and 1f (the αt iterates
for the SP approaches are thus ignored in this error).
The performance of SP-BCFW is similar to SSG when
we regularize the learning problem heavily (Figure 1e).
However, under lower regularization (Figure 1f), SSG
(with the correct step size scaling) is faster. This is
consistent with the fact that αt 6= α∗ implies larger
errors on the primal suboptimality for the SP methods,
but we note that an advantage of the SP-FW approach
is that the scale of the step size is automatically chosen.

Conclusion. We proposed FW-style algorithms for
saddle-point optimization with the same attractive
properties as FW, in particular only requiring access
to a LMO. We gave the first convergence result for a
FW-style algorithm towards a saddle point over poly-
topes by building on the recent developments on the
linear convergence analysis of AFW. However, our ex-
periments let us believe that the condition ν > 0 is not
required for the convergence of FW-style algorithms.
We thus conjecture that a refined analysis could yield
a linear rate for the general uniformly strongly convex-
concave functions in both cases (I) and (P), paving the
way for further theoretical work.
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Appendix

Outline. Appendix A provides more details about the saddle point away-step Frank-Wolfe (SP-AFW)
algorithm. Appendix B is about the affine invariant formulation of our algorithms, therein, we introduce
some affine invariant constants and prove relevant bounds. Appendix C presents some relationships
between the primal suboptimalities and dual gaps useful for the convergence proof. Appendix D gives
the affine invariant convergence proofs of SP-FW and SP-AFW in the strongly convex function setting
introduced in Section 3. Appendix E gives the proof of linear convergence of SP-FW in the strongly
convex set setting as defined in Section 4. Finally, Appendix F provides details on the experiments.

A Saddle point away-step Frank-Wolfe (SP-AFW)

In this section, we describe our algorithms SP-AFW and SP-PFW with a main focus on how the away
direction is chosen. We also rigorously define a drop step and prove an upper bound on their number.
In this section, we will assume that there exist two finites sets A and B such that X = conv(A) and
Y = conv(B).

Active sets and away directions. Our definition of active set is an extension of the one provided in
Lacoste-Julien and Jaggi (2015), we follow closely their notation and their results. Assume that we
have the current expansion,

x(t) =
∑

vx∈S(t)
x

α
(t)
vxvx where S(t)

x :=
{
vx ∈ A ; α

(t)
vx > 0

}
, (32)

and a similar one for y(t). Then, the current iterate has a sparse representation as a convex combination

of all possible pairs of atoms belonging to S
(t)
x and S

(t)
y , i.e.

z(t) =
∑
v∈S(t)

α
(t)
v v where S(t) :=

{
v ∈ A× B ; α

(t)
v := α

(t)
vxα

(t)
vy > 0

}
. (33)

The set S(t) is the current (implicit) active set arising from the special product structure of the domain
and it defines potentially more away directions than proposed in (Lacoste-Julien and Jaggi, 2015) for
AFW, and these are the directions that we use in SP-AFW and SP-PFW. Namely, for every corner
v = (vx,vy) and v′ = (v′x,v

′
y) already picked, x−vx is a feasible directions in X and y−v′y is a feasible

direction in Y. Thus the combination (x−vx,y−v′y) is a feasible direction even if the particular corners
vx and v′y have never been picked together. We thus maintain the iterates on X and Y as independent
convex combination of their respective active sets of corners (Line 13 of Algorithm 3).

Note that after t iteration, the current iterate z(t) is t-sparse whereas the size of the active set S(t)

defined in (33) can be of size t2. Nevertheless, because of the block formulation of the away oracle

(Line 4 in Algorithm 3), the away direction can be found in O(t) since we only need to use S
(t)
x and S

(t)
y

separately to compute the away direction in S(t). Moreover, we only need to track at most t corners in
A and t ones in B to get this bigger active set. We can now define the maximal step size for an away
direction.

Maximal step size. For the standard AFW algorithm, Lacoste-Julien and Jaggi (2015) suggest to
use the maximum step size γmax = αv(t)/(1 − αv(t)) when using the away direction z(t) − v(t), to
guarantee that the next iterate stays feasible. Because we have a product structure of two blocks,
we actually consider more possible away directions by maintaining a separate convex combination on
each block in our Algorithm 3 (SP-AFW) and 4 (SP-PFW). More precisely, suppose that we have

x(t) =
∑
vx∈S(t)

x
α

(t)
vxvx and y(t) =

∑
vy∈S(t)

y
α

(t)
vyvy, then the following maximum step size γmax (for



Frank-Wolfe Algorithms for Saddle Point Problems

AFW) ensures that the iterate z(t+1) stays feasible:

z(t+1) := z(t) + γtd
(t)
A with γt ∈ [0, γmax] and γmax := min

 α
(t)

v
(t)
x

1− α(t)

v
(t)
x

,
α

(t)

v
(t)
y

1− α(t)

v
(t)
y

 . (34)

A larger γt makes one of the coefficients in the convex combination for the iterate negative, thus no more
guaranteeing that the iterate stays feasible. A similar argument can be used to derive the maximal
step size for the PFW direction in Algorithm 4.

Drop steps. A drop step is when γt = γmax for the away-step update (34) (Lacoste-Julien and Jaggi,
2015). In this case, at least one corner is removed from the active set. We show later in Lemma 23 that
we can still guarantee progress for this step, i.e. wt+1 < wt, but this progress be arbitrarily small since
γmax can be arbitrarily small. Lacoste-Julien and Jaggi (2015) shows that the number of drop steps for
AFW is at most half of the number of iterations. Because we are maintaining two independent active
sets in our formulation, we can obtain more drop steps, but we can still adapt their argument to obtain
that the number of drop steps for SP-AFW is at most two thirds the number of iterations (assuming
that the algorithm is initialized with only one atom per active set). In the SP-AFW algorithm, either
a FW step is jointly made on both blocks, or an away-step is done on both blocks. Let us call At the

number of FW steps (which potentially adds an atom in S
(t)
x and S

(t)
y ) and D

(x)
t (resp D

(y)
t ) the number

of steps that removed at least one atom from S
(t)
x (S

(t)
y ). Finally, we call Dt the number of drop steps,

i.e., the number of away steps where at least one atom from S
(t)
x or S

(t)
y have been removed (and thus

γt = γmax for these). Because a step is either a FW step or an away step, we have:

At +Dt ≤ t . (35)

We also have that D
(x)
t +D

(y)
t ≥ Dt by definition of Dt. Because a FW step adds at most one atom in

an active set while a drop step removes one, we have (supposing that |S(0)
x | = |S(0)

y | = 1):

1 +At −D(x)
t ≥ |S(t)

x | and 1 +At −D(y)
t ≥ |S(t)

y |. (36)

Adding these two relations, we get:

2 + 2At ≥ |S(t)
x |+ |S(t)

y |+D
(x)
t +D

(y)
t ≥ 2 +Dt , (37)

using the fact that each active set as at least one element. We thus obtain Dt ≤ 2At. Combining
with (35), we get:

Dt ≤
2

3
t , (38)

as claimed.

B Affine invariant formulation of SP-FW

In this section, we define the affine invariant constants of a convex function f and their extension to
a convex-concave function L. These constants are important as the FW-type algorithms are affine
invariant if their step size are defined using affine invariant quantities. We can upper bound these
constants using the non affine invariant constants defined in the main paper. Hence a convergence rate
with affine invariant constants will immediately imply a rate with the constant introduced in the main
paper.
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B.1 The Lipschitz constants

We define the Lipschitz constant L of the gradient of the function f with respect to the norm ‖ · ‖ by
using a dual pairing of norms, i.e. L is a constant such that

∀x,x′ ∈ X , ‖∇f(x)−∇f(x′)‖∗ ≤ L‖x− x′‖, (39)

where ‖y‖∗ := supx∈Rd,‖x‖≤1 y
Tx is the dual norm of ‖ · ‖. For a convex-concave function, we also

consider the partial Lipschitz constants with respect to different blocks as follows.

For more generality, we consider the dual pairing of norms (‖ · ‖X , ‖ · ‖X ∗) on X , and similarly
(‖ · ‖Y , ‖ · ‖Y∗) on Y. We also define the norm on the product space X × Y as the `1-norm on the
components: ‖(x,y)‖X×Y := ‖x‖X + ‖y‖Y . We thus have that the dual norm of X × Y is the
`∞-norm of the dual norms: ‖(x,y)‖(X×Y)∗ = max(‖x‖X ∗ , ‖y‖Y∗). The partial Lipschitz constants
LXX , LY Y , LXY and LY X of the gradient of the function L with respect to these norms are the con-
stants such that for all x, x′ ∈ X and y, y′ ∈ Y,

‖∇xL(x,y)−∇xL(x′,y)‖X ∗ ≤ LXX‖x− x′‖X , ‖∇yL(x,y)−∇yL(x,y′)‖Y∗ ≤ LY Y ‖y − y′‖Y ,
‖∇xL(x,y)−∇xL(x,y′)‖X ∗ ≤ LXY ‖y − y′‖Y , ‖∇yL(x,y)−∇yL(x′,y)‖Y∗ ≤ LY X ‖x− x′‖X .

(40)

Note that the cross partial Lipschitz constants LXY and LY X do not necessarily use a dual pairing as
X and Y could be very different spaces. On the other hand, as the possibilities in (40) are special cases
of (39) when considering the `1-norm of this product domain, one can easily deduce that the partial
Lipschitz constants can always be taken to be smaller than the full Lipschitz constant for the gradient
of L, i.e., we have that L ≥ max(LXX , LXY , LY X , LY Y ).

B.2 The curvature: an affine invariant measure of smoothness

To prove the convergence of the Frank-Wolfe algorithm, the typical affine invariant analysis proof in
the FW literature assumes that the curvature of the objective function is bounded, where the curvature
is defined by Jaggi (2013) for example. We give below a slight generalization of this curvature notion
in order to handle the convergence analysis of FW with away-steps.3 It has the same upper bound as
the traditional curvature constant (see Proposition 6).

Curvature. [Slight generalization of Jaggi (2013)] Let f : X → R be a convex function, we define the
curvature Cf of f as

Cf := sup
x, s,v ∈ X ,
γ > 0 s.t.

xγ := x+ γd ∈ X
with d := s− v

2

γ2
(f(xγ)− f(x)− γ 〈d,∇f(x)〉). (41)

Note that only the feasible step sizes γ are considered in the definition of Cf , i.e., γ such that xγ ∈ X .
If the gradient of the objective function is Lipschitz continuous, the curvature is upper bounded.

Proposition 6 (Simple generalization of Lemma 7 in Jaggi (2013)). Let f be a convex and continuously
differentiable function on X with its gradient ∇f L-Lipschitz continuous w.r.t. some norm ‖.‖ in dual
pairing over the domain X . Then

Cf ≤ D2
XL , (42)

where DX := supx,x′∈X ‖x− x′‖ is the diameter of X .

3The change is to consider the more general directions s− v instead of just s− x, and also any feasible positive step
size. See also Footnote 8 in Lacoste-Julien and Jaggi (2013) for a related discussion. A different (bigger) constant was
required in (Lacoste-Julien and Jaggi, 2015) for the analysis of AFW because they used a line-search.
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Lemma 1.2.3 in Nesterov (2004), Jaggi (2013). Let x, s,v ∈ X , set d := s − v and xγ = x + γd for
some γ > 0 such that xγ ∈ X . Then by the fundamental theorem of calculus,

f(xγ) = f(x) +

∫ γ

0
〈d,∇f(x+ td)〉 dt. (43)

Hence, we can write

f(xγ)− f(x)− γ 〈d,∇f(x)〉 =

∫ γ

0
〈d,∇f(x+ td)−∇f(x)〉 dt

≤ ‖d‖
∫ γ

0
‖∇f(x+ td)−∇f(x)‖∗dt

≤ D2
XL

∫ γ

0
tdt

≤ γ2

2
D2
XL. (44)

Thus for all x, s,v ∈ X and xγ = x+ γ(s− v) for γ > 0 such that xγ ∈ X , we have

2

γ2
(f(xγ)− f(x)− γ 〈s− v,∇f(x)〉) ≤ LD2

X . (45)

The supremum is then upper bounded by the claimed quantity.

Osokin et al. (2016, Appendix C.1) illustrate well the importance of the affine invariant curvature
constant for Frank-Wolfe algorithms in their paragraph titled “Lipschitz and curvature constants”.
They provide a concrete example where the wrong choice of norm for a specific domain X can make
the upper bound of Proposition 6 extremely loose, and thus practically useless for an analysis.

We will therefore extend the curvature constant to the convex-concave function L by sim-
ply defining it as the maximum of the curvatures of the functions belonging to the family
(x′ 7→ L(x′,y),y′ 7→ −L(x,y′))x∈X ,y∈Y (see Section B.4). But before that, we review affine invariant
analogues of the strong convexity constants that will be useful for the analysis.

B.3 Affine invariant measures of strong convexity

In this section, we review two affine invariant measures of strong convexity that were proposed
by Lacoste-Julien and Jaggi (2013)(Lacoste-Julien and Jaggi, 2015) for the affine invariant linear conver-
gence analysis of the standard Frank-Wolfe algorithm (using the “interior strong convexity constant”)
or the away-step Frank-Wolfe algorithm (using the “geometric strong convexity constant”). We will
re-use them for the affine invariant analysis of the convergence of SP-FW or SP-AFW algorithms. In
a similar way as the curvature constant Cf includes information about the constraint set X and the
Lipschitz continuity of the gradient of f together, these constants both include the information about
the constraint set X and the strong convexity of a function f together.

Interior strong convexity constant. [based on Lacoste-Julien and Jaggi (2013)] Let xc be a point in
the relative interior of X . The interior strong convexity constant for f with respect to the reference
point xc is defined as

µxcf := inf
x ∈ X \ {xc}
s = s̄(x,xc,X )
γ ∈ (0, 1],

z = x+ γ(s− x)

2

γ2
(f(z)− f(x)− 〈z − x,∇f(x)〉) . (46)
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Here, we follow the notation of Lacoste-Julien and Jaggi (2013) and take the point s to be the point
where the ray from x to the reference point xc pinches the boundary of the set X , i.e. s̄(x,xc,X ) :=
ray(x,xc) ∩ ∂X , where ∂X is the boundary of the convex set X .

We note that in the original definition (Lacoste-Julien and Jaggi, 2013), xc was the (unique) optimum
point for a strongly convex function f over X . The optimality of xc is actually not needed in the
definition and so we generalize it here to any point xc in the relative interior of X , as this will be useful
in our convergence proof for SP-FW.

For completeness, we include here the important lower bound from (Lacoste-Julien and Jaggi, 2013)
on the interior strong convexity constant in terms of the strong convexity of the function f .

Proposition 7 (Lower bound on µxc from Lacoste-Julien and Jaggi (2013, Lemma 2)). Let f be a
convex differentiable function and suppose that f is strongly convex w.r.t. to some arbitrary norm ‖·‖
over the domain X with strong-convexity constant µf > 0. Furthermore, suppose that the reference
point xc lies in the relative interior of X , i.e., δc := mins∈∂X ||s− xc|| > 0. Then the interior strong
convexity constant µxcf (46) is lower bounded as follows:

µxcf ≥ µfδ
2
c . (47)

Proof. Let x and z be defined as in (46), i.e., z = x+ γ(s− x) for some γ > 0 and where s intersects
the boundary of X with the ray going from x to xc. By the strong convexity of f , we have

f(z)− f(x)− 〈z − x,∇f(x)〉 ≥ ||z − x||2
µf
2

= γ2||s− x||2
µf
2
. (48)

From the definition of s, we have that xc lies between x and s and thus: ||s − x|| ≥ ||s − xc|| ≥ δc.
Combining with (48), we conclude

f(z)− f(x)− 〈z − x,∇f(x)〉 ≥ γ2δ2
c

µf
2
, (49)

and therefore
µxcf ≥ δ

2
cµf . (50)

We now present the affine invariant constant used in the global linear convergence analysis of Frank-
Wolfe variants when the convex set X is a polytope. The geometric strong convexity constant was
originally introduced by Lacoste-Julien and Jaggi (2013) and (Lacoste-Julien and Jaggi, 2015). To
avoid any ambiguity, we will re-use their definitions verbatim in the rest of this section, starting first
with a few geometrical definitions and then presenting the affine invariant constant. In these definitions,
they assume that a finite set A of vectors (that they call atoms) is given such that X = conv(A) (which
always exists when X is a polytope).

Directional Width. [Lacoste-Julien and Jaggi (2015)] The directional width of a set A with respect
to a direction r is defined as dirW (A, r) := maxs,v∈A

〈
r
‖r‖

2

, s − v
〉
. The width of A is the minimum

directional width over all possible directions in its affine hull.

Pyramidal Directional Width. [Lacoste-Julien and Jaggi (2015)] We define the pyramidal directional
width of a set A with respect to a direction r and a base point x ∈ X to be

PdirW (A, r,x) := min
S∈Sx

dirW (S ∪ {s(A, r)}, r) = min
S∈Sx

max
s∈A,v∈S

〈
r
‖r‖

2

, s− v
〉
, (51)

where Sx := {S | S ⊆ A such that x is a proper4 convex combination of all the elements in S}, and
s(A, r) := arg maxv∈A〈r,v〉 is the FW atom used as a summit, when using the convention in this
section that r := −∇f(x).

4By proper convex combination, we mean that all coefficients are non-zero in the convex combination.
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Pyramidal Width. [Lacoste-Julien and Jaggi (2015)] To define the pyramidal width of a set, we take
the minimum over the cone of possible feasible directions r (in order to avoid the problem of zero
width).
A direction r is feasible for A from x if it points inwards conv(A), (i.e. r ∈ cone(A− x)).
We define the pyramidal width of a set A to be the smallest pyramidal width of all its faces, i.e.

PWidth(A) := min
K∈faces(conv(A))

x∈K
r∈cone(K−x)\{0}

PdirW (K ∩A, r,x). (52)

Geometric strong convexity constant. [Lacoste-Julien and Jaggi (2015)] The geometric strong con-
vexity constant of f (over the set of atoms A which is left implicit) is:

µA
f := inf

x∈X
inf
x∗ ∈ X

s.t 〈∇f(x),x∗ − x〉 < 0

2

γA(x,x∗)2
(f(x∗)− f(x)− 〈x∗ − x,∇f(x)〉) (53)

where γA(x,x∗) := 〈−∇f(x),x∗−x〉
〈−∇f(x),sf (x)−vf (x)〉 and X = conv(A). The quantity sf (x) represents the FW

corner picked when running the FW algorithm on f when at x; while vf (x) represents the worst-case
possible away atom that AFW could pick (and this is where the dependence on A appears). We now
define these quantities more precisely. Recall that the set of possible active sets is Sx := {S | S ⊆ A
such that x is a proper convex combination of all the elements in S}. For a given set S, we write
vS(x) := arg maxv∈S 〈∇f(x),v〉 for the away atom in the algorithm supposing that the current set
of active atoms is S. Finally, we define vf (x) := arg min

{v=vS(x) | S∈Sx}
〈∇f(x),v〉 to be the worst-case away

atom (that is, the atom which would yield the smallest away descent). An important property coming
from this definition that we will use later is that for s(t) and v(t) being possible FW and away atoms
(respectively) appearing during the AFW algorithm (consider Algorithm 3 ran only on X ), then we
have:

gPFW
t :=

〈
s(t) − v(t),−∇f(x(t))

〉
≥
〈
sf (x(t))− vf (x(t)),−∇f(x(t))

〉
. (54)

The following important theorem from (Lacoste-Julien and Jaggi, 2015) lower bounds the geometric
strong convexity constant of f in terms of both the strong convexity constant of f , as well as the
pyramidal width of X = conv (A) defined as PWidth(A) (52).

Proposition 8 (Lower bound for µA
f from Lacoste-Julien and Jaggi (2015, Theorem 6)). Let f be a

convex differentiable function and suppose that f is µ-strongly convex w.r.t. to the Euclidean norm
‖·‖2 over the domain X = conv(A) with strong-convexity constant µ ≥ 0. Then

µA
f ≥ µ · (PWidth(A))2 . (55)

The pyramidal width (52) is a geometric quantity with a somewhat intricate definition. Its value is still
unknown for many sets (though always strictly positive for finite sets), but Lacoste-Julien and Jaggi
(2015, Lemma 4) give its value for the unit cube in Rd as 1/

√
d.

B.4 Curvature and interior strong convexity constant for a convex-concave function

In this subsection, we propose simple convex-concave extensions of the definitions of the affine invariant
constants defined introduced in the two previous sections.

To define the convex-concave curvature, we introduce the sets F and G of the marginal convex functions.

F := {x′ 7→ L(x′,y)}y∈Y and G := {y′ 7→ −L(x,y′)}x∈X . (56)



Gauthier Gidel, Tony Jebara, Simon Lacoste-Julien

Let L : X × Y → R a convex-concave function, we define the curvature pair (CLx , CLy) of L as

(CLx , CLy) :=

(
sup
f∈F

Cf , sup
g∈G

Cg

)
. (57)

and the curvature of L as

CL :=
CLx + CLy

2
. (58)

An upper bound on this quantity follows directly from the upper bound on the convex case (Lemma 7
of Jaggi (2013), repeated in our Proposition 6) :

Proposition 9. Let L : X×Y → R be a differentiable convex-concave function. If X and Y are compact
and ∇L is Lipschitz continuous, then the curvature of L is bounded by 1

2(LXXD
2
X + LY YD

2
Y), where

LXX (resp LY Y ) is the largest Lipschitz constant respect to x (y) of x 7→ ∇xL(x,y) (y 7→ ∇yL(x,y)).

Proof. Let f in F ,

Cf ≤ Lip(∇f)D2
X ≤ LXXD2

X . (59)

Similarly, let g in G,

Cg ≤ Lip(∇g)D2
Y ≤ LY YD2

Y . (60)

Consequently,

CL =
1

2
(sup
f∈F

Cf + sup
g∈G

Cg) ≤
1

2
(LXXD

2
X + LY YD

2
Y). (61)

Where DX and DY are the respective diameter of X and Y.

Note that LXX and LY Y are upper bounded by the global Lipschitz constant of ∇L. Similarly, we
define various notions of strong convex-concavity in the following.

Uniform strong convex-concavity constant. The uniform strong convex-concavity constants is de-
fined as

(µX , µY) :=

(
inf
f∈G

µf , inf
g∈G

µg

)
(62)

where µf is the strong convexity constant of f and µg the strong convexity of g.

Under some assumptions this quantity is positive.

Proposition 10. If the second derivative of L is continuous, X and Y are compact and if for all
f ∈ F ∪ G, µf > 0, then µX and µY are positive.

Proof. Let us introduce Hx(x,y) := ∇2
xL(x,y) the Hessian of the function x 7→ L(x,y). We want

to show that the smallest eigenvalue is uniformly bounded on X × Y. We know that the smallest
eigenvalue lower bounds µX ,

µX ≥ inf
(x,y) ∈ X × Y
‖u‖2 = 1

〈u, Hx(x,y) · u〉 . (63)

ButHx(·) is continuous (because∇2
xL(·) is continuous by assumption) and then the function (u,x,y) 7→

〈u, Hx(x,y) · u〉 is continuous. Hence since X × Y and the unit ball are compact, the infimum is a
minimum which can’t be 0 by assumption. Hence µX is positive. Doing the same thing with the
smallest eigenvalue of −∇2

yL(x,y), we get that µY > 0.
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A common family of saddle point objectives is of the form f(x) + xTMy − g(y). In this case, we
get simply that (µX , µY) = (µf , µg). An equivalent definition for the uniform strong convex-concavity
constant is: L is (µX , µY)-uniform strongly convex-concave function if

(x,y) 7→ L(x,y)− µX
2
‖x‖2 +

µY
2
‖y‖2 (64)

is convex-concave.

The following proposition relates the distance between the saddle point and the values of the function.
It is a direct consequence from the uniform strong convex-concavity definition (62).

Proposition 11. Let L be a uniformly strongly convex-concave function and (x∗,y∗) the saddle point
of L. Then we have for all x in X and y ∈ Y,√

L(x,y∗)− L∗ ≥ ‖x∗ − x‖
√
µX
2

and
√
L∗ − L(x∗,y) ≥ ‖y∗ − y‖

√
µY
2
. (65)

Proof. The saddle point (x∗,y∗) is the optimal point of the two strongly convex functions x 7→ L(x,y∗)
and the function y 7→ −L(x∗,y), so we can use the property of strong convexity on each function and
the fact that µX lower bounds the strong convexity constant of L(·,y∗) (and similarly for µY with
−L(x∗,y)) as per the definition (62), to get the required conclusion.

Now we will introduce the uniform strong convex-concavity constants relatively to our saddle point.

Interior strong convex-concavity. The SP-FW interior strong convex-concavity constants (with re-
spect to the reference point (xc,yc)) are defined as:(

µxcL , µ
yc
L
)

:=

(
inf
f∈F

µxcf , inf
g∈G

µycg

)
(66)

where µxcf is the interior strong convexity constant of f w.r.t to the point xc and µycg is the interior

strong convexity constant w.r.t to the point yc. The sets F and G are defined in (56). We also define
the smallest quantity of both (with the reference point (xc,yc) implicit):

µint
L = min{µxcL , µ

yc
L }. (67)

We can lower bound this constant by a quantity depending on the uniform strong convexity constant
and the distance of the saddle point to the boundary. The propositions on the strong convex-concavity
directly follow from the previous definitions and the analogous proposition on the convex case (Propo-
sition 7)

Proposition 12. Let L be a convex-concave function. If the reference point (xc,yc) belongs to the
relative interior of X×Y and if the function L is strongly convex-concave with a strong convex-concavity
constant µ > 0, then µintL is lower bounded away from zero. More precisely, define δx := minsx∈∂X ‖sx−
xc‖ > 0 and δy := minsy∈∂Y ‖sy − yc‖. Then we have,

µxcL ≥ µX δ
2
x and µycL ≥ µYδ

2
y . (68)

Proof. Using the Proposition 7 we have,

µxcf ≥ µf · δ
2
x ≥ µX · δ2

x, (69)

and,
µycg ≥ µg · δ2

y ≥ µY · δ2
y . (70)

When the saddle point is not in the interior of the domain, we define next a constant that takes in
consideration the geometry of the sets. If the sets are polytopes, then this constant is positive.
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Geometric strong convex-concavity. The SP-FW geometric strong convex-concavity constants are
defined analogously as the interior strong convex-concavity constants,

(
µA
Lx , µ

A
Ly

)
:=

(
min
f∈F

µA
f ,min

g∈G
µA
g

)
; µA

L := min
(
µA
Lx , µ

A
Ly

)
, (71)

where µA
f is the geometric strong convexity constant of f ∈ F (over A) as defined in (53) (and similarly

µA
g is the geometric strong convexity constant of g ∈ G over B).

It is straightforward to notice that the lower bound on the geometric strong convexity constant (Propo-
sition 8) can be extended to the geometric strong convex-concavity constants (where µX and µY are
now assumed to be defined with respect to the Euclidean norm):

µA
Lx ≥ µX PWidth(A)2 and µA

Ly ≥ µY PWidth(B)2. (72)

B.5 The bilinearity coefficient

In our proof, we need to relate the gradient at the point (x(t),y(t)) with the one at the point (x(t),y∗).
We can use the Lipschitz continuity of the gradient for this. We define below affine invariant quantities
that can upper bound this difference.

Bilinearity coefficients. let L be a strongly convex-concave function, and let (x∗,y∗) be its unique
saddle point. We define the bilinearity coefficients (MXY ,MY X) as,

MXY = sup
y ∈ Y

x, s,v ∈ X
d = s− v

〈
d,
∇xL(x,y∗)−∇xL(x,y)√

L∗ − L(x∗,y)

〉
(73)

and,

MY X := sup
x ∈ X

y, s,v ∈ Y
d = s− v

〈
d,
∇yL(x,y)−∇yL(x∗,y)√

L(x,y∗)− L∗

〉
. (74)

We also define the global bilinearity coefficient as

ML := max{MXY ,MY X}. (75)

We can upper bound these affine invariant constants with the Lipschitz constant of the gradient, the
uniform strong convex-concavity constants and the diameters of the sets.

Proposition 13. If X and Y are compact, ∇L is Lipschitz continuous and L is uniformly strongly
convex-concave with constants (µX , µY), then

MXY ≤

√
2

µY
LXY ·DX and MY X ≤

√
2

µX
LY X ·DY (76)

where LXY and LY X are the partial Lipschitz constants defined in Equation (40). The quantity DX is
the diameter of the compact set X and DY is the diameter of Y.
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Proof.

MXY = sup
y ∈ Y

x, s,v ∈ X
d = s− v

〈
d,
∇xL(x,y∗)−∇xL(x,y)√

L∗ − L(x∗,y)

〉

≤ sup
y ∈ Y

x, s,v ∈ X
d = s− v

‖d‖X ‖∇xL(x,y∗)−∇xL(x,y)‖X ∗√
L∗ − L(x∗,y)

≤ sup
y ∈ Y
s,v ∈ X
d = s− v

‖d‖X LXY ‖y∗ − y‖Y√
L∗ − L(x∗,y)

≤ sup
y∈Y

DXLXY
‖y∗ − y‖Y√
L∗ − L(x∗,y)

.

Then using the relation between ‖y∗−y‖Y and
√
L∗ − L(x∗,y) due to strong convexity (Proposition 11)

MXY ≤

√
2

µY
LXY ·DX . (77)

We use a similar argument for MY X which allows us to conclude.

B.6 Relation between the primal suboptimalities

In this section, we are going to show that if the objective function L is uniformly strongly convex-
concave, then we have a relation between ht and wt. First let us introduce affine invariant constants
to relate these quantities (in the context of a given saddle point (x∗,y∗)):

PX := sup
x∈X

〈∇xL(x, ŷ(x)),x− x∗〉√
L(x,y∗)− L(x∗,y∗)

and PY := sup
y∈Y

〈∇yL(x̂(y),y),y − y∗〉√
L(x∗,y∗)− L(x∗,y)

, (78)

where ŷ(x) := arg maxy∈Y L(x,y) and x̂(y) := arg minx∈X L(x,y). We also define:

PL := max{PX , PY}. (79)

These constants can be upper bounded by easily computable constants.

Proposition 14. For any (µX , µY)-uniformly convex-concave function L,

PX ≤
√

2

µX
sup

z∈X×Y
‖∇xL(z)‖X ∗ and PY ≤

√
2

µY
sup

z∈X×Y
‖∇yL(z)‖Y∗ . (80)

Proof. Let us start from the definition of PX , let x ∈ X ,

〈∇xL(x, ŷ(x)),x− x∗〉√
L(x,y∗)− L(x∗,y∗)

≤ ‖x− x
∗‖X · sup (‖∇xL(z)‖X ∗)√
L(x,y∗)− L(x∗,y∗)

≤
√

2

µX
sup

z∈X×Y
‖∇xL(z)‖X ∗ (by strong convexity.)

The same way we can get

PY ≤

√
2

µY
sup

z∈X×Y
‖∇yL(z)‖Y∗ . (81)

It concludes our proof.
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One way to compute an upper bound on the supremum of the gradient is to use any reference point z̄
of the set:

∀z̄ ∈ X × Y, sup
z∈X×Y

‖∇xL(z)‖X ∗ ≤ ∇xL(z̄) + LXXDX + LXYDY . (82)

We recall that LXX is the largest (with respect to y) Lipschitz constant of x 7→ ∇xL(x,y). Note that
LXX is upper bounded by the global Lipschitz constant of ∇L. We can compute an upper bound on
the supremum of the norm of ∇yL the same way.

With these above defined affine invariant constants, we can finally relate the two primal suboptimalities
as ht ≤ O(

√
wt).

Proposition 15. For a (µX , µY)-uniformly strongly convex-concave function L,

ht ≤ PL
√

2wt and PL ≤
√

2 sup
z∈X×Y

{
‖∇xL(z)‖X ∗√

µX
,
‖∇yL(z)‖Y∗√

µY

}
. (83)

Proof. We will first work on h
(x)
t :

h
(x)
t = L(x(t), ŷ(t))− L∗

≤ L(x(t), ŷ(t))− L(x∗, ŷ(t))

≤
〈
x(t) − x∗,∇xL(x(t), ŷ(t)

〉
(by convexity)

≤ PX
√
w

(x)
t (def of PX (78)).

We can do the same thing for h
(y)
t and w

(y)
t , thus

ht ≤ PL
(√

w
(x)
t +

√
w

(y)
t

)
≤ PL

√
2wt, (84)

where the last inequality uses
√
a+
√
b ≤

√
2(a+ b). Finally, the inequality on PL is from Proposition 14.

C Relations between primal suboptimalities and dual gaps

C.1 Primal suboptimalities

Recall that we introduced x̂(t) := arg minx∈X L(x,y(t)) and similarly ŷ(t) := arg maxy∈Y L(x(t),y).
Then the primal suboptimality is the positive quantity

ht := L(x(t), ŷ(t))− L(x̂(t),y(t)). (85)

To get a convergence rate, one has to upper bound the primal suboptimality defined in (85), but it
is hard to work with the moving quantities x̂(t) and ŷ(t) in the analysis. This is why we use in our
analysis a different merit function that uses the (fixed) saddle point (x∗,y∗) of L in its definition. We
recall its definition below.

Second primal suboptimality. We define the second primal suboptimality for L of the iterate
(x(t),y(t)) with respect to the saddle point (x∗,y∗) as the positive quantity:

wt := L(x(t),y∗)− L(x∗,y(t)). (86)

It follows from L(x(t), ŷ(t)) ≥ L(x(t),y∗) and L(x∗,y(t)) ≥ L(x̂(t),y(t)) that wt ≤ ht. Furthermore,
under the assumption of uniform strong convex-concavity, we proved in Proposition 15 that the square
root of wt upper bounds ht up to a constant.
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C.2 Gap inequalities

In this section, we will prove the crucial inequalities relating suboptimalities and the gap function.
Let’s recall the definition of s(t) and v(t):

s(t) := arg min
s∈X×Y

〈
s, r(t)

〉
and v(t) := arg max

v∈Stx×Sty

〈
v, r(t)

〉
(87)

where (r(t))> := ((r
(t)
x )>, (r

(t)
y )>) :=

(
∇xL(x(t),y(t)),−∇yL(x(t),y(t))

)
. Also, the following various

gaps are defined as

gFW
t :=

〈
d

(t)
FW,−r

(t)
〉
, gPFW

t :=
〈
d

(t)
PFW,−r

(t)
〉

and gt :=
〈
d(t),−r(t)

〉
(88)

where d
(t)
FW = s(t) − z(t) and d

(t)
PFW = s(t) − v(t). The direction d(t) is the direction chosen by the

algorithm at step t: it is always d
(t)
FW for SP-FW, and can be either d

(t)
FW or d

(t)
A := z(t) − v(t) for SP-

AFW. Even if the definitions of these gaps are different, the formalism for the analysis of the convergence
of both algorithms is going to be fairly similar. It is straightforward to notice that gPFW

t ≥ gt and one
can show that the current gap gt is lower bounded by half of gPFW

t :

Lemma 16. For the SP-AFW algorithm, the current gap gt can be bounded as follows:

1

2
gPFW
t ≤ gt ≤ gPFW

t (89)

Proof. First let’s show the RHS of the inequality,

gPFW
t :=

〈
d

(t)
PFW,−r

(t)
〉

=
〈
d

(t)
A ,−r(t)

〉
+
〈
d

(t)
FW,−r

(t)
〉
≥
〈
d(t),−r(t)

〉
(90)

because both
〈
d

(t)
A ,−r(t)

〉
≥ 0 and

〈
d

(t)
FW,−r(t)

〉
≥ 0 from their definition. For the LHS inequality,

we use the fact that gt = max
{〈
d

(t)
A ,−r(t)

〉
,
〈
d

(t)
FW,−r(t)

〉}
for SP-AFW and thus:

gPFW
t =

〈
d

(t)
A ,−r(t)

〉
+
〈
d

(t)
FW,−r

(t)
〉
≤ 2gt. (91)

In the following, we will assume that we are in one of the two following cases:

(I) The saddle point of L belongs to the relative interior of X × Y.

(P) X and Y are polytopes, i.e. ∃A,B finite s.t X = conv(A), Y = conv(B).

Then either µint
L > 0 (case I) or µA

L > 0 (case P). Let’s write the gap function as the sum of two smaller
gap functions:

gt =
〈
d

(t)
(x),−r

(t)
x

〉
︸ ︷︷ ︸

=:g
(x)
t

+
〈
d

(t)
(y),−r

(t)
y

〉
︸ ︷︷ ︸

=:g
(y)
t

(92)

Because of the convex-concavity of L, this scalar product bounds the differences between the value of
L at the point (x(t),y(t)) and the value of L at another point. Hence this gap function upper-bounds
ht and wt defined in (85) and (86). More concretely, we have the following lemma.
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Lemma 17. For all t in N, x ∈ X and y ∈ Y

gPFW
t ≥ gFW

t ≥ L(x(t),y)− L(x,y(t)), (93)

and, furthermore,
gt ≥ ht ≥ wt. (94)

Proof. First let’s show the LHS of (93),

gPFW
t =

〈
d

(t)
PFW,−r

(t)
〉

=
〈
d

(t)
A ,−r(t)

〉
+
〈
d

(t)
FW,−r

(t)
〉
≥
〈
d

(t)
FW,−r

(t)
〉

= gFW
t (95)

because one can easily derive that
〈
d

(t)
A ,−r(t)

〉
≥ 0 from the definition of the away direction d

(t)
A . It

follows from convexity of x 7→ L(x,y(t)) that for all x in X ,

(gFW
t )x :=

〈
(d

(t)
FW)x,−∇xL(x(t),y(t))

〉
≥
〈
x− x(t),−∇xL(x(t),y(t))

〉
(96)

≥ L(x(t),y(t))− L(x,y(t)). (97)

A similar inequality emerges through the convexity of y 7→ −L(x(t),y),

(gFW
t )y :=

〈
(d

(t)
FW)y,∇yL(x(t),y(t))

〉
≥ L(x(t),y)− L(x(t),y(t)), (98)

which gives us
gFW
t ≥ L(x(t),y(t))− L(x,y(t)) + L(x(t),y)− L(x(t),y(t)), (99)

which shows (93). By using x = x̂(t) and y = ŷ(t) in (93), we get gFW
t ≥ ht. We also know that

gt = max(gA
t , g

FW
t ) ≥ gFW

t for SP-AFW. So combining with ht ≥ wt that we already knew, we
get (94).

Next, we recall two lemmas, one from Lacoste-Julien and Jaggi (2013) and the other one from (Lacoste-
Julien and Jaggi, 2015). These lemmas upper bound the primal suboptimality with the square of the
gap times a constant depending on the geometric (or the interior) strong convexity constant.

Lemma 18 (Lacoste-Julien and Jaggi (2015), Lacoste-Julien and Jaggi (2013)). If f is strongly convex,
then for any x(t) ∈ X ,

f(x(t))− f(xc) ≤
(
gFW
t

)2
2µxcf

if xc ∈ interior of X (Lacoste-Julien and Jaggi, 2013) (100)

and

f(x(t))− f∗ ≤
(
gPFW
t

)2
2µA

f

if X = conv(A) (Lacoste-Julien and Jaggi, 2015) (101)

where gFW
t =

〈
x(t) − s(t),∇f(x(t))

〉
, gPFW

t =
〈
v(t) − s(t),∇f(x(t))

〉
and f∗ = minx∈X f .

Notice once again that in this lemma we do not need xc to be optimal.

Proof. Let x(t) 6= xc. Using the definition of interior strong convexity (46) and choosing γ such that
xc = x(t) + γ

(
s̄
(
x(t),xc

)
− x(t)

)
, we get

f(xc)− f(x(t)) ≥ γ
〈
s̄(xc,x

(t))− x(t),∇f(x(t))
〉

+ γ2
µxcf
2

≥ −γgFW
t + γ2

µxcf
2

≥
−
(
gFW
t

)2
2µxcf

.
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The last line of this derivation is obtained through the inequality: −a2 + 2ab− b2 ≤ 0. If x(t) = xc the
inequality is just the positivity of the gap.

For the second statement, we will use the definition of the geometric strong convexity constant (Equa-

tion (53)) at the point x = x(t) and x∗ ∈ arg minx∈X f(x). Recall that γA(x,x∗) = 〈−∇f(x),x∗−x〉
〈−∇f(x),sf (x)−vf (x)〉 .

f(x∗)− f(x(t)) ≥
〈
x∗ − x(t),∇f(x(t))

〉
+
µA
f

2
γA(x(t),x∗)2

= −γA(x(t),x∗)
〈
sf (x(t))− vf (x(t)),−∇f(x(t))

〉
+
µA
f

2
γA(x(t),x∗)2

≥ −γA(x(t),x∗)gPFW
t +

µA
f

2
γA(x(t),x∗)2 (Equation (54))

≥
−
(
gPFW
t

)2
2µA

f

.

Lemma 18 is useful to understand the following lemma and its proof which is just an extension to the
convex-concave case.

Lemma 19 (Quadratic gap upper bound on second suboptimality for (I) or (P)). If L is a strongly
convex-concave function, then for any (x(t),y(t)) ∈ X × Y,

wt ≤
(gFW
t )2

2µintL
for (I) and wt ≤ ht ≤

(gPFW
t )2

2µA
L

for (P) (102)

where the gaps are defined in (88), µintL := min{µx∗L , µ
y∗

L } (i.e. using the reference points (xc,yc) :=
(x∗,y∗) in the definition (66)) and µA

L is the geometric strong convex-concavity of L over A × B, as
defined in (71).

Proof. For (I):

Let the function f on X be defined by f(x) = L(x′,y(t)), and the function g on Y be g(y′) =
−L(x(t),y′). Then using the Lemma 18 on the function f with the reference point x∗, and on g with
reference point y∗, we get

L(x(t),y(t))− L(x∗,y(t)) ≤

〈
s

(t)
x − x(t),−∇xL(x(t),y(t))

〉2

2µx
∗

f

L(x(t),y∗)− L(x(t),y(t)) ≤

〈
s

(t)
y − y(t),∇yL(x(t),y(t))

〉2

2µy
∗

g

.

As µint
L is smaller than both µx

∗

f and µy
∗

g by the definition (66), we can use it in the denominator

of the above two inequalities. As we saw from Section C.2 in (92), the gap can be split as sum of

the gap of the block X and the gap of the block Y, i.e. gFW
t =

〈
s

(t)
x − x(t),−∇xL(x(t),y(t))

〉
+〈

s
(t)
y − y(t),∇yL(x(t),y(t))

〉
. Then, using the inequality: a2 + b2 ≤ (a+ b)2 for (a, b ≥ 0), we obtain

wt ≤
(gFW
t )2

2µint
L

. (103)

For (P):
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Using the Lemma 18 for case (P) on the same functions f and g defined above, we get

L(x(t),y(t))− L(x̂(t),y(t)) ≤

〈
s

(t)
x − v(t)

x ,∇xL(x(t),y(t))
〉2

2µA
f

L(x(t), ŷ(t))− L(x(t),y(t)) ≤

〈
s

(t)
y − v(t)

y ,−∇yL(x(t),y(t))
〉2

2µA
g

.

Using a similar argument as the one to get (103), using that µA
L is smaller than both µA

f and µA
g , and

referring to the separation of the gap (92), we get

ht ≤
(gPFW
t )2

2µA
L

. (104)

D Convergence analysis

In this section, we are going to show two important lemmas. The first one shows that under some
assumptions we can get a Frank-Wolfe-style induction scheme relating the second suboptimality of the
potential update wγ , the current value of the second suboptimality wt, the gap gt and any step size
γ ∈ [0, γmax]. The second lemma will relate the gap and the square root of wt; this relation enables us
to get a rate on the gap after getting a rate on wt.

D.1 First lemmas

The first lemma in this section is inspired from the standard FW progress lemma, such as Lemma C.2
in (Lacoste-Julien et al., 2013), though it requires a non-trivial change due to the compensation phe-
nomenon for L mentioned in the main text in (10). In the following, we define the possible updated
iterate zγ for γ ∈ [0, γmax]:

zγ := (xγ ,yγ) := z(t) + γd(t), where d(t) is the direction of the step. (105)

For a FW step d(t) = d
(t)
FW := s(t) − z(t) and for an away step d(t) = d

(t)
A := z(t) − v(t). We also define

the corresponding new suboptimality for zγ :

wγ := L(xγ ,y
∗)− L(x∗,yγ). (106)

Lemma 20 (Suboptimality progress for SP-FW and SP-AFW). Let L be strongly convex-concave,

If we are in case (I) and d(t) = d
(t)
FW is a FW direction, we have for any γ ∈ [0, 1]:

wγ ≤ wt − νFWγgFW
t + γ2CL, where νFW := 1− ML√

µintL

. (107)

If we are in case (P) and d(t) is defined from a step of SP-AFW (Algorithm 3), we have for any
γ ∈ [0, γmax]:

wγ ≤ wt − νPFWγgPFW
t + γ2CL, where νPFW :=

1

2
− ML√

µA
L

. (108)
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Proof. The beginning of the argument works with any direction d(t). Recall that w
(x)
t := L(x(t),y∗)−L∗

and w
(y)
t := −L(x∗,y(t)) +L∗. Now writing xγ = x(t) + γd

(t)
x and using the definition of the curvature

Cf (41) for the function x 7→ f(x) := L(x,y∗), we get

w(x)
γ := L(xγ ,y

∗)− L∗

≤ L(x(t),y∗)− L∗ + γ
〈
d(t)
x ,∇xL(x(t),y∗)

〉
+ γ2CL

2
, (109)

since CL ≤ Cf by definition (58). Recall that the gap function gt can be decomposed by (92)

into two smaller gap functions g
(x)
t :=

〈
d

(t)
x ,−r(t)

x

〉
and g

(y)
t :=

〈
d

(t)
y ,−r(t)

y

〉
. We define εt :=〈

d
(t)
x ,∇xL(x(t),y∗)−∇xL(x(t),y(t))

〉
to be the sequence representing the error between the gradient

used for the minimization and the gradient at the point (x(t),y∗). Then,

w(x)
γ ≤ w(x)

t − γg
(x)
t + γεt + γ2CL

2
. (110)

Now, as MXY is finite (under Lipschitz gradient assumption), we can use the definition of the bilinearity
constant (73) to get

|εt| =
∣∣∣〈d(t)

x ,∇xL(x(t),y∗)−∇xL(x(t),y(t))
〉∣∣∣ ≤√w(y)

t MXY . (111)

Combining equations (110) and (111) we finally obtain

w(x)
γ ≤ w(x)

t − γg
(x)
t + γMXY

√
w

(y)
t + γ2CL

2
. (112)

We can get an analogous inequality for w
(y)
γ ,

w(y)
γ ≤ w

(y)
t − γg

(y)
t + γMY X

√
w

(x)
t + γ2CL

2
. (113)

Then adding w
(x)
γ and w

(y)
γ and using

√
a+
√
b ≤

√
2(a+ b) (coming from the concavity of

√
·), we get

wγ ≤ wt − γgt + γML
√

2wt + 2γ2CL
2
. (114)

We stress that the above inequality (114) is valid for any direction d(t), using gt :=
〈
d(t),−r(t)

〉
, and

for any feasible step size γ such that zγ ∈ X × Y (the last condition was used in the definition of Cf ;
see also footnote 3 for more information).

To finish the argument, we now use the specific property of the direction d(t) and use the crucial
Lemma 19 that relates wt with the square of the appropriate gap.

For the case (I) of interior saddle point, we consider d(t) = d
(t)
FW and thus gt = gFW

t . Then combining
Lemma 19 (using the interior strong convexity constant) with (114), we get

wγ ≤ wt − γ

1− ML√
µint
L

 gFW
t + γ2CL. (115)

For the case (P) of polytope domains, we consider d(t) as defined by the SP-AFW algorithm. We thus
have gt ≥ 1

2g
PFW
t by Lemma 16. Then combining Lemma 19 (using the geometric strong convexity

constant) with (114), we get

wγ ≤ wt − γ

1

2
− ML√

µA
L

 gPFW
t + γ2CL, (116)
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which finishes the proof. Still in the case (P), we also present an inequality in terms of the direction
gap gt (which yields a better constant that will be important for the sublinear convergence proof in
Theorem 25) by using instead the inequality gPFW

t ≥ gt (Lemma 16) with Lemma 19 and (114):

wγ ≤ wt − γ

1− ML√
µA
L

 gt + γ2CL. (117)

The above lemma uses a specific update direction d(t) to get a potential new suboptimality wγ . By
using the property that wγ ≥ 0 always, we can actually derive an upper bound on the gap in terms of

wt irrespective of any algorithm (i.e. this relationship holds for any possible feasible point (x(t),y(t))).
More precisely, for SP-FW algorithm (case (I)) the only thing we need to set is a feasible point z(t)

but for the SP-AFW algorithm (case (P)) we also need an active set expansion for z(t) for which the
maximum away step size is larger than νgt

2CL
(which can potentially not be the active set calculated by

an algorithm). This is stated in the following theorem, which is a saddle point generalization of the
gap upper bound given in Theorem 2 of (Lacoste-Julien and Jaggi, 2015).

Theorem 21 (Bounding the gap with the second suboptimality). If L is strongly convex-concave and
has a finite curvature constant then

• case (I): For any z(t) ∈ X × Y,

gFW
t ≤ 2

νFW
max

{√
CLwt, wt

}
. (118)

Since z(t) is fixed, this statement is algorithm free.

• case (P): For any z(t) ∈ X × Y, if there exists an active set expansion for z(t) for which γmax = 1

or γmax ≥ νPFWgPFW
t

2CL
(see (122) for the definition of γmax) then,

gPFW
t ≤ 2

νPFW
max

{√
CLwt, wt

}
. (119)

Both statement are algorithm free but gPFW
t depends on a chosen expansion of z(t):

z(t) =
∑

(vx,vy)∈S(t)

α
(t)
vxα

(t)
vy (vx,vy) where S(t) :=

{
(vx,vy) ∈ A× B ; α

(t)
vxα

(t)
vy > 0

}
, (120)

because,

gPFW
t := 〈−r(t),d

(t)
FW + d

(t)
A 〉

where d
(t)
A := z(t) − arg max

v∈Sx×Sy
〈r(t),v〉,

and d
(t)
FW := arg min

v∈A×B
〈r(t),v〉 − z(t).

(121)

The maximum step size associated with the active set expansion described in Equation (120) is

γmax :=


1 if

〈
−r(t),d

(t)
A

〉
≤
〈
−r(t),d

(t)
FW

〉
,

min

{
α

(t)

v
(t)
x

1−α(t)

v
(t)
x

,
α

(t)

v
(t)
y

1−α(t)

v
(t)
y

}
otherwise.

(122)



Frank-Wolfe Algorithms for Saddle Point Problems

Proof. In this proof, we let (gt, ν) to stand respectively for (gFW
t , νFW) for case (I) or (gPFW

t , νPFW)
for case (P). We will start from the inequalities (107) and (108) in Lemma 20. Equation (107) is valid

considering a FW direction d
(t)
FW, Equation (108) is valid if we consider the direction that would have

be set by the SP-AFW algorithm if it was run at point z(t) with the active set expansion described in
the theorem statement. Since wγ ≥ 0, for both cases become :

0 ≤ wt − γνgt + γ2CL, (123)

then we can put the gap on the LHS,

γνgt − γ2CL ≤ wt. (124)

This inequality is valid for any γ ∈ [0, γmax]. In order to get the tightest bound between the gap and
the suboptimality, we will maximize the LHS. It can be maximized with γ̄ := νgt

2CL
= γt. Now we have

two cases:

If γ̄ ∈ [0, γmax], then we get: νgt ≤ 2
√
CLwt.

And if γmax = 1 and γ̄ = νgt
2CL

> 1, then setting γ = 1 we get: νgt ≤ 2wt. By taking the maximum
between the two options, we get the theorem statement.

The previous theorem guarantees that the gap gets small when wt gets small (only for the non-drop steps
if in situation (P)). As we use the gap as a stopping criterion in the algorithm, this is a useful theorem
to provide an upper bound on the number of iterations needed to get a certificate of suboptimality.

The following corollary provides a better bound on ht than the inequality ht ≤ cst
√
wt previously

shown (14) when the situation is (P). It will be useful later to get a better rate of convergence for ht
under hypothesis (P).

Corollary 22 (Tighter bound on ht for non-drop steps in situation (P)). Suppose that L is strongly
convex-concave and has a finite curvature constant, and that the domain is a product of polytopes (i.e.
we are in situation (P)). Let z(t) ∈ X × Y be given. If there exists an active set expansion for z(t) for
which the maximum step size is larger than νgt

2CL
(see Theorem (21) for more details) ,

ht ≤
2 max{CL, wt}
µA
L (νPFW)2

wt, (125)

where νPFW is defined in (108).

Proof. By Lemma 19 in situation (P), we have:

ht ≤
(gPFW
t )2

2µA
L

≤ 2 max{CL, wt}
µA
L (νPFW)2

wt.

The last inequality is obtained by applying the upper bound on the gap given in the previous Theo-
rem 21.

D.2 Proof of Theorem 1

In this section, we will prove that under some conditions on the constant defined in subsections B.2

and B.3, the suboptimalities wt vanish linearly with the adaptive step size γt = min
{
γmax,

ν
2CL

gt

}
or

sublinearly with the universal step size γt = min
{
γmax,

2
2+k(t)

}
.
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Lemma 23 (Geometric decrease of second suboptimality). Let L be a strongly convex-concave function
with a smoothness constant CL, a positive interior strong convex-concavity constant µintL (66) or a
positive geometric strong convex-concavity µA

L (71). Let us also define the rate multipliers ν as

νFW := 1− ML√
µintL

and νPFW :=
1

2
− ML√

µA
L

(see Equation (75) for the definition of ML). (126)

Let the tuple (gt, ν, µL) refers to either (gFW
t , νFW, µintL ) for case (I) where the algorithm is SP-FW ,

or (gPFW
t , νPFW, µA

L ) for case (P) where the algorithm is SP-AFW,

If ν > 0, then at each non-drop step (when γt < γmax or γmax ≥ 1 ), the suboptimality wt of the
algorithm with step size γt = min(γmax,

ν
2CL

gt) decreases geometrically as

wt+1 ≤ (1− ρL)wt (127)

where ρL := ν2

2
µL
CL

. Moreover, for case (I) there is no drop step and for case (P) the number of
drop step (when γt = γmax) is upper bounded by two third of the number of iteration (see Section A,
Equation (38)), while when we have a drop step, we still have:

wt+1 ≤ wt. (128)

Proof. The bulk of the proof is of a similar form for both SP-FW and SP-AFW, and so in the following,
we let (gt, µL, ν) to stand respectively for (gFW

t , µint
L , ν

FW) for SP-FW (case (I)) or (gPFW
t , µA

L , ν
PFW)

for SP-AFW (case (P)). As γt ≤ γmax, we can apply the important Lemma 20 with γ = γt (the actual
step size that was taken in the algorithm) to get:

wt+1 = wγt ≤ wt − νγtgt + γ2
tCL. (129)

We note in passing that the adaptive step size rule γt = min(γmax,
ν

2CL
gt) was specifically chosen to

minimize the RHS of (129) among the feasible step sizes.

If ν
2CL

gt ≤ γmax, then we have γt = ν
2CL

gt and so (129) becomes:

wt+1 ≤ wt −
ν2

2CL
(gt)

2 +
ν2

4CL
(gt)

2 = wt −
ν2

4CL
(gt)

2. (130)

Applying the fact that the square of the appropriate gap upper bounds wt (Lemma 19 with a similar
form for both cases (I) and (P)), we directly obtain the claimed geometric decrease

wt+1 ≤ wt
(

1− ν2

2

µL
CL

)
. (131)

If ν
2CL

gt > γmax, then we have γt = γmax and so (129) becomes:

wt+1 ≤ wt − νγmaxgt + γ2
maxCL

≤ wt − νγmaxgt +
ν

2
γmaxgt (using CL <

ν

2γmax

gt) (132)

≤ wt −
ν

2
γmaxgt

≤ wt
(

1− ν

2
γmax

)
. (wt ≤ gt by Lemma 17) (133)

If γmax ≥ 1 (either we are taking a FW step or an away step with a big step size), then the geometric
rate is at least (1 − ν

2 ), which is a better rate than ρL since ν2 ≤ ν as ν ≤ 1, and one can show that
µL
CL
≤ 1 always (see Remark 7 in Appendix D of (Lacoste-Julien and Jaggi, 2015) for case (P) and use
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a similar argument for case (I)). Thus ρL is valid both when γt < γmax or γmax ≥ 1, as claimed in the
theorem.

When γt = γmax < 1, we cannot guarantee sufficient progress as γmax could be arbitrarily small (this
can only happen for an away step as γmax = 1 for a FW step). These are the problematic drop steps,
but as explained in Appendix A with Equation (38), they cannot happen too often for SP-AFW.

Finally, to show that the suboptimality cannot increase during a drop step (γt = γmax), we point out

that the function γ 7→ wt−γνPFWgPFW
t +γ2CL is a convex function that is minimized by γ̄ = νPFW

2CL
gPFW
t

and so is decreasing on [0, γ̄]. When γt = γmax, we have that γmax ≤ γ̄, and thus the value for γ = γmax

is lower than the value for γ = 0, i.e.

wt+1 ≤ wt − γmaxν
PFWgPFW

t + γ2
maxCL ≤ wt. (134)

The previous lemma (Lemma 23), the fact that the gap upper bounds the suboptimality (Lemma 17)
and the primal suboptimalities analysis lead us directly to the following theorem. This theorem is the
affine invariant formulation with adaptive step size of Theorem 1.

Theorem 24. Let L be a strongly convex-concave function with a finite smoothness constant CL,
a positive interior strong convex-concavity constant µintL (66) or a positive geometric strong convex-
concavity µA

L (71). Let us also define the rate multipliers ν as

νFW := 1− ML√
µintL

and νPFW :=
1

2
− ML√

µA
L

(see Equation (75) for the definition of ML). (135)

Let the tuple (gt, ν, µL) refers to either (gFW
t , νFW, µintL ) for case (I) where the algorithm is SP-FW ,

or (gPFW
t , νPFW, µA

L ) for case (P) where the algorithm is SP-AFW,

If ν > 0, then the suboptimality ht of the iterates of the algorithm with step size γt = min(γmax,
ν

2CL
gt)

decreases geometrically5 as,
ht ≤ PL

√
2w0(1− ρL)k(t)/2 (136)

where ρL := ν2µL
2CL

and k(t) is the number of non-drop step after t steps. For SP-FW, k(t) = t and for
SP-AFW, k(t) ≥ t/3. Moreover we can also upper bound the minimum gap observed, for all T ∈ N

min
t≤T

gt ≤
2 max{

√
CL,
√
w0(1− ρL)k(T )/2}
ν

√
w0 (1− ρL)k(T )/2 . (137)

The Theorem 1 statement can be deduced from this theorem using the lower and upper bounds on
the affine invariant constant of this statement. More precisely, one can upper bound CL, ML, PL
respectively with Propositions 9, 13 and 14 and lower bound µintL and µA

L respectively with Proposition 12
and Equation (72).6 If we apply these bounds to the rate multipliers in (135), it gives the smaller rate
multipliers ν stated in Theorem 1.

Proof. We uses the Lemma 23 giving a geometric scheme, with a straightforward recurrence we prove
that,

wt ≤ w0(1− ρL)k(t), (138)

5For a non-drop step one can use Corollary 22 to get the better rate on ht losing the square root but with a potentially

worse constant ht ≤ 2max{CL,w0(1−ρL)k(t)}
µA
L (νPFW)2

w0(1− ρL)k(t).
6Note that only the definition of δµ in Theorem 1 for case (P) requires to use the Euclidean norm (because inequality (72)

with the pyramidal width only holds for the Euclidean norm). On the other hand, any norm could be used for (separately)
bounding CL, ML and PL.
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where k(t) is the number of non-drop step steps. This number is equal to t for the SP-FW algorithm
and it is lower bounded by t/3 for the SP-AFW algorithm (see Section A Equation (38)). Then by
using Proposition (15) relating ht and the square root of wt we get the first statement of the theorem,

ht ≤ PL
√

2w0(1− ρL)k(t)/2. (139)

To prove the second statement of the theorem we just use Theorem 21 for the last non-drop step after
T iterations (let us assume it was at step t0),

gt0 ≤
2 max{

√
CL,
√
w0(1− ρL)k(t0)/2}
ν

√
w0(1− ρL)k(t0)/2 (140)

=
2 max{

√
CL,
√
w0(1− ρL)k(T )/2}
ν

√
w0(1− ρL)k(T )/2. (because k(t0) = k(T )) (141)

The minimum of the gaps observed is smaller than the gap at time t0 then,

min
t≤T

gt ≤ gt0 ≤
2 max{

√
CL,
√
w0(1− ρL)k(T )/2}
ν

√
w0(1− ρL)k(T )/2. (142)

The affine invariant formulation with the universal step size γt = min
{
γmax,

2
2+k(t)

}
of Theorem 1 also

follows from Lemma 23 by re-using standard FW proof patterns.

Theorem 25. Let L be a strongly convex-concave function with a finite smoothness constant CL,
a positive interior strong convex-concavity constant µintL (66) or a positive geometric strong convex-
concavity µA

L (71). Let us also define the rate multipliers ν as

νFW := 1− ML√
µintL

and ν̃PFW := 1− ML√
µA
L

(see Equation (75) for the definition of ML). (143)

Let ν refers to either νFW for case (I) where the algorithm is SP-FW, or ν̃PFW for case (P) where the
algorithm is SP-AFW,

If ν > 1
2 , then the suboptimality wt of the iterates of the algorithm with universal step size γt =

min
{
γmax,

2
2+k(t)

}
(see Equation (34) for more details about γmax) has the following decreasing upper

bound:

wt ≤
C

2 + k(t)
(144)

where C = 2 max
(
w0,

2CL
2ν−1

)
and k(t) is the number of non-drop step after t steps. For SP-FW, k(t) = t

and for SP-AFW, k(t) ≥ t/3. Moreover we can also upper bound the minimum FW gap observed for
T ≥ 1,

min
t≤T

gFW
t ≤ 5C

ν(k(T ) + 1)
. (145)

Note that in this theorem the constant ν̃PFWis slightly different from the constant νPFW in Theorem 24.

Proof. We can put both the recurrence (115) for the SP-FW algorithm and the recurrence (117) for the
SP-AFW algorithm (from the proof of Lemma 20) in the following form by using our unified notation
introduced in the theorem statement:

wt+1 ≤ wt − γtνgt + γ2
tCL. (146)
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Note that the gap gt is the one defined in Equation (88) and depends on the algorithm. Let (ν) to stand
respectively for (νFW) for SP-FW (case (I)) or (ν̃PFW) for SP-AFW (case (P)). With this notation,
the inequality gt ≥ wt leads to,

wt+1 ≤ wt (1− νγt) + γ2
tCL. (147)

Our goal is to show by induction that

wt ≤
C

2 + k(t)
where C := 2 max

(
w0,

2CL
2ν − 1

)
. (?)

Let us first define the convex function ft : γ 7→ wt (1− νγ) + γ2CL. We will show that under (?), the
function ft has the following property:

ft

(
2

2 + k(t)

)
≤ C

3 + k(t)
. (148)

This property is due to a simple inequality on integers; let k = k(t), from the crucial induction
assumption, we get:

ft

(
2

2 + k

)
= wt

2 + k − 2ν

2 + k
+

4

(2 + k)2
CL ≤

C

3 + k

[
(3 + k)(k + 1− (2ν − 1) + 4CL

C )

(2 + k)2

]
, (149)

but (2ν − 1) ≥ 4CL
C and (3 + k)(1 + k) < (2 + k)(2 + k) for any k, thus

ft

(
2

2 + k

)
≤ C

3 + k
. (150)

Equation (150) is crucial for the inductive step of our recurrence.

• Hypothesis (?) is true for t = 0 because k(0) = 0.

• Now let us assume that (?) is true for a t ∈ N. We set the stepsize γt := min
{
γmax,

2
2+k(t)

}
.

If k(t+ 1) = k(t) + 1, it means that γt = 2
2+k(t) and then by (147) and (150),

wt+1 ≤ ft
(

2

2 + k(t)

)
≤ C

3 + k(t)
=

C

2 + k(t+ 1)
. (151)

If k(t+ 1) = k(t), then it means that 0 ≤ γt < 2
2+k(t) . Hence, the convexity of the function ft leads

us to the inequality

wt+1 ≤ ft(γt) ≤ max

{
ft(0), ft

(
2

2 + k(t)

)}
= max

{
wt, ft

(
2

2 + k(t)

)}
(152)

≤ max

{
C

2 + k(t)
,

C

3 + k(t)

}
(153)

≤ C

2 + k(t)
. (154)

where we used (150) and the induction hypothesis (?) to get the penultimate inequality (152).
Since we assumed that k(t+ 1) = k(t), we get

wt+1 ≤
C

2 + k(t+ 1)
, (155)

completing the induction proof for (144).
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In case (I), k(t) = t and in case (P), k(t) ≥ t/3 (see Equation (38)), leading us to the first statement
of our theorem.

The proof of the second statement is inspired by the proof of Theorem C.3 from (Lacoste-Julien et al.,
2013).

With the same notation as the proof of Lemma 20, we start from Equation (146) where we isolated the
gap gt to get the crucial inequality

gt ≤
wt − wt+1

νγt
+ γt

CL
ν
. (156)

Since the gap gt is the one depending on the algorithm defined by gt :=
〈
−r(t),d(t)

〉
, we have gt = gFW

t

for SP-FW and gt = max
(
gFW
t , gA

t

)
≥ gFW

t for SP-AFW. Thus,

gFW
t ≤ gt ≤

wt − wt+1

νγt
+ γt

CL
ν
. (157)

In the following in order not to be too heavy with notation we will work with de FW gap and note gt
for gFW

t .

The proof idea is to take a convex combination of the inequality (157) to obtain a new upper-bound
on a convex combination of the gaps computed from step 0 to step T . Let us introduce the convex

combination weight ρt := γt·k(t)(k(t)+2)
ST

where k(t) is the number of non-drop steps after t steps and ST
is the normalization factor. Let us also call NT := {t ≤ T | t is a non-drop step}. Taking the convex
combination of (157), we get

T∑
t=0

ρtgt ≤
T∑
t=0

ρt
wt − wt+1

νγt
+

T∑
t=0

ρtγt
CL
ν
. (158)

By regrouping the terms and ignoring the negative term, we get

T∑
t=0

ρtgt ≤
w0ρ0

νγ0
+

1

ν

T−1∑
t=0

wt+1

(
ρt+1

γt+1
− ρt
γt

)
+

T∑
t=0

ρtγt
CL
ν
. (159)

By definition ρt
γt

:= k(t)(k(t)+2)
ST

and notice that ρ0 = 0. We now consider two possibilities: if γt is a drop

step, then k(t+ 1) = k(t) and so
ρt+1

γt+1
− ρt
γt

= 0. (160)

If γt is a non-drop step, then k(t+ 1) = k(t) + 1 and thus we have

ρt+1

γt+1
− ρt
γt

=
(k(t) + 1)(k(t) + 3)

ST
− k(t)(k(t) + 2)

ST
(161)

=
2k(t) + 3

ST
. (162)

As γt ≤ 2
k(t)+2 , we also have ρtγt ≤ 4k(t)

ST (k(t)+2)) . The normalization factor ST to define a convex

combination is equal to

ST :=

T∑
u=0

γu · k(u)(k(u) + 2) ≥
T∑
u=0
u∈NT

2

2 + k(u)
· k(u)(k(u) + 2) =

k(T )∑
k=0

2k = k(T )(K(T ) + 1). (163)
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Plugging this and (162) in the inequality (159) with the rate (?) shown by induction gives us,

T∑
t=0

ρtgt ≤ 0 +
1

ν

T−1∑
t=0
t∈NT

C

2 + k(t+ 1)

2k(t) + 3

k(T )(k(T ) + 1)
+

T∑
t=0

4k(t)

k(T )(k(T ) + 1)(k(t) + 2)

CL
ν

(164)

≤ 2C

ν

1

k(T )(k(T ) + 1)

( T−1∑
t=0
t∈NT

1 +
2CL
C

T∑
t=1

1
)

(165)

≤ 2C

ν(k(T ) + 1)
(1 +

ν

2

T

k(T )
) ≤ 5C

ν(k(T ) + 1)
, (166)

by using k(T ) ≥ T/3. Finally, the minimum of the gaps is always smaller than any convex combination,
so we can conclude that (for T ≥ 1):

min
0≤t≤T

gt ≤
5C

ν(k(T ) + 1)
. (167)

E Strongly convex sets

In this section, we are going to prove that the function s(·) is Lipschitz continuous when the sets X and
Y are strongly convex and when the norm of the two gradient components are uniformly lower bounded.
We will also give the details of the convergence rate proof for the strongly convex sets situation. Our
proof uses similar arguments as Dunn (1979, Theorem 3.4 and 3.6).

Theorem’ 3. Let X and Y be β-strongly convex sets. If min(‖∇xL(z)‖X ∗ , ‖∇yL(z)‖Y∗) ≥ δ > 0
for all z ∈ X × Y, then the oracle function z 7→ s(z) := arg mins∈X×Y 〈s, F (z)〉 is well defined
and is 4L

δβ -Lipschitz continuous (using the norm ‖(x,y)‖X×Y := ‖x‖X + ‖y‖Y), where F (z) :=

(∇xL(z),−∇yL(z)).

Proof. First note that since the sets are strongly convex, the minimum is reached at a unique point.
Then, we introduce the following lemma which can be used to show that each component of the gradient
is Lipschitz continuous irrespective of the other set.

Lemma 26. Let Fx : X × A → Rd be a L-Lipschitz continuous function (i.e. ‖Fx(z) − Fx(z′)‖X ∗ ≤
L‖z − z′‖X×A) and X a β-strongly convex set. If ∀z ∈ X × A, ‖Fx(z)‖X ∗ ≥ δ > 0, then sx : z 7→
arg mins∈X 〈s, Fx(z)〉 is 2L

δβ -Lipschitz continuous.

Proof. Let z, z′ ∈ X ×A and let x̄ = sx(z)+sx(z′)
2 , then〈

sx(z)− sx(z′),−Fx(z)
〉

= 2 〈sx(z)− x̄,−Fx(z)〉
≥ 2 〈x− x̄,−Fx(z)〉 . ∀x ∈ X (by definition of sx) (168)

Now (168) holds for any x ∈ Bβ
(

1
2 , sx(z), sx(z′)

)
as this set is included in X by β-strong convexity

of X . Then since x̄ is the center of Bβ
(

1
2 , sx(z), sx(z′)

)
, we can choose a x in this ball such that x− x̄

is in the direction which achieves the dual norm of −Fx(z).7 More specifically, we have that:

‖ − Fx(z)‖X ∗ = sup
‖v‖X≤1

〈−Fx(z),v〉 .

7For the Euclidean norm, we choose x− x̄ proportional to −Fx; but for general norms, it could be a different direction.
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As we are in finite dimensions, this supremum is achieved by some vector v. So choose x := x̄ +
v
‖v‖X

β
8 ‖sx(z)− sx(z′)‖2X ∈ Bβ

(
1
2 , sx(z), sx(z′)

)
and plug it in (168):

〈
sx(z)− sx(z′),−Fx(z)

〉
≥
β‖sx(z)− sx(z′)‖2X

4‖v‖X
〈v,−Fx(z)〉 (169)

=
β‖sx(z)− sx(z′)‖2X

4‖v‖X
‖Fx(z)‖X ∗ (170)

≥ β

4
‖sx(z)− sx(z′)‖2X ‖Fx(z)‖X ∗ . (171)

Switching z and z′ and using a similar argument, we get,〈
sx(z′)− sx(z),−Fx(z′)

〉
≥ β

4
‖sx(z)− sx(z′)‖2X ‖Fx(z′)‖X ∗ . (172)

Hence summing (171) and (172),

β

4
(‖Fx(z)‖X∗ + ‖Fx(z′)‖X ∗) ‖sx(z)− sx(z′)‖2X ≤

〈
sx(z)− sx(z′), Fx(z′)− Fx(z)

〉
≤ ‖sx(z)− sx(z′)‖X ‖Fx(z′)− Fx(z)‖X ∗ (173)

≤ L‖sx(z)− sx(z′)‖X ‖z′ − z‖X×Y (Lip. cty. of Fx)

and finally

‖sx(z)− sx(z′)‖X ≤
4L

β (‖Fx(z)‖X ∗ + ‖Fx(z′)‖X ∗)
‖z − z′‖X×Y ≤

2L

δβ
‖z − z′‖X×Y . (174)

To prove our theorem, we will notice that for the saddle point setup, the oracle function s(·) :=
arg mins∈X×Y 〈s, F (·)〉 can be decomposed as s(·) = (sx(·), sy(·)) where sx(·) := arg mins∈X 〈s, Fx(·)〉
and sy(·) := arg mins∈Y 〈s, Fy(·)〉. Then applying our lemma, the function sx(·) is Lipschitz continuous.
The same way sy(·) is Lipschitz continuous. Then, for all z, z′ in X × Y

‖s(z)− s(z′)‖X×Y = ‖sx(z)− sx(z′)‖X + ‖sy(z)− sy(z′)‖Y ≤
4L

δβ
‖z − z′‖X×Y , (175)

which gives the definition of the Lipschitz continuity of our function and proves the theorem.

In this theorem, we introduced the function F . This function is monotone in the following sense:

∀z, z′
〈
z − z′, F (z)− F (z′)

〉
≥ 0. (176)

Actually this property follows directly from the convexity of L(·,y) and the concavity of L(x, ·). We
can also prove that when the sets X and Y are strongly convex and when the gradient is uniformly
lower bounded, we can relate the gap and the distance between z(t) and s(t).

Lemma 27. If X is a β-strongly convex set and if ‖∇f‖X ∗ is uniformly lower bounded by δ on X ,
then

max
s∈X
〈s− x,−∇f(x)〉 ≥ β

4
δ‖s(x)− x‖2, (177)

where s(x) = arg maxs∈X 〈s− x,−∇f(x)〉.
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Proof. Let x and s(x) be in X . We have Bβ
(

1
2 , s(x),x

)
⊂ X by β-strong convexity. So as in the proof

of Lemma 26, let v be the vector such that ‖v‖X ≤ 1 and 〈−∇f(x),v〉 = ‖∇f(x)‖X ∗ . Let

s̄ :=
s(x) + x

2
+
β

8
‖s(x)− x‖2 v

‖v‖X
∈ X . (178)

Then

〈s(x)− x,−∇f(x)〉 ≥ 〈s̄− x,−∇f(x)〉

=
1

2
〈s(x)− x,−∇f(x)〉+

β

8
‖s(x)− x‖2 ‖∇f(x)‖X ∗

‖v‖X

≥ 1

2
〈s(x)− x,−∇f(x)〉+

β

8
δ‖s(x)− x‖2 (179)

which leads us to the desired result.

From this lemma, under the assumption that min(‖∇xL(z)‖X ∗ , ‖∇yL(z)‖Y∗) ≥ δ ∀z ∈ X×Y, it directly
follows that

gFW
t = g

(x)
t + g

(y)
t ≥

β

4
δ
(
‖s(t)

x − x(t)‖2X + ‖s(t)
y − y(t)‖2Y

)
≥ β

8
δ
(
‖s(t)

x − x(t)‖X + ‖s(t)
y − y(t)‖Y

)2
=
β

8
δ‖s(t) − z(t)‖2X×Y . (180)

Now we recall the convergence theorem for strongly convex sets from the main text, Theorem 4:

Theorem’ 4. Let L be a convex-concave function and X and Y two compact β-strongly convex
sets. Assume that the gradient of L is L-Lipschitz continuous and that there exists δ > 0 such that
min(‖∇xL(z)‖X ∗ , ‖∇yL(z)‖Y∗) ≥ δ ∀z ∈ X × Y. Set Cδ := 2L + 8L2

βδ . Then the gap gFW
t (7) of the

SP-FW algorithm with step size γt = gFW
t

‖s(t)−z(t)‖2Cδ converges linearly as

gFW
t ≤ g0 (1− ρ)t (181)

where ρ := βδ
16Cδ

. The initial gap g0 is cheaply computed during the first step of the SP-FW algorithm.
Alternatively, one can use the following upper bound to get uniform guarantees:

g0 ≤ sup
z∈X×Y

‖∇xL(z)‖X ∗DX + sup
z∈X×Y

‖∇yL(z)‖Y∗DY . (182)

Proof. We compute the following relation on the gap:

gt+1 =
〈
z(t+1) − s(t+1), F (z(t+1))

〉
=
〈
z(t) − s(t+1), F (z(t+1))

〉
+ γt

〈
s(t) − z(t), F (z(t+1))

〉
=
〈
z(t) − s(t+1), F (z(t))

〉
+
〈
z(t) − s(t+1), F (z(t+1))− F (z(t))

〉
+ γt

〈
s(t) − z(t), F (z(t))

〉
+ γt

〈
s(t) − z(t), F (z(t+1))− F (z(t))

〉
≤
〈
z(t) − s(t+1), F (z(t))

〉
+
〈
z(t) − s(t+1), F (z(t+1))− F (z(t))

〉
+ γt

〈
s(t) − z(t), F (z(t))

〉
+ γ2

t ‖s(t) − z(t)‖2L (183)
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where in the last line we used the fact that the function F (·) is Lipschitz continuous. Then using that〈
z(t) − s(t+1), F (z(t))

〉
≤
〈
z(t) − s(t), F (z(t))

〉
(by definition of s(t)), we get

gt+1 ≤ gt(1− γt) +
〈
z(t) − s(t+1), F (z(t+1))− F (z(t))

〉
+ γ2

t ‖s(t) − z(t)‖2L

≤ gt(1− γt) +
〈
s(t) − s(t+1), F (z(t+1))− F (z(t))

〉
+ γ2

t ‖s(t) − z(t)‖2L. (184)

The last line uses the fact that F is monotone by convexity (Equation (176)). Finally, using once again
the Lipschitz continuity of F and the one of s(·) (by Theorem 3), we get〈

s(t) − s(t+1), F (z(t+1))− F (z(t))
〉
≤ ‖s(t) − s(t+1)‖L‖z(t+1) − z(t)‖

≤ 4L2

βδ
‖z(t+1) − z(t)‖2 (Lipschitz continuity of s)

=
4L2

βδ
γ2
t ‖s(t) − z(t)‖2. (185)

Combining (185) with (184), we get

gt+1 ≤ gt(1− γt) + γ2
t ‖s(t) − z(t)‖2Cδ

2
where Cδ := 2L+

8L2

βδ
. (186)

Thus by setting the step size γt = gt
‖s(t)−z(t)‖2Cδ , we get

gt+1 ≤ gt −
gt

2Cδ

(
gt

‖s(t) − z(t)‖2

)
≤ gt

(
1− βδ

16Cδ

)
, (187)

using the fact that the gap is lower bounded by a constant times the square of the distance between
s(t) and z(t) (Equation (180)).

Note that the bound in this theorem is not affine invariant because of the presence of Lipschitz constants
and strong convexity constants of the sets. The algorithm is not affine invariant either because the
step size rule depends on these constants as well as on ‖s(t) − z(t)‖. Deriving an affine invariant step
size choice and convergence analysis is still an interesting open problem in this setting.

F Details on the experiments

Graphical Games. The payoff matrix M that we use encodes the following simple model of competi-
tion between universities with their respective benefits:

1. University 1 (respectively University 2) has benefit b
(1)
i (b

(2)
i ) to get student i.

2. Student i ranks the possible roommates with a permutation σi ∈ Sp. Let σi(j) represents the rank
of j for i (first in the list is the preferred one).

3. They go to the university that matched them with their preferred roommate, in case of equality
the student chooses randomly.

4. Supposing that x encodes the roommate assignment proposed by University 1 (and y for Univer-
sity 2), then the expectation of the benefit of University 1 is x>My, with the following definition
for the payoff matrix M indexed by pairs of matched students. For the pairs (i, j) with i < j and
(k, l) with k < l with elements in 1, . . . , s, we have:
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(a) Mij,il =


b
(1)
i if σi(j) < σi(l) i.e. student i preferred j over l

−b(2)
i if σi(j) > σi(l)

b
(1)
i −b

(2)
i

2 otherwise (in that case j = l).

(b) Mij,kj = Mji,jk

(c) Mij,ki = Mij,ik

(d) Mij,jl = Mij,lj

(e) Mij,kl = 0 otherwise

Note that we need to do unipartite matching here (and not bipartite matching) since we have to match
students together and not students with dorms.

For our experiments, in order to get a realistic payoff matrix, we set µi ∼ U [0, 1] the true value of

student i. Then we set b
(U)
i ∼ N (µi, 0.1) the value of the student i observed by University U . To solve

the perfect matching problem, we used Blossom V by Kolmogorov (2009).

Sparse structured SVM. We give here more details on the derivations of the objective function for
the structured SVM problem. We first recall the structured prediction setup with the same notation
from (Lacoste-Julien et al., 2013). In structured prediction, the goal is to predict a structured object
y ∈ Y(x) (such as a sequence of tags) for a given input x ∈ X . For the structured SVM approach, a
structured feature map φ : X ×Y → Rd encodes the relevant information for input / output pairs, and
a linear classifier with parameter w is defined by hw = arg maxy∈Y(x) 〈w,φ(x,y)〉. We are also given

a task-dependent structured error L(y′,y) that gives the loss of predicting y when the ground truth is
y′. Given a labeled training set {(x(i),y(i))}ni=1, the standard `2-regularized structured SVM objective
in its non-smooth formulation for learning as given for example in Equation (3) from (Lacoste-Julien
et al., 2013) is:

min
w∈Rd

λ

2
‖w‖22 +

1

n

∑
i

H̃i(w) (188)

where H̃i(w) := maxy∈Yi Li(y)− 〈w,ψi(y)〉 is the structured hinge loss, and the following notational

shorthands were defined: Yi := Y(x(i)), Li(y) := L(y(i),y) and ψi(y) := φ(x(i),y(i))− φ(x(i),y).

In our setting, we consider a sparsity inducing `1-regularization instead. Moreover, we use the (equiv-
alent) constrained formulation instead of the penalized one, in order to get a problem over a polytope.
We thus get the following challenging problem:

min
‖w‖1≤R

1

n

∑
i

H̃i(w). (189)

To handle any type of structured output space Y, we use the following generic encoding. Enumerating

the elements of Yi, we can represent the jth element of Yi as (

j−1︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0) ∈ R|Yi|. Let Mi have(

ψi(y)
)
y∈Yi as columns and let Li be a vector of length |Yi| with Li(y) as its entries. The functions

H̃i(w) can then be rewritten as the maximization of linear functions in y: H̃i(w) = maxy∈Yi L
>
i y −

w>Miy. As the maximization of linear functions over a polytope is always obtained at one of its vertex,
we can equivalently define the maximization over the convex hull of Yi, which is the probability simplex
in R|Yi| that we denote ∆(|Yi|):

max
yi∈Yi

L>i yi −w>Miyi = max
αi∈∆(|Yi|)

L>i αi −w>Miαi (190)

Thus our equivalent objective is

min
‖w‖1≤R

1

n

∑
i

(
max
yi∈Yi

L>i yi −w>Miyi

)
= min
‖w‖1≤R

1

n

∑
i

(
max

αi∈∆(|Yi|)
L>i αi −w>Miαi

)
, (191)
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which is the bilinear saddle point formulation given in the main text in (31).
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