Efficient Rational Secret Sharing in Standard Communication Networks

Georg Fuchsbauer Jonathan Katz David Naccache

École Normale Supérieure

University of Maryland

TCC 2010
Our Contributions

New protocols for rational secret sharing

- Improved *efficiency* (no generic MPC; better parameters than prior work) and *optimal resilience*
- Work in *standard networks* (no simultaneous channels; no broadcast; can even handle asynchronous networks)
- Satisfy *strong solution concepts*
Our Contributions

New protocols for rational secret sharing

- Improved *efficiency* (no generic MPC; better parameters than prior work) and *optimal resilience*
- Work in *standard networks* (no simultaneous channels; no broadcast; can even handle asynchronous networks)
- Satisfy *strong solution concepts*

New solution concepts for rational cryptography

- (Computational) *strict* Nash; resistance to trembles
- Removing covert channels without physical assumptions
1. Rational Secret Sharing – An Overview

2. Prior Work

3. Our Protocols
1. Rational Secret Sharing – An Overview

2. Prior Work

3. Our Protocols
(Classical) t-out-of-n Secret Sharing

Dealer shares a secret s among parties P_1, \ldots, P_n

Dealer D holding s computes shares s_i; gives s_i to P_i s.t.
- any group of size $\geq t$ can reconstruct s
- any group of size $< t$ has no information about s

Shamir’s Secret Sharing

- D chooses random polynomial f of degree $t - 1$ with $f(0) = s$
- Gives (signed copy of) $s_i = f(i)$ to each party P_i
- To reconstruct, all parties simultaneously broadcast their shares
(Classical) \(t \)-out-of-\(n \) Secret Sharing

Dealer shares a secret \(s \) among parties \(P_1, \ldots, P_n \)

Dealer \(D \) holding \(s \) computes shares \(s_i \); gives \(s_i \) to \(P_i \) s.t.
- any group of size \(\geq t \) can reconstruct \(s \)
- any group of size \(< t \) has no information about \(s \)

Shamir’s Secret Sharing

- \(D \) chooses random polynomial \(f \) of degree \(t - 1 \) with \(f(0) = s \)
- Gives (signed copy of) \(s_i = f(i) \) to each party \(P_i \)
- To reconstruct, all parties simultaneously broadcast their shares
(Classical) \(t \)-out-of-\(n \) Secret Sharing

Dealer *shares* a secret \(s \) among parties \(P_1, \ldots, P_n \)

Dealer \(D \) holding \(s \) computes *shares* \(s_i \); gives \(s_i \) to \(P_i \) s.t.

- any group of size \(\geq t \) can reconstruct \(s \)
- any group of size \(< t \) has no information about \(s \)

Implicit assumption

Each party either *honest* or *corrupt*; honest parties will cooperate during the reconstruction phase
All players are rational and want to maximize their utility

Classical schemes fail in the rational setting: e.g., in Shamir’s scheme broadcasting your share is not rational
All players are rational and want to maximize their utility

Classical schemes fail in the rational setting: e.g., in Shamir’s scheme broadcasting your share is not rational

This motivates the problem of rational secret sharing [HT04, GK06, LT06, ADGH06, KN08a, KN08b, OPRV09, MS09, AL09]:

- Set of \(n \) computationally bounded parties \(P_1, \ldots, P_n \)
- **Sharing phase**: \(D \) holds random \(s \); gives share \(s_i \) to \(P_i \)
- **Reconstruction phase**: Players run protocol \(\Pi \) to reconstruct the secret
• We say that P_i learns the secret iff it outputs s
 • Takes into account the fact that the $\{P_i\}$ are computationally bounded
 • Models learning partial information about the secret

• Outcome: $(o_1, \ldots, o_n) \in \{0, 1\}^n$, with $o_i = 1$ iff P_i learned secret
We say that P_i learns the secret iff it outputs s

 - Takes into account the fact that the $\{P_i\}$ are computationally bounded
 - Models learning partial information about the secret

Outcome: $(o_1, \ldots, o_n) \in \{0, 1\}^n$, with $o_i = 1$ iff P_i learned secret

P_i’s utility: $\mu_i : \{0, 1\}^n \rightarrow \mathbb{R}$

Assumptions regarding players’ utilities:
 1. Above all, players want to learn the secret
 2. Second, they prefer as few other players as possible learn it
A strategy σ_i is a prob. poly-time interactive Turing machine

Given strategies $\sigma = (\sigma_1, \ldots, \sigma_n)$, we let $u_i(\sigma)$ denote the expected utility of P_i if each player P_j runs σ_j.

(Computational) Nash equilibrium: no efficient deviation from the protocol increases expected utility (more than a negligible amount)
A strategy σ_i is a prob. poly-time interactive Turing machine. Given strategies $\sigma = (\sigma_1, \ldots, \sigma_n)$, we let $u_i(\sigma)$ denote the expected utility of P_i if each player P_j runs σ_j.

(Computational) Nash equilibrium: no efficient deviation from the protocol increases expected utility (more than a negligible amount).

Computational Nash (2-player case)

$\Pi = (\sigma_1, \sigma_2)$ induces a computational Nash eq. iff for all efficient σ'_1

$$u_1(\sigma'_1, \sigma_2) \leq u_1(\sigma_1, \sigma_2) + \text{negl}(k)$$

(and similarly for P_2)

Insufficiently strong to rule out some naturally “bad” protocols
Several suggestions in prior work for strengthening Nash solution concept; these have problems of their own

Here, we introduce two new notions (based on suggestions in [Katz08])

- **Computational strict Nash**: detectable deviations decrease utility
 - Implies that there is a *unique* legal message at each point in the protocol — no covert channels! (An explicit goal in other work.)

- **Stability w.r.t. trembles**: best to follow protocol even if other parties may deviate (arbitrarily) with small probability

See the paper for formalizations
1. Rational Secret Sharing – An Overview

2. Prior Work

3. Our Protocols
Common Approach [HT04,GK06,...]

- Idea: Proceed in iterations; **punish** players for incorrect behavior
- In each iteration, dealer distributes shares of either
 - the real secret with some probability β
 - a fake secret otherwise
- Players broadcast their shares simultaneously
 - If a player deviates, all others stop protocol
 - If fake secret reconstructed \Rightarrow go to next iteration
- To cheat, a party has to guess the *real* iteration; thus if β is small enough it is **rational** to follow the protocol
- Online dealer can be simulated using secure MPC
Common Approach [HT04,GK06,…]

- Idea: Proceed in iterations; **punish** players for incorrect behavior
- In each iteration, dealer distributes shares of either
 - the real secret with some probability \(\beta \)
 - a **fake secret** otherwise
- Players broadcast their shares **simultaneously**
 - If a player deviates, all others stop protocol
 - If fake secret reconstructed \(\Rightarrow \) go to next iteration
- To cheat, a party has to guess the *real* iteration; thus if \(\beta \) is small enough it is **rational** to follow the protocol
- Online dealer can be simulated using secure MPC
Prior Work

Common Approach [HT04,GK06,...]

- Idea: Proceed in iterations; punish players for incorrect behavior
- In each iteration, dealer distributes shares of either
 - the real secret with some probability β
 - a fake secret otherwise
- Players broadcast their shares simultaneously
 - If a player deviates, all others stop protocol
 - If fake secret reconstructed \Rightarrow go to next iteration
- To cheat, a party has to guess the real iteration; thus if β is small enough it is rational to follow the protocol
- Online dealer can be simulated using secure MPC
Prior Work

Common Approach [HT04,GK06,...]

- **Idea**: Proceed in iterations; **punish** players for incorrect behavior
- In each iteration, dealer distributes shares of either
 - the real secret with some probability β
 - a **fake secret** otherwise
- Players broadcast their shares **simultaneously**
 - If a player deviates, all others stop protocol
 - If fake secret reconstructed \Rightarrow go to next iteration
- To cheat, a party has to guess the *real* iteration; thus if β is small enough it is **rational** to follow the protocol
- Online dealer can be simulated using secure MPC
Prior Work

Common Approach [HT04,GK06,...]

- Idea: Proceed in iterations; **punish** players for incorrect behavior
- In each iteration, dealer distributes shares of either
 - the real secret with some probability β
 - a **fake secret** otherwise
- Players broadcast their shares **simultaneously**
 - If a player deviates, all others stop protocol
 - If fake secret reconstructed \Rightarrow go to next iteration
- To cheat, a party has to guess the **real** iteration; thus if β is small enough it is **rational** to follow the protocol
- Online dealer can be simulated using secure MPC
Drawbacks of Previous Work

Using generic secure MPC is inefficient

Communication networks:
- All prior work seems to require broadcast
- Most prior work needs simultaneous broadcast
- Other work relies on physical assumptions

Kol and Naor give a protocol that does not use generic secure MPC, and does not assume simultaneous channels
Drawbacks of Previous Work

Using generic secure MPC is inefficient

Communication networks:
- All prior work seems to require broadcast
- Most prior work needs simultaneous broadcast
- Other work relies on physical assumptions

Kol and Naor give a protocol that does not use generic secure MPC, and does not assume simultaneous channels

Advantages of our protocols
- Shares of bounded length; better round complexity
- Resistance to coalitions
- No broadcast channel needed; even asynchronous networks ok
- Different solution concepts
1. Rational Secret Sharing – An Overview

2. Prior Work

3. Our Protocols
Main Ideas

Main Idea I

- Rely on same high-level structure (using real/fake iterations) as in previous work
- Previous work allows parties to recognize the real iteration as soon as it occurs
 - Inherently requires simultaneous channels
- Here, the good iteration is not identified until the following round

Fuchsbauer, Katz, Naccache (ENS, UMD) Efficient Rational Secret Sharing TCC 2010
Main Ideas

Main Idea I

- Rely on same high-level structure (using real/fake iterations) as in previous work
- Previous work allows parties to recognize the real iteration *as soon as it occurs*
 - Inherently requires *simultaneous* channels
- Here, the good iteration is not identified until the following round

Main Idea II

- Real iteration identified using *verifiable random functions* (VRFs)
 - VRFs can be replaced by trapdoor permutations
- Unique proofs ensure a unique legal message in each round
Sketch of the Protocol for $n = 2$

Sharing of $s \in \{0, 1\}^\ell$

- Choose real round $r^* \sim \text{GeomDist}(\beta)$
- Generate keys for VRF: $(pk_i, sk_i), (pk'_i, sk'_i)$ for $i \in \{1, 2\}$
- Give to P_1 (analogously for P_2):

$$(sk_1, sk'_1, pk_2, pk'_2, \text{share}_1 := F_{sk_2}(r^*) \oplus s, \text{signal}_1 := F_{sk'_2}(r^* + 1))$$
Sketch of the Protocol for $n = 2$

Sharing of $s \in \{0, 1\}^\ell$
- Choose real round $r^* \sim \text{GeomDist}(\beta)$
- Generate keys for VRF: $(pk_i, sk_i), (pk'_i, sk'_i)$ for $i \in \{1, 2\}$
- Give to P_1 (analogously for P_2):
 \[
 \left(sk_1, sk'_1, pk_2, pk'_2, \text{share}_1 := F_{sk_2}(r^*) \oplus s, \text{signal}_1 := F_{sk'_2}(r^* + 1) \right)
 \]

Reconstruction phase (P_1’s view, iteration r)
- Send $F_{sk_1}(r), F_{sk'_1}(r)$ and proofs
- Receive $y^{(r)}, z^{(r)}$ and proofs. Then:
 - If $\text{signal}_1 = z^{(r)}$ then output $s^{(r-1)} := \text{share}_1 \oplus y_2^{(r-1)}$ and halt
 - If P_2 aborted or sent incorrect proofs, output $s^{(r-1)}$ and halt
 - Otherwise, go to next iteration

Theorem
For appropriate choice of β, the above protocol induces a computational strict Nash equilibrium that is stable w.r.t. trembles.
Sketch of the Protocol for $n = 2$

Sharing of $s \in \{0, 1\}^\ell$
- Choose real round $r^* \sim \text{GeomDist}(\beta)$
- Generate keys for VRF: $(pk_i, sk_i), (pk'_i, sk'_i)$ for $i \in \{1, 2\}$
- Give to P_1 (analogously for P_2):
 $$\left(\begin{array}{c} sk_1, sk'_1, pk_2, pk'_2, \text{share}_1 := F_{sk_2}(r^*) \oplus s, \text{signal}_1 := F_{sk'_2}(r^* + 1) \end{array}\right)$$

Reconstruction phase (P_1’s view, iteration r)
- Send $F_{sk_1}(r), F_{sk'_1}(r)$ and proofs
- Receive $y^{(r)}, z^{(r)}$ and proofs. Then:
 - If $\text{signal}_1 = z^{(r)}$ then output $s^{(r-1)} := \text{share}_1 \oplus y^{(r-1)}_2$ and halt
 - If P_2 aborted or sent incorrect proofs, output $s^{(r-1)}$ and halt
 - Otherwise, go to next iteration

Theorem

For appropriate choice of β, the above protocol induces a computational strict Nash equilibrium that is stable w.r.t. trembles.
Observation: in our protocol, VRFs are only evaluated in order

Idea

- Assume f trapdoor permutation with associated hardcore bit h, let y be random in $\text{Dom}(f)$
- Define $\text{VRF}(1)$ as $h(f^{-1}(y)), \ldots, h(f^{-\ell}(y))$
 - Define $\text{VRF}(2)$ as $h(f^{-\ell-1}(y)), \ldots, h(f^{-2\ell}(y))$
 - ...
- Verifiable, since f efficiently computable
Extension to the “Exactly t-out-of-n” Case

- Dealer chooses r^*, assigns VRFs F_i, F'_i to P_i
- Makes t-out-of-n Shamir shares:
 - s_1, \ldots, s_n of s
 - z_1, \ldots, z_n of 0
- Each player P_i gets
 - s_j blinded by $F_j(r^*)$
 - z_j blinded by $F'_j(r^* + 1)$ for all j
Extension to the “Exactly \(t \)-out-of-\(n \)” Case

- Dealer chooses \(r^* \), assignes VRFs \(F_i, F'_i \) to \(P_i \)
- Makes \(t \)-out-of-\(n \) Shamir shares:
 - \(s_1, \ldots, s_n \) of \(s \)
 - \(z_1, \ldots, z_n \) of 0
- Each player \(P_i \) gets
 - \(s_j \) blinded by \(F_j(r^*) \)
 - \(z_j \) blinded by \(F'_j(r^* + 1) \) for all \(j \)
- Reconstruction
 - every player sends \(F_i(r), F'_i(r) \)
 - constructs polynomial to determine \(r^* + 1 \)
Theorem

Assume exactly t parties are active during the reconstruction phase. Then for appropriate choice of β, the above protocol induces $(t - 1)$-resilient computational strict Nash equilibrium that is stable w.r.t. trembles.

See paper for:

- Extensions of the protocol for the case when $> t$ players may be active during reconstruction
- Definitions and a protocol for the case of asynchronous networks
Thank you! 😊