The security of Mimblewimble Georg Fuchsbauer

joint work with

and Yannick Seurin

F, Orrù, Seurin: Aggregate cash systems: A cryptographic investigation of Mimblewimble. EUROCRYPT'19

F, Orrù: Non-interactive Mimblewimble transactions, revisited. (eprint 2022/265)

What is it?

- Cryptocurrency scheme
 - **Privacy** (all amounts hidden; input/output relation blurred)
 - Scalability (forget about spent tx's)

 proposed by "Tom Elvis Jedusor" in 2016

- uses ideas from Gregory Maxwell
- further developed by Andrew Poelstra

Applications

Implemented by several cryptocurrencies (... 2021):

Main **drawback**: transactions are *interactive*

2020: David Burkett, Gary Yu: Non-interactive transactions

2021: Fixed by Burkett, F, Orrù Analyzed by F, Orrù

2022: Implemented in Litecoin

Main **drawback**: transactions are *interactive*

2020: David Burkett, Gary Yu: Non-interactive

2021: Fixed by Burkett Analyzed by F, C 2022: Implemented in

Litecoin

# 🔺	Name	Price	24h %	7d %	Market Cap 🗊
1	Bitcoin BTC	\$21,476.40	▲2.55%	▲11.94%	\$410,470,600,221
2	🔶 Ethereum ETH	\$1,232.94	▲7.12%	▲ 23.12%	\$149,929,242,872
3	Tether USDT	\$0.9996	▲0.01%	▲0.08%	\$66,831,044,062
19	🔇 Uniswap UNI	\$5.57	▲3.54%	▲ 49.91%	\$4,068,846,949
20	Litecoin LTC	\$56.96	▲2.70%	▲25.81%	\$4,012,527,075
21	FTX Token FTT	\$26.90	▲5.67%	▲16.99%	\$3,636,909,514

Bitcoin • Transactions Transaction ► 6 BTC Out 2 BTC-In Out → 1 BTC 2 BTC---In 3 BTC In Transaction ion • Blockchain

 Reference to previous output

MB

$\begin{array}{l} {\rm Blockchain\ size:}\\ > 400\,{\rm GB} \end{array}$

not possible in Bitcoin:

 σ' is needed to verify validity

 \Rightarrow Mimblewimble

- CoinJoin [Maxwell'13]
 - no *link* between inputs and outputs
 - join many transactions?
 - in Bitcoin: only interactively, since all inputs must sign tx

• Confidential Transactions [Maxwell]

- hide the input and output *amounts*
- not compatible with Bitcoin system
- balancedness verifiable?

- Confider
 - hide tł
 - not co
 - balanc

• Confider

- hide tł
- not co
- balanc

Discrete logarithms

- Finite group (of prime order) $(\mathbb{G}, +)$
 - generator G

$$- xG := \underbrace{G + \ldots + G}_{x \text{ times}}$$

- **Discrete logarithm** problem:
 - given $G,H\in\mathbb{G}$
 - find \underline{x} such that $H = \underline{x}G$
- used in **signature schemes**
 - (e.g. ECDSA (1)), Schnorr (1))

- \circ secret key: x
- public key: $X = \mathbf{x}G$

Commitment

• "digital envelope"

- hiding: commitment hides v
- **binding:** Alice can open commitment only to one value

• **hiding:** for any v exists r so that C commits v

• **hiding:** for any v exists r so that C commits v:

$$(r = \log_G C - v \cdot \log_G H)$$

• **binding:** assume Alice finds $v \neq v', r, r'$ with vH + rG = C = v'H + r'G, then $\frac{r'-r}{v-v'}G = H$ \Rightarrow Alice solved discrete log problem!

• commitments are homomorphic:

 $Com(v_1; r_1) + Com(v_2; r_2) = (v_1H + r_1G) + (v_2H + r_2G)$ = $(v_1 + v_2)H + (r_1 + r_2)G$ = $Com(v_1 + v_2; r_1 + r_2)$

e.g.: Com(1;5) + Com(1;10) - Com(2,15) = 0

Confidential Transactions

[Back, Maxwell '13-'15]

- use *commitments* to amounts
- ensure that transactions do not create money?

Confidential Transactions

[Back, Maxwell '13-'15]

- use *commitments* to amounts
- ensure that transactions do not create money?

Confidential Transactions

Confidential transaction

$$C = vH + rG$$
, π

$$\sum \mathsf{Out} - \sum \mathsf{In} = \mathbf{0}$$

But: sender knows sum of output r's

$$\sum C_i^{\text{out}} - \sum C_i^{\text{in}}$$

$$= \sum (v_i^{\text{out}} H + r_i^{\text{out}} G) - \sum (v_i^{\text{in}} H + r_i^{\text{in}} G)$$

$$= (\underbrace{\sum v_i^{\text{out}} - \sum v_i^{\text{in}}}_{=0})H + (\underbrace{\sum r_i^{\text{out}} - \sum r_i^{\text{in}}}_{=:x})G$$

•
$$\sum \operatorname{Out}_1 - \sum \operatorname{In}_1 = X_1$$

• σ_1 valid for X_1

•
$$\sum \operatorname{Out}_2 - \sum \operatorname{In}_2 = X_2$$

• σ_2 valid for X_2

Non-interactive CoinJoin

Post-confirmation Cut-Through

Post-confirmation Cut-Through

"cut-through"

"cut-through"

Cut through all transactions in blockchain

•Only coinbase transactions

How are transactions actually created?

Use interactive protocol for signature under $X_1 + X_2$

[FOS19]

- Formal security models:
 - inflation-resistance
 - coin-theft-resistance
 - confidential amounts

• Abstraction of Mimblewimble from:

- homomorphic commitments 7
- compatible signatures
- simulation-extractable NIZK range proofs
- Proof that abstraction satisfies model
- Instantiations: proof that
 - Pedersen + Schnorr
 - Pedersen + (aggregate) BLS] ... satisfy joint security

... satisfying

joint security

Mimblewimble: receiver needs to interact with sender

Bitcoin: knowing receiver's address, anyone can send money

Privacy? Bitcoin:

- use every address only once \rightarrow *unlinkability*
- send address privately \rightarrow requires *interaction*

Stealth addresses:

- publish **one** address
- receive unlinkable payments non-interactively

Stealth addresses:

• publish **one** address

Stealth addresses:

- publish one address
- receive unlinkable payments

Stealth addresses

Diffie-Hellman shared key between A and R

Stealth addresses

MW with non-interactive TXs

stealth addresses for outputs

MW with non-interactive TXs

But: σ cannot sign Tx \leftarrow CoinJoin, anonymity

MW with non-interactive TXs

sig under one-time key P^\prime_3 on input

• $\sum \operatorname{Out} - \sum \ln = X$

•
$$\sigma$$
 valid for X

• rangeproofs valid

• verify
$$\sigma_i$$
's

But: no "authentication" of outputs

MW with non-interactive TXs

sig under one-time key P^\prime_3 on input

But: miner could just change P

• $\sum \operatorname{Out} - \sum \ln = X$

•
$$\sigma$$
 valid for X

- rangeproofs valid
- verify σ_i 's

•
$$\sum R_i - \sum P'_i = Y$$

• σ_Y valid for Y

MW with non-interactive TXs

[FO22]

- **Fixing** scheme with Burkett
- **Prove** properties
 - inflation-resistance
 - coin-theft-resistance
 - transaction-binding
 - transaction-privacy

assuming

- hardness of computing discrete logarithms

(and DDH for privacy)

- range proofs are extractable (and zero-knowledge)
- Schnorr is *simulation-sound* proof of knowledge of sk