COMS21400 : Time Complexity

G. Fuchsbauer

Dept of Computer Science
University of Bristol,
Room 3.53, Merchant Venturers Building

19–27 Nov 2012
Outline

Big-O and small-o Notation

Time Complexity

The Class P

The Class NP

Reductions, NP-Completeness
BIG-O and small-o notation

Classify functions by their asymptotic growth rate

Let $f, g : \mathbb{N} \to \mathbb{R}^+$

- $f(n) = O(g(n))$ if

 $$\exists c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : f(n) \leq c \cdot g(n)$$

 (“For some positive c: $f(n) \leq c \cdot g(n)$ for all sufficiently large n”)

- $f(n) = o(g(n))$ if

 $$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

 that is, $\forall c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : f(n) < c \cdot g(n)$

 (“For any positive c: $f(n) < c \cdot g(n)$ for all sufficiently large n”)

G. Fuchsbauer
COMS21400 : Time Complexity
BIG-O and small-o notation

Classify functions by their asymptotic growth rate

Let $f, g : \mathbb{N} \rightarrow \mathbb{R}^+$

- $f(n) = O(g(n))$ if
 \[\exists c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : f(n) \leq c \cdot g(n) \]
 (“For some positive c: $f(n) \leq c \cdot g(n)$ for all sufficiently large n”)

- $f(n) = o(g(n))$ if
 \[\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \]
 that is, $\forall c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : f(n) < c \cdot g(n)$
 (“For any positive c: $f(n) < c \cdot g(n)$ for all sufficiently large n”)
Examples 1

Polynomials. If \(f \) is a polynomial of degree \(k \) then

\[
\begin{align*}
 f(n) & = O(n^k) \\
 f(n) & = o(n^{k+1}), \text{ but } f \text{ is not } o(n^k)
\end{align*}
\]

- In general: if \(0 < k_1 < k_2 \) then \(n^{k_1} = o(n^{k_2}) \)
Examples 1

Polynomials. If \(f \) is a polynomial of degree \(k \) then

\[
\begin{align*}
 f(n) &= O(n^k) \\
 f(n) &= o(n^{k+1}), \text{ but } f \text{ is not } o(n^k)
\end{align*}
\]

- In general: if \(0 < k_1 < k_2 \) then \(n^{k_1} = o(n^{k_2}) \)

Logarithms.

- Recall: \(a^x = y \) then \(x = \log_a y \)

- Typically \(a = 2 \): \(\lceil \log_2 n \rceil + 1 \) is \(n \)'s length in binary

- \[
 \frac{(\log n)^k}{n^c} \xrightarrow{n \to \infty} 0 \quad \text{for all } k, c > 0
\]

thus \(\log n = o(n^k) \), for all \(k > 0 \), \(n \log n = o(n^2) \), \ldots
Exponentials. Any exponential function “dominates” any polynomial:

\[\frac{n^k}{c^n} \rightarrow 0 \quad \text{for all } k > 0, \ c > 1 \]

thus \(n^k = o(c^n) \), for any \(c > 1 \)

In general: if \(c_1 < c_2 \) then \(c_1^n = o(c_2^n) \)

Notation: \(f(n) = 2^{O(g(n))} \) iff \(\exists c > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : f(n) \leq 2^{c \cdot g(n)} \)
Outline

Big-O and small-o Notation

Time Complexity

The Class P

The Class NP

Reductions, NP-Completeness
Time complexity for TMs

Definition. Let M be a TM which halts on every input. The **running time** or **time complexity** of M is $f : \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of steps that M uses on any input of length n. (“worst-case time”)

Definition. Let $f : \mathbb{N} \rightarrow \mathbb{R}^+$. $\text{TIME}(f(n))$ is the class of all languages decided by an $O(f(n))$-time TM.
Time complexity for TMs

Definition. Let M be a TM which halts on every input. The **running time** or **time complexity** of M is $f : \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of steps that M uses on any input of length n. (“worst-case time”)

Definition. Let $f : \mathbb{N} \rightarrow \mathbb{R}^+$. $\text{TIME}(f(n))$ is the class of all languages decided by an $O(f(n))$-time TM.

Examples.

- $\text{TIME}(n)$ (linear time)
- $P := \bigcup_k \text{TIME}(n^k)$ (polynomial time)
- $\text{EXP} := \bigcup_k \text{TIME}(2^{n^k})$ (exponential time)

Gap: super-polynomial, sub-exponential ($\forall c > 1 : f(n) = o(c^n)$), e.g.: $f(n) = n^{\log n}$.
Non-deterministic Turing machines

A node • is a configuration

DTM:

Start configuration

NDTM:

q_{accept}

q_{reject}
Definition. Let N be a NTM which is a decider. The **running time** of N is $f : \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of steps that N uses on any branch of its computation on any input of length n.

Theorem. *(Time-complexity of NTM simulation.)* Every $t(n)$-time NTM N has an **equivalent** $2^{O(t(n))}$-time TM M.

(equivalent: N and M decide the same language.)
Outline

Big-O and small-o Notation

Time Complexity

The Class P

The Class NP

Reductions, NP-Completeness
The class P

$$P = \bigcup_{k} \text{TIME}(n^k)$$

- P is **robust** (not affected by model of computation)
- P is a mathematical **model** of “realistically solvable” or “tractable” problems (Cobham’s thesis)
 (caveat: running time $c \cdot n^k$ with $c \gg$ or $k \gg$)

Examples
- $\text{FACTORING} \in \?P$
 - $\text{FACTORING} = \{(N, M) | N \text{ has an integer factor } 1 < k < M\}$
 - Brute force: $O \left(2^{n/2}\right)$
 - Best known algo: $2^{O \left(n^{1/3} (\log n)^{2/3}\right)}$

PATH $\in \?P$
- $\text{PATH} = \{(G, s, t) | G \text{ is directed graph with path from } s \text{ to } t\}$
The class P

$$P = \bigcup_{k} \text{TIME}(n^k)$$

- P is **robust** (not affected by model of computation)
- P is a mathematical **model** of “realistically solvable” or “tractable” problems (Cobham’s thesis)

 (caveat: running time $c \cdot n^k$ with $c \gg$ or $k \gg$)

Examples

- **FACTORING $\in P$**

 $(\text{FACTORING} = \{(N, M) \mid N \text{ has an integer factor } 1 < k < M\})$

 Brute force: $O(2^{n/2})$. Best known algo: $2^{O(n^{1/3}(\log n)^{2/3})}$
The class P

\[P = \bigcup_{k} \text{TIME}(n^k) \]

- P is **robust** (not affected by model of computation)
- P is a mathematical **model** of “realistically solvable” or “tractable” problems (Cobham’s thesis)

 (caveat: running time $c \cdot n^k$ with $c \gg$ or $k \gg$)

Examples

- **FACTORING** $\in P$

 \[\text{FACTORING} = \{(N, M) \mid N \text{ has an integer factor } 1 < k < M\} \]

 Brute force: $O(2^{n/2})$. Best known algo: $2^{O(n^{1/3}(\log n)^{2/3})}$

- **PATH** $\in P$

 \[\text{PATH} = \{((G, s, t) \mid G \text{ is directed graph w/ path from } s \text{ to } t}\} \]
Examples

- V is a polynomial time verifier if V runs in poly time in the length of w (note: not it's full input (w, c)!). In this case V can access only poly many squares so the certificates have only poly length too (without loss of generality).

- A language A is polynomially verifiable if it has a poly time verifier.

Definition: NP is the class of all polynomially verifiable languages ("languages with short certificates").

Intuitively $P = \text{class of languages that can be decided}" \text{"quickly";}$ NP = class of languages that can be verified "quickly."

Example Hamiltonian path (cf Sipser p268-9). A Hamiltonian path from vertex s to vertex t in a directed graph G is a path that goes through every vertex exactly once.

The computational task $\text{HAMPATH}(G, s, t)$ is defined to accept iff G has a Hamiltonian path from s to t. It is easy to check if a given path from s to t is Hamiltonian or not but it is hard to decide if such a path exists or not – there can be generally exponentially many paths in a graph between two given vertices for a brute force search. For example, is there a Hamiltonian path from s to t in the following graph?

\[\begin{array}{c}
\text{s} \\
\text{u} \\
\text{t} \\
\end{array} \]

In the case of the ordinary path problem, $\text{PATH}(G, s, t)$ (cf INSERT1), we are also faced with a potential search over exponentially many paths but there was a cleverer approach leading to a poly time algorithm. No such cleverer approach is known for HAMPATH (e.g. in contrast to PATH it no longer suffices to remember just where you currently are on the path being tested). However HAMPATH is in NP – if G has a Hamiltonian path from s to t then the certificate c is just a description of this path and the (poly time) verifier $V(G, s, t, c)$ simply checks that c really is Hamiltonian, starts at s and ends at t. If $s = t$ we are asking if a graph G has a closed circuit passing through each vertex exactly once. This computational task is called $\text{HAMCIRCUIT}(G)$ and it is similarly in NP (and not known or believed to be in P).

- It is obvious that $P \subseteq \text{NP}$. (Why?)

- co-NP is the class of all complements $\Sigma^* - A$ of languages A in NP. (cf exercise sheet 1 for P vs. co-P). Note that in general if membership of A has short certificates, we do not obviously get short certificates for non-membership in A!! (Why?) Indeed it is not known whether $\text{NP} = \text{co-NP}$ or not (but generally believed not equal).
• V is a polynomial time verifier if V runs in poly time in the length of w (note: not its full input (w, c)!). In this case V can access only poly many squares so the certificates have only poly length too (without loss of generality).

• A language A is polynomially verifiable if it has a poly time verifier.

Definition: NP is the class of all polynomially verifiable languages (“languages with short certificates”).

Intuitively $P = \text{class of languages that can be decided “quickly”}$; $NP = \text{class of languages that can be verified “quickly”}$.

Example: Hamiltonian path (cf Sipser p268-9). A Hamiltonian path from vertex s to vertex t in a directed graph G is a path that goes through every vertex exactly once.

The computational task $HAMPATH(G, s, t)$ is defined to accept iff G has a Hamiltonian path from s to t. It is easy to check if a given path from s to t is Hamiltonian or not but it is hard to decide if such a path exists or not – there can be generically exponentially many paths in a graph between two given vertices for a brute force search. For example, is there a Hamiltonian path from s to t in the following graph?

In the case of the ordinary path problem, $PATH(G, s, t)$ (cf INSERT1), we are also faced with a potential search over exponentially many paths but there was a cleverer approach leading to a poly time algorithm. No such cleverer approach is known for $HAMPATH$ (e.g. in contrast to $PATH$ it no longer suffices to remember just where you currently are on the path being tested). However $HAMPATH$ is in NP – if G has a Hamiltonian path from s to t then the certificate c is just a description of this path and the (poly time) verifier $V(G, s, t, c)$ simply checks that c really is Hamiltonian, starts at s and ends at t. If $s = t$ we are asking if a graph G has a closed circuit passing through each vertex exactly once. This computational task is called $HAMCIRCUIT(G)$ and it is similarly in NP (and not known or believed to be in P).

• It is obvious that $P \subseteq NP$. (Why?)

• $co-NP$ is the class of all complements $\Sigma^* - A$ of languages A in NP. (cf exercise sheet 1 for P vs. $co-P$). Note that in general if membership of A has short certificates, we do not obviously get short certificates for non-membership in A!! (Why?) Indeed it is not known whether $NP = co-NP$ or not (but generally believed not equal).

$HAMPATH = \{(G, s, t) | G \text{ is directed graph with a Hamiltonian path from } s \text{ to } t\}$
Examples

- **HAMPATH** = \{ (G, s, t) | G is directed graph with a Hamiltonian path from s to t \}

- Easy to check that \((G, s, t) \in HAMPATH \) when given a path; easy to check that \((N, M) \in FACTORING \) when given a factor ...
Examples

\[HAMPATH = \{(G, s, t) \mid G \text{ is directed graph with a Hamiltonian path from } s \text{ to } t\} \]

Easy to check that \((G, s, t) \in HAMPATH\) when given a path; easy to check that \((N, M) \in FACTORING\) when given a factor ...

Many computational problems

- can be solved by brute-force, testing exp. many candidates.
- Verification of desired property on a candidate is easy.
Outline

Big-O and small-o Notation

Time Complexity

The Class P

The Class NP

Reductions, NP-Completeness
The class NP

Polynomial-time verifiers

A verifier for a language A is a TM V, s.t.

$$A = \{ w \mid V \text{ accepts } (w, c) \text{ for some } c \}.$$

The string c is called a certificate or proof of membership in A.

G. Fuchsbauer
COMS21400 : Time Complexity
The class NP

Polynomial-time verifiers

- A **verifier** for a language A is a TM V, s.t.

 $$A = \{w \mid V \text{ accepts } (w, c) \text{ for some } c\}.$$

 The string c is called a **certificate** or **proof** of membership in A.

- V is a **polynomial-time verifier** if runs in polynomial time in the length of w.

G. Fuchsbauer
COMS21400 : Time Complexity
The class NP

Polynomial-time verifiers

- A **verifier** for a language A is a TM V, s.t.
 \[
 A = \{ w \mid V \text{ accepts } (w, c) \text{ for some } c \}.
 \]

 The string c is called a **certificate** or **proof** of membership in A.

- V is a **polynomial-time verifier** if runs in polynomial time in the length of w.

Definition. **NP** is the class of all **polynomially verifiable languages** i.e., all languages which have a polynomial-time verifier.
More on NP

\[P = \text{class of languages that can be decided \textbf{“quickly”}} \]

\[NP = \text{class of languages that can be verified \textbf{“quickly”}} \]

\[P \subseteq NP \quad (\rightarrow \text{problems class}) \]
More on NP

P = class of languages that can be \textit{decided} “quickly”
NP = class of languages that can be \textit{verified} “quickly”

\begin{itemize}
 \item P \subseteq NP \quad (\rightarrow \text{problems class})
\end{itemize}

\textbf{Definition}. For a class of languages \(C \), we define \(\text{co-C} \) as the class of all complements \(\overline{A} \) of languages \(A \) in \(C \).

\begin{itemize}
 \item P = \text{co-P} \quad (\rightarrow \text{problems class})
 \item NP \neq \text{co-NP}
\end{itemize}
More on NP

\[P = \text{class of languages that can be decided “quickly”} \]
\[NP = \text{class of languages that can be verified “quickly”} \]

\[P \subseteq NP \quad (\rightarrow \text{problems class}) \]

Definition. For a class of languages \(C \), we define \(\text{co-}C \) as the class of all complements \(\overline{A} \) of languages \(A \) in \(C \).

\[P = \text{co-P} \quad (\rightarrow \text{problems class}) \]
\[NP \neq \text{co-NP} \]

Examples.
- \(HAMPATH \in NP \)
- \(COMPOSITES = \{ x \mid x = pq, \text{ for integers } p, q > 1 \} \in NP \)
- \(PRIMES \in \text{co-NP} \)

Actually: \(PRIMES \in NP \) (not obvious)
\(PRIMES \in P \) (shown in 2003)
More on NP

\[P = \text{class of languages that can be decided "quickly"} \]
\[NP = \text{class of languages that can be verified "quickly"} \]

- \[P \subseteq NP \ (\rightarrow \text{problems class}) \]

Definition. For a class of languages \(C \), we define \(\text{co-C} \) as the class of all complements \(\overline{A} \) of languages \(A \) in \(C \).

- \[P = \text{co-P} \ (\rightarrow \text{problems class}) \]
- \[NP \not\subseteq \text{co-NP} \]

Examples. \(\text{HAMPATH} \inNP \)

- \(\text{COMPOSITES} = \{ x \mid x = pq, \text{for integers } p, q > 1 \} \in NP \)
- \(\text{PRIMES} \in \text{co-NP} \)

Actually: \(\text{PRIMES} \in NP \) (not obvious)

\(\text{PRIMES} \in P \) (shown in 2003)
The name NP

Theorem. A language is in NP iff it is decided by some polynomial-time NTM.

Corollary. NP ⊆ EXP (by the theorem on Slide 9).
The name NP

Theorem. A language is in NP iff it is decided by some polynomial-time NTM.

Corollary. $\text{NP} \subseteq \text{EXP}$ (by the theorem on Slide 9).

$\text{P} \neq \text{NP}$

“Can every problem whose solution is quickly verifiable be solved quickly?”

- Implications?
The SATisfiability problem

- **Boolean variables:** x take values 1 (TRUE) or 0 (FALSE)
- **Boolean operations:** AND ($x_1 \land x_2$), OR ($x_1 \lor x_2$), NOT (\overline{x})
- **Boolean formulas:** e.g. $\phi = (\overline{x}_1 \land x_2) \lor ((x_1 \land \overline{x}_3) \lor x_2)$

A boolean formula is satisfiable if there exists an assignment of 0's and 1's to the variables, s.t. the formula evaluates to 1. (Formula with n variables has 2^n possible assignments)

$\text{SAT} := \{ \langle \phi \rangle | \phi \text{ is a satisfiable Boolean formula} \}$

$\text{SAT} \in \text{NP}$, $\text{SAT} \in \text{co-NP}$

Theorem. (Cook-Levin) $\text{SAT} \in \text{P}$ iff $\text{P} = \text{NP}$
The SATisfiability problem

- **Boolean variables:** x take values 1 (TRUE) or 0 (FALSE)
- **Boolean operations:** AND ($x_1 \land x_2$), OR ($x_1 \lor x_2$), NOT (\overline{x})
- **Boolean formulas:** e.g. $\phi = (\overline{x}_1 \land x_2) \lor ((x_1 \land \overline{x}_3) \lor x_2)$

A boolean formula is **satisfiable** if there exists an assignment of 0’s and 1’s to the variables, s.t. the formula evaluates to 1.

(Formula with n variables has 2^n possible assignments)
The SATisfiability problem

- **Boolean variables**: \(x \) take values 1 (TRUE) or 0 (FALSE)
- **Boolean operations**: AND \((x_1 \land x_2)\), OR \((x_1 \lor x_2)\), NOT \((\overline{x})\)
- **Boolean formulas**: e.g. \(\phi = (\overline{x}_1 \land x_2) \lor ((x_1 \land \overline{x}_3) \lor x_2) \)

A boolean formula is **satisfiable** if there exists an assignment of 0’s and 1’s to the variables, s.t. the formula evaluates to 1.

(Formula with \(n \) variables has \(2^n \) possible assignments)

\[SAT := \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \} \]

- \(SAT \in NP \), \(SAT \not\in \text{co-NP} \)
The SATisfiability problem

- **Boolean variables**: x take values 1 (TRUE) or 0 (FALSE)
- **Boolean operations**: AND $(x_1 \land x_2)$, OR $(x_1 \lor x_2)$, NOT (\overline{x})
- **Boolean formulas**: e.g. $\phi = (\overline{x}_1 \land x_2) \lor ((x_1 \land \overline{x}_3) \lor x_2)$

A boolean formula is **satisfiable** if there exists an assignment of 0’s and 1’s to the variables, s.t. the formula evaluates to 1.

(Formula with n variables has 2^n possible assignments)

\[
\text{SAT} := \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula} \}
\]

- $\text{SAT} \in \text{NP}$, $\text{SAT} \not\in \text{co-NP}$

Theorem. (*Cook-Levin*)

\[
\text{SAT} \in \text{P} \iff \text{P} = \text{NP}
\]
Outline

Big-O and small-o Notation

Time Complexity

The Class P

The Class NP

Reductions, NP-Completeness
Reducibility

Informally: If A reduces to B then B is “harder” than A (cf. undecidability)

Definition.

A language A is polynomial-time reducible to B if there is a poly-time computable $f: \Sigma^* \rightarrow \Sigma^*$ with $w \in A$ iff $f(w) \in B$.

We write $A \leq_p B$.

Theorem. If $A \leq_p B$ and $B \in P$ then $A \in P$.
Reducibility

Informally: If A reduces to B then B is “harder” than A (cf. undecidability)

Definition. $f : \Sigma^* \rightarrow \Sigma^*$ is **polynomial-time computable** if there is a poly-time TM, which on input w halts with $f(w)$ on its tape.
Reducibility

Informally: If A reduces to B then B is “harder” than A (cf. undecidability)

Definition. $f : \Sigma^* \rightarrow \Sigma^*$ is polynomial-time computable if there is a poly-time TM, which on input w halts with $f(w)$ on its tape.

Definition. A language A is polynomial-time reducible to B if there is a poly-time computable $f : \Sigma^* \rightarrow \Sigma^*$ with

$$w \in A \iff f(w) \in B$$

We write $A \leq_p B$.

G. Fuchsbauer
COMS21400 : Time Complexity
Reducibility

Informally: If A reduces to B then B is “harder” than A (cf. undecidability)

Definition. $f : \Sigma^* \rightarrow \Sigma^*$ is **polynomial-time computable** if there is a poly-time TM, which on input w halts with $f(w)$ on its tape.

Definition. A language A is **polynomial-time reducible** to B if there is a poly-time computable $f : \Sigma^* \rightarrow \Sigma^*$ with

$$w \in A \iff f(w) \in B$$

We write $A \leq_p B$.

Theorem. If $A \leq_p B$ and $B \in P$ then $A \in P$.
NP-completeness

Definition. A language B is **NP-complete** if

- $B \in \text{NP}$, and
- every A in NP is polynomial-time reducible to B

(*NP-complete problems are the “hardest” problems in NP*)
Definition. A language B is **NP-complete** if
- $B \in \text{NP}$, and
- every A in NP is polynomial-time reducible to B

(*NP-complete problems are the “hardest” problems in NP*)

Theorem. If B is NP-complete and $B \in \text{P}$ then $\text{P} = \text{NP}$.
Definition. A language B is **NP-complete** if

- $B \in \text{NP}$, and
- every A in NP is polynomial-time reducible to B

($\text{NP-complete problems are the “hardest” problems in NP}$)

Theorem. If B is NP-complete and $B \in \text{P}$ then $\text{P} = \text{NP}$.

Theorem. If B is NP-complete and $B \leq_p C$, for $C \in \text{NP}$, then C is NP-complete.
Definition. A language B is **NP-complete** if

- $B \in \text{NP}$, and
- every A in NP is polynomial-time reducible to B

$(\text{NP-complete problems are the “hardest” problems in } \text{NP})$

Theorem. If B is NP-complete and $B \in \text{P}$ then $\text{P} = \text{NP}$.

Theorem. If B is NP-complete and $B \leq_p C$, for $C \in \text{NP}$, then C is NP-complete.

Theorem. *(Cook-Levin, restated)* SAT is NP-complete.
3-SAT

- **Literal:** x or \overline{x}
- **Clause:** Disjunction of literals, e.g. $(x_1 \lor \overline{x}_2 \lor x_3)$
- ϕ is in **conjunctive normal form** if ϕ is a conjunction of clauses
- **3-CNF formula:** A CNF formula with all clauses having 3 literals, e.g. $(x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_2 \lor \overline{x}_5 \lor x_6) \land (x_3 \lor \overline{x}_6 \lor x_4)$.

Theorem. 3-SAT is NP-complete.
3-SAT

- **Literal**: x or \overline{x}
- **Clause**: Disjunction of literals, e.g. $(x_1 \lor \overline{x}_2 \lor x_3)$
- ϕ is in **conjunctive normal form** if ϕ is a conjunction of clauses
- **3-CNF formula**: A CNF formula with all clauses having 3 literals, e.g. $(x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_2 \lor \overline{x}_5 \lor x_6) \land (x_3 \lor \overline{x}_6 \lor x_4)$.

$3\text{-SAT} := \{\langle \phi \rangle \mid \phi \text{ is a satisfiable 3-CNF formula}\}$
3-SAT

- **Literal**: x or \overline{x}
- **Clause**: Disjunction of literals, e.g. $(x_1 \lor \overline{x}_2 \lor x_3)$
- ϕ is in **conjunctive normal form** if ϕ is a conjunction of clauses
- **3-CNF formula**: A CNF formula with all clauses having 3 literals, e.g. $(x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_2 \lor \overline{x}_5 \lor x_6) \land (x_3 \lor \overline{x}_6 \lor x_4)$.

3-$SAT := \{(\phi) \mid \phi$ is a satisfiable 3-CNF formula$\}$

Theorem. 3-SAT is NP-complete.
More NP-complete languages

A k-clique in a graph is a set of k nodes in which every two nodes are connected by an edge.

$CLIQUE := \{(G, k) \mid G$ is an undirected graph with a k-clique$\}$
More NP-complete languages

A k-clique in a graph is a set of k nodes in which every two nodes are connected by an edge.

$$CLIQUE := \{(G, k) \mid G \text{ is an undirected graph with a } k\text{-clique}\}$$

Theorem. $CLIQUE$ is NP-complete.
More NP-complete languages

A \textit{k-clique} in a graph is a set of \(k \) nodes in which every two nodes are connected by an edge.

\[
\text{CLIQUE} := \{(G, k) \mid G \text{ is an undirected graph with a } k-\text{clique}\}
\]

Theorem. \textit{CLIQUE} is NP-complete.

More NP-complete languages:

- \textit{HAMPATH}
More NP-complete languages

A k-clique in a graph is a set of k nodes in which every two nodes are connected by an edge.

$$CLIQUE := \{(G, k) \mid G \text{ is an undirected graph with a } k\text{-clique}\}$$

Theorem. $CLIQUE$ is NP-complete.

More NP-complete languages:

- **HAMPATH**
- **SUBSET-SUM** = $\{\{x_1, \ldots, x_k\} \mid$ for some $\{y_1, \ldots, y_\ell\} \subseteq \{x_1, \ldots, x_k\}$ we have: $\sum y_i = 0\}$