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This work

• show that efficient fixes are flawed
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Subversion-resistant proofs

Prover: x,w Verifier: x

π

Subversion WI:

π[w] ≈ π[w′]

crs

[BFS’16]
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Zero-knowledge contingent payments

crs

Subversion zero-knowledge?Seller: s

• Campanelli, Gennaro, Goldfeder, Nizzardo (CCS’17)

show CRS-subversion attack:

⇒ obtain information on s

Enck(s), H(k), π
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“Minimal checks”

Subversion-zk SNARKs [F’18]

Our attack:
• change “i-th” CRS element =⇒ proofs valid iff wi = 0

→→ breaks subversion-WI

→ consistency of all elements must be checked

“minimal checks”

• “if certain CRS elements non-zero then WI even under malicious CRS”

> 1 hour• check of all CRS elements using pairings (elliptic curves)

[CGGN’17]
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c, y, π

Buyer: BTC

crs

Claim Attack: WI is not enough

Proof: Prove′: • s := Deck(c)

• if V (s) = 1 then return π‖s
• return π‖0

Seller: s

π: I know k s.t.

V (Deck(c)) = 1 and y = H(k)

or V (Deck(c)) = 0 and y = H ′(k)

clawfreeness:
hard to find k0, k1 :
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Conclusion

• zk contingent payments and

• zk contingent service payments

require subversion-ZK proofs

• costly CRS checks necessary

even for subversion WI

(subversion) WI is not enough

“minimal checks” are not enough



QUESTIONS?

THANK YOU!


