
CCS’19

London, 12 November 2019

WI is Not Enough

Zero-Knowledge Contingent (Service) Payments

Revisited

Georg Fuchsbauer



Overview

Zero-knowledge contingent payments

fair exchange of goods for Bitcoin

• proposed by Maxwell 2011

• implemented by Bowe and Maxwell 2016

Campanelli, Gennaro, Goldfeder and Nizzardo (CCS’17)

• showed attack

• proposed efficient fixes



Overview

Zero-knowledge contingent payments

fair exchange of goods for Bitcoin

• proposed by Maxwell 2011

• implemented by Bowe and Maxwell 2016

Campanelli, Gennaro, Goldfeder and Nizzardo (CCS’17)

• showed attack

• proposed efficient fixes

This work

• show that efficient fixes are flawed



Fair exchange

Seller Buyer



Fair exchange

Seller Buyer



Fair exchange

Seller

impossible without trusted party

Buyer



Fair exchange of digital goods

Buyer: BTCSeller



Fair exchange of digital goods

Buyer: BTCSeller
s such that V (s) = 1

s

V (·) = ?



Fair exchange of digital goods

Seller
s such that V (s) = 1

s

V (·) = ?

leverage trust in blockchain?

Buyer: BTC



Smart contracts

Seller

Ethereum:
Turing-compl. language

Buyer: ETH



Smart contracts

pay whoever
presents s
such that
V (s) = 1

contract

Ethereum:
Turing-compl. language

Seller Buyer: ETH



Smart contracts

contract

Ethereum:
Turing-compl. language

Seller Buyer: ETH

s

pay whoever
presents s
such that
V (s) = 1



Smart contracts

s

pay

Ethereum:
Turing-compl. language

Seller Buyer: ETH

contract

pay whoever
presents s
such that
V (s) = 1



Smart contracts

s

pay

Ethereum:
Turing-compl. language

Seller Buyer: ETH

expensive for
complex V (·)

contract

pay whoever
presents s
such that
V (s) = 1



Smart contracts

s

pay

Ethereum:
Turing-compl. language

Seller Buyer: ETH

expensive for
complex V (·)

contract

pay whoever
presents s
such that
V (s) = 1

solution
public



Bitcoin

Buyer: BTC

Bitcoin:
restricted scripting language
e.g. Pay-to-PubkeyHash

Seller



Bitcoin

Buyer: BTC

Bitcoin:
restricted scripting language
e.g. Pay-to-PubkeyHash

pay whoever
presents x
such that
H(x) = y

contract

SHA-256

Seller



Zero-knowledge contingent payments

Seller: s Buyer: BTC

[Maxwell’11]



Zero-knowledge contingent payments

Seller: s Buyer: BTC

Enck(s), y = H(k)



Zero-knowledge contingent payments

Buyer: BTC

pay whoever
presents x
such that
H(x) = y

contract
Seller: s

Enck(s), y = H(k)



Zero-knowledge contingent payments

Buyer: BTC

pay whoever
presents x
such that
H(x) = y

contract

k
Seller: s

Enck(s), y = H(k)



Zero-knowledge contingent payments

Buyer: BTC

pay whoever
presents x
such that
H(x) = y

contract
Seller: s

Enck(s), y = H(k)

k



Zero-knowledge contingent payments

Buyer: BTC

pay whoever
presents x
such that
H(x) = y

contract

proof π

Seller: s

Enck(s), y = H(k)

k



Non-interactive proofs

Prover: x,w Verifier: x

π

X/×

→ I know a witness w

for statement x



Non-interactive proofs

Prover: x,w Verifier: x

π

Zero knowledge:

nothing is revealed about w

→ I know a witness w

for statement x

[GMR’85, BFM’88]



Non-interactive proofs

Prover: x,w Verifier: x

π

Zero knowledge:

nothing is revealed about w

common reference string
generated by trusted party

crs

[GMR’85, BFM’88]



Non-interactive proofs

Prover: x,w Verifier: x

Witness-indistinguishability:

π[w] ≈ π[w′]

π

crs

[FS’90]

common reference string
generated by trusted party



Subversion-resistant proofs

Prover: x,w Verifier: x

π

crs

Subversion zero knowledge:

nothing is revealed about w

[BFS’16]



Subversion-resistant proofs

Prover: x,w Verifier: x

π

Subversion WI:

π[w] ≈ π[w′]

crs

[BFS’16]



Zero-knowledge SNARKs

• used in [BCGGMTV’14]

• fully anonymous cryptocurrency

• most efficient general NIZK proofs

• Succinct Non-interactive ARgument of Knowledge [GGPR’13]



Zero-knowledge SNARKs

• used in [BCGGMTV’14]

• fully anonymous cryptocurrency

• zk-SNARKs can be made

subversion-zero-knowlege [F’18]

if prover checks well-formedness of CRS

• most efficient general NIZK proofs

• Succinct Non-interactive ARgument of Knowledge [GGPR’13]



Zero-knowledge contingent payments

Seller: s Buyer: BTC

Enck(s), H(k), π

Subversion zero-knowledge

SNARK



Zero-knowledge contingent payments

Seller: s Buyer: BTC

crs ??

Subversion zero-knowledge

SNARK

Enck(s), H(k), π



Zero-knowledge contingent payments

Buyer: BTC

crs

Seller: s

Enck(s), H(k), π



Zero-knowledge contingent payments

crs

Subversion zero-knowledge?Seller: s

Enck(s), H(k), π



Zero-knowledge contingent payments

crs

Subversion zero-knowledge?Seller: s

• Campanelli, Gennaro, Goldfeder, Nizzardo (CCS’17)

show CRS-subversion attack:

⇒ obtain information on s

Enck(s), H(k), π



Proposed fixes

• use subversion-zk SNARKs [F’18]

• use MPC to compute CRS [BGG’18]

Fixes proposed by [CGGN’17]:



Proposed fixes

• use subversion-zk SNARKs [F’18]

• use MPC to compute CRS [BGG’18]

> 1 hour

> 3 hours

1 minute)(original pay-to-sudoku:

Fixes proposed by [CGGN’17]:



Proposed fixes

• use subversion-zk SNARKs [F’18]

• use MPC to compute CRS [BGG’18]

> 1 hour

> 3 hours

1 minute)(original pay-to-sudoku:

• “minimal checks” to achieve subversion-WI

• new protocol from subversion-WI proofs (2 minutes)

Fixes proposed by [CGGN’17]:



Proposed fixes

• use subversion-zk SNARKs [F’18]

• use MPC to compute CRS [BGG’18]

> 1 hour

> 3 hours

1 minute)(original pay-to-sudoku:

• “minimal checks” to achieve subversion-WI

• new protocol from subversion-WI proofs (2 minutes)

Fixes proposed by [CGGN’17]:



“Minimal checks”

Subversion-zk SNARKs [F’18]

> 1 hour• check of all CRS elements using pairings (elliptic curves)



“Minimal checks”

Subversion-zk SNARKs [F’18]

> 1 hour

[CGGN’17]

“minimal checks”

• “if certain CRS elements non-zero then WI even under malicious CRS”

• check of all CRS elements using pairings (elliptic curves)



“Minimal checks”

Subversion-zk SNARKs [F’18]

Our attack:
• change “i-th” CRS element =⇒ proofs valid iff wi = 0

“minimal checks”

• “if certain CRS elements non-zero then WI even under malicious CRS”

> 1 hour• check of all CRS elements using pairings (elliptic curves)

[CGGN’17]



“Minimal checks”

Subversion-zk SNARKs [F’18]

Our attack:
• change “i-th” CRS element =⇒ proofs valid iff wi = 0

→→ breaks subversion-WI

→ consistency of all elements must be checked

“minimal checks”

• “if certain CRS elements non-zero then WI even under malicious CRS”

> 1 hour• check of all CRS elements using pairings (elliptic curves)

[CGGN’17]



Zero-knowledge contingent payments

c, y, π

Seller: s Buyer: BTC

crs

π: I know k s.t.

V (Deck(c)) = 1 and y = H(k)



Zero-knowledge contingent payments

c, y, π

Buyer: BTC

crs

what if buyer only wants to know if solution exists?

e.g. seller makes proof that it stores client’s data

Seller: s

π: I know k s.t.

V (Deck(c)) = 1 and y = H(k)



Zero-knowledge contingent payments

c, y, π

Buyer: BTC

crs

what if buyer only wants to know if solution exists?

e.g. seller makes proof that it stores client’s data

π is proof of existence/retrievability, . . .

Seller: s

π: I know k s.t.

V (Deck(c)) = 1 and y = H(k)



Zero-knowledge contingent service payments

c, y, π

Buyer: BTC

crs

π: I know k s.t.

V (Deck(c)) = 1 and y = H(k)

or V (Deck(c)) = 0 and y = H ′(k)Seller: s

[CGGN’17]



Zero-knowledge contingent service payments

c, y, π

Buyer: BTC

crs

as before

Seller: s

π: I know k s.t.

V (Deck(c)) = 1 and y = H(k)

or V (Deck(c)) = 0 and y = H ′(k)



Zero-knowledge contingent service payments

c, y, π

Buyer: BTC

crs

as before

no solution, no payment!

Seller: s

π: I know k s.t.

V (Deck(c)) = 1 and y = H(k)

or V (Deck(c)) = 0 and y = H ′(k)



Zero-knowledge contingent service payments

c, y, π

Buyer: BTC

crs

as before

no solution, no payment! clawfreeness:
hard to find k0, k1 :
H ′(k0) = H(k1)

Seller: s

π: I know k s.t.

V (Deck(c)) = 1 and y = H(k)

or V (Deck(c)) = 0 and y = H ′(k)



Zero-knowledge contingent service payments

c, y, π

Buyer: BTC

crs

Claim [CGGN’17]: π only needs to be WI

Seller: s

π: I know k s.t.

V (Deck(c)) = 1 and y = H(k)

or V (Deck(c)) = 0 and y = H ′(k)

clawfreeness:
hard to find k0, k1 :
H ′(k0) = H(k1)



Zero-knowledge contingent service payments

c, y, π

Buyer: BTC

crs

Claim Attack: WI is not enough

Seller: s

π: I know k s.t.

V (Deck(c)) = 1 and y = H(k)

or V (Deck(c)) = 0 and y = H ′(k)

clawfreeness:
hard to find k0, k1 :
H ′(k0) = H(k1)



Zero-knowledge contingent service payments

c, y, π

Buyer: BTC

crs

Claim Attack: WI is not enough

Proof: Prove′: • s := Deck(c)

• if V (s) = 1 then return π‖s
• return π‖0

Seller: s

π: I know k s.t.

V (Deck(c)) = 1 and y = H(k)

or V (Deck(c)) = 0 and y = H ′(k)

clawfreeness:
hard to find k0, k1 :
H ′(k0) = H(k1)



Conclusion

• zk contingent payments and

• zk contingent service payments

require subversion-ZK proofs

• costly CRS checks necessary

even for subversion WI

(subversion) WI is not enough

“minimal checks” are not enough



QUESTIONS?

THANK YOU!


