Automorphic Signatures in Bilinear Groups

Georg Fuchsbauer

École normale supérieure

UCL, 23.03.2010
1. Motivation: Anonymous Proxy Signatures

2. Groth-Sahai Witness-Indistinguishable Proofs

3. Automorphic Signatures
Motivation: Anonymous Proxy Signatures

Groth-Sahai Witness-Indistinguishable Proofs

Automorphic Signatures
Anonymous Consecutive Delegation of Signing Rights

F, Pointcheval: Anonymous Proxy Signatures [SCN’08]

Delegation
A delegator delegates his signing rights to a proxy signer (or delegatee) who can then sign on the delegator’s behalf.

Consecutiveness
A delegatee may re-delegate the received signing rights ⇒ intermediate delegators

Anonymity
All intermediate delegates and the proxy signer remain anonymous.
Anonymous Consecutive Delegation of Signing Rights

F, Pointcheval: Anonymous Proxy Signatures [SCN’08]

Delegation
A delegator delegates his signing rights to a proxy signer (or delegatee) who can then sign on the delegator’s behalf.

Consecutiveness
A delegatee may re-delegate the received signing rights ⇒ intermediate delegators.

Anonymity
All intermediate delegators and the proxy signer remain anonymous.

After verifying a proxy signature one knows that someone entitled signed but nothing more.
Anonymous Consecutive Delegation of Signing Rights

<table>
<thead>
<tr>
<th>Delegation</th>
<th>A delegator delegates his signing rights to a proxy signer (or delegatee) who can then sign on the delegator’s behalf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consecutiveness</td>
<td>A delegatee may re-delegate the received signing rights ⇒ intermediate delegators.</td>
</tr>
<tr>
<td>Anonymity</td>
<td>All intermediate delegators and the proxy signer remain anonymous.</td>
</tr>
</tbody>
</table>
Anonymous Consecutive Delegation of Signing Rights

F. Pointcheval: Anonymous Proxy Signatures [SCN'08]

Delegation
A delegator delegates his signing rights to a proxy signer (or delegatee) who can then sign on the delegator's behalf.

Consecutiveness
A delegatee may re-delegate the received signing rights ⇒ intermediate delegates.

Anonymity
All intermediate delegates and the proxy signer remain anonymous.

After verifying a proxy signature one knows that someone entitled signed but nothing more.
Application: GRID computing

User authenticates herself and starts process which needs to authenticate to resources / start subprocesses
⇒ Delegation and re-delegation of signing rights
No need to know that it was not the user herself to be authenticated

Relation to Other Primitives

Anonymous proxy signatures are a generalization of
- Proxy signatures (consecutive delegation)
 formalized by [BPW03]
- (Dynamic) group signatures (anonymity)
 formalized by [BSZ05]
and satisfy the respective security notions.
Application: GRID computing

User authenticates herself and starts process which needs to authenticate to resources / start subprocesses

⇒ Delegation and re-delegation of signing rights

No need to know that it was not the user herself to be authenticated

Relation to Other Primitives

Anonymous proxy signatures are a generalization of

- **Proxy signatures** (consecutive delegation)
 formalized by [BPW03]

- **(Dynamic) group signatures** (anonymity)
 formalized by [BSZ05]

and satisfy the respective security notions.
Application: GRID computing

User authenticates herself and starts process which needs to authenticate to resources / start subprocesses

⇒ Delegation and re-delegation of signing rights

No need to know that it was not the user herself to be authenticated

Relation to Other Primitives

Anonymous proxy signatures are a generalization of

- **Proxy signatures** (consecutive delegation)
 formalized by [BPW03]

- **(Dynamic) group signatures** (anonymity)
 formalized by [BSZ05]

and satisfy the respective security notions.

- more recently: **Delegatable Anonymous Credentials** [BCCKLS09]
Group public key: \(pk \)

- **Issuer** \((ik)\)
- **Opener** \((ok)\)
- **Reg**
- **Group members** \((sk_i)\)

Verification: \(\text{Verify}(pk, \text{msg}, \sigma) = 1 \)
Proxy Signatures

Delegator \((pk_D)\)

delegate

Delegatee/Signer

\[\text{Verify}(pk_D, \text{msg}, \sigma)\]
Proxy Signatures, Consecutive Delegations

Delegator \((pk_D)\)

Delegator 2

Delegator 3

Proxy Signer

\(\sigma\)
Proxy Signatures, Consecutive Delegations

Delegator \((pk_D)\)

Delegator 2

Delegator 3

ANONYMOUS

Proxy Signer

\(\sigma\)
Proxy Signatures, Consecutive Delegations

Delegator \((pk_D)\)

Delegator 2

Delegator 3

ANONYMOUS

Proxy Signer

Opener \((ok)\)

open

\(\sigma\)
$1^\lambda \rightarrow \text{Setup} \rightarrow pp, ik, ok$
1^\lambda \rightarrow \text{Setup} \rightarrow \text{pp, ik, ok}
Algorithms of Anonymous Proxy Signature Scheme

\[
\begin{align*}
1^\lambda & \rightarrow \text{Setup} \rightarrow pp, ik, ok \\
sk_x, pk_y & \rightarrow \text{Del} \rightarrow warr_{x\rightarrow y}
\end{align*}
\]
Algorithms of Anonymous Proxy Signature Scheme

\[\begin{align*}
1^\lambda \quad &\rightarrow \quad \text{Setup} \quad &\rightarrow \quad pp, ik, ok \\
\text{sk}_x, [warr\xrightarrow{x},] \text{pk}_y \quad &\rightarrow \quad \text{Del} \quad &\rightarrow \quad warr[x\rightarrow y]
\end{align*} \]
Algorithms of Anonymous Proxy Signature Scheme

\[
1^{\lambda} \quad \rightarrow \quad \text{Setup} \quad \rightarrow \quad pp, ik, ok
\]
\[
sk_x, [warr_{\rightarrow x},] \quad pk_y \quad \rightarrow \quad \text{Del} \quad \rightarrow \quad warr_{[\rightarrow]x \rightarrow y}
\]
\[
sk_y, \ warr_{x \rightarrow \ldots \rightarrow y}, \ M \quad \rightarrow \quad \text{PSig} \quad \rightarrow \quad \sigma
\]
Algorithms of Anonymous Proxy Signature Scheme

$1^\lambda \rightarrow \text{Setup} \rightarrow pp, ik, ok$

$sk_x, [warr_{\rightarrow x}], pk_y \rightarrow \text{Del} \rightarrow warr_{[\rightarrow]x\rightarrow y}$

$sk_y, warr_x \rightarrow \ldots \rightarrow y, M \rightarrow \text{PSig} \rightarrow \sigma$

$pk_x, M, \sigma \rightarrow \text{PVer} \rightarrow b \in \{0, 1\}$
Algorithms of Anonymous Proxy Signature Scheme

\[
\begin{align*}
1^\lambda & \rightarrow \text{Setup} \rightarrow pp, ik, ok \\
sk_x, [warr \rightarrow_x,] \ ypk_y & \rightarrow \text{Del} \rightarrow warr[\rightarrow_{x \rightarrow y}] \\
sl_\rightarrow_x, warr_{x \rightarrow \ldots \rightarrow y}, M & \rightarrow \text{PSig} \rightarrow \sigma \\
\rightarrow_x \rightarrow_y M, \sigma & \rightarrow \text{PVer} \rightarrow b \in \{0, 1\} \\
ok, M, \sigma & \rightarrow \text{Open} \rightarrow \text{a list of users or } \bot \text{ (failure)}
\end{align*}
\]
Security for Anonymous Proxy Signatures

Security

- **Anonymity**: intermediate delegates and proxy signer remain anonymous
- **Traceability**: every valid signature can be traced to its intermediate delegates and proxy signer
- **Non-Frameability**: no one can produce a signature that, when opened, wrongfully reveals a delegator or signer
Security for Anonymous Proxy Signatures

Security

- **Anonymity**: intermediate delegators and proxy signer remain anonymous

- **Traceability**: every valid signature can be traced to its intermediate delegators and proxy signer

- **Non-Frameability**: no one can produce a signature that, when opened, wrongfully reveals a delegator or signer
Security

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anonymity</td>
<td>intermediate delegators and proxy signer remain anonymous</td>
</tr>
<tr>
<td>Traceability</td>
<td>every valid signature can be traced to its intermediate delegators and proxy signer</td>
</tr>
<tr>
<td>Non-Frameability</td>
<td>no one can produce a signature that, when opened, wrongfully reveals a delegator or signer</td>
</tr>
</tbody>
</table>
Generic Construction: Ingredients

using

- Digital signatures (EUF-CMA)
- Public-key encryption (IND-CPA)
- Non-interactive zero-knowledge proofs
Generic Construction: Ingredients

using

- Digital signatures (EUF-CMA)
- Public-key encryption (IND-CPA)
- Non-interactive zero-knowledge proofs

(Existence follows from trapdoor permutations)
Setup
Generates decryption key for opening authority; signing key for issuer
Parameters: resp. public keys, \(crs \) for NIZK

Register
Issuer signs user’s public key \(\rightarrow \) certificate

Delegate
Sign delegatee’s public key \(\rightarrow \) warrant
Re-delegate: additionally forward received warrants

Proxy-Sign
Sign message, encrypt
- interm. delegators’ verification keys and certificates
- warrants
- signature on message

Output
- ciphertext
- NIZK proof that plaintext contains valid signatures

Verify
Verify NIZK proof

Open
Decrypt ciphertext
Generic Construction: Overview

Setup Generates decryption key for opening authority; signing key for issuer
Parameters: resp. public keys, crs for NIZK

Register Issuer signs user’s public key → *certificate*

Delegate Sign delegatee’s public key → *warrant*
Re-delegate: additionally forward received warrants

Proxy-Sign Sign message, encrypt
- interm. delegatores’ verification keys and certificates
- warrants
- signature on message

Output
- ciphertext
- NIZK proof that plaintext contains valid signatures

Verify Verify NIZK proof

Open Decrypt ciphertext
Setup Generates decryption key for opening authority; signing key for issuer
 Parameters: resp. public keys, crs for NIZK

Register Issuer signs user’s public key → certificate

Delegate Sign delegatee’s public key → warrant
 Re-delegate: additionally forward received warrants

Proxy-Sign Sign message, encrypt
 • interim. delegators’ verification keys and certificates
 • warrants • signature on message

Output
 • ciphertext
 • NIZK proof that plaintext contains valid signatures

Verify Verify NIZK proof

Open Decrypt ciphertext
Generic Construction: Overview

Setup Generates decryption key for opening authority; signing key for issuer
Parameters: resp. public keys, crs for NIZK

Register Issuer signs user’s public key → *certificate*

Delegate Sign delegatee’s public key → *warrant*
Re-delegate: additionally forward received warrants

Proxy-Sign Sign message, encrypt
- interim. delegators’ verification keys and certificates
- warrants
- signature on message

Output
- ciphertext
- NIZK proof that plaintext contains valid signatures

Verify Verify NIZK proof

Open Decrypt ciphertext
Generic Construction: Overview

Setup Generates decryption key for opening authority; signing key for issuer

Parameters: resp. public keys, crs for NIZK

Register Issuer signs user’s public key → certificate

Delegate Sign delegatee’s public key → warrant

Re-delegate: additionally forward received warrants

Proxy-Sign Sign message, encrypt

- interm. delegatores’ verification keys and certificates
- warrants
- signature on message

Output

- ciphertext
- NIZK proof that plaintext contains valid signatures

Verify Verify NIZK proof

Open Decrypt ciphertext
Generic Construction: Overview

Setup Generates decryption key for opening authority; signing key for issuer
Parameters: resp. public keys, crs for NIZK

Register Issuer signs user’s public key → certificate

Delegate Sign delegatee’s public key → warrant
Re-delegate: additionally forward received warrants

Proxy-Sign Sign message, encrypt
- interm. delegators’ verification keys and certificates
- warrants
- signature on message

Output
- ciphertext
- NIZK proof that plaintext contains valid signatures

Verify Verify NIZK proof

Open Decrypt ciphertext
F, Pointcheval: Proofs on Encrypted Values in Bilinear Groups and an Application to Anonymity of Signatures. [PAIRING '09]

- Encryption and proofs based on a generalization of techniques of Boyen-Waters Group Signatures [PKC’07] based on Subgroup Decision Assumption
- Signature scheme inefficient due to bit-by-bit techniques
Motivation: Anonymous Proxy Signatures

Groth-Sahai Witness-Indistinguishable Proofs

Automorphic Signatures
An NP language \mathcal{L} is defined by relation R as $\mathcal{L} := \{x \mid \exists w : (x, w) \in R\}$.

A NIWI for \mathcal{L} consists of Setup, Prove and Verify.

- **Setup** outputs a common reference string crs
- **Prove**(crs, x, w) outputs a proof π
- **Verify**(crs, x, π) and outputs 1 or 0
Non-Interactive Witness-Indistinguishable Proofs

An NP language \mathcal{L} is defined by relation R as $\mathcal{L} := \{ x \mid \exists w : (x, w) \in R \}$.

A NIWI for \mathcal{L} consists of Setup, Prove and Verify.

- **Setup** outputs a common reference string crs
- **Prove**(crs, x, w) outputs a proof π
- **Verify**(crs, x, π) and outputs 1 or 0

It satisfies

- completeness
- soundness
- witness indistinguishability
Bilinear Groups and the Decision Linear Assumption [BBS04]

- Bilinear group \((p, G, G_T, e, G)\)
 - \((G, +)\) and \((G_T, \cdot)\) cyclic groups of prime order \(p\)
 - \(e: G \times G \rightarrow G_T\) bilinear, i.e. \(\forall X, Y \in G, \forall a, b \in \mathbb{Z}: e(aX, bY) = e(X, Y)^{ab}\)
 - \(G = \langle G \rangle, G_T = \langle e(G, G) \rangle\)
Bilinear Groups and the Decision Linear Assumption [BBS04]

- Bilinear group \((p, \mathbb{G}, \mathbb{G}_T, e, G)\)
 - \((\mathbb{G}, +)\) and \((\mathbb{G}_T, \cdot)\) cyclic groups of prime order \(p\)
 - \(e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_T\) bilinear, i.e. \(\forall X, Y \in \mathbb{G}, \forall a, b \in \mathbb{Z}: e(aX, bY) = e(X, Y)^{ab}\)
 - \(\mathbb{G} = \langle G \rangle, \mathbb{G}_T = \langle e(G, G) \rangle\)

- Given \((U, V, G, \alpha U, \beta V, \gamma G)\) it is hard to decide whether \(\gamma = \alpha + \beta\).
Groth-Sahai I

Bilinear Groups and the Decision Linear Assumption [BBS04]

- Bilinear group \((p, G, G_T, e, G)\)
 - \((G, +)\) and \((G_T, \cdot)\) cyclic groups of prime order \(p\)
 - \(e : G \times G \to G_T\) bilinear, i.e. \(\forall X, Y \in G, \forall a, b \in \mathbb{Z}:\)
 \[e(aX, bY) = e(X, Y)^{ab} \]
 - \(G = \langle G \rangle, G_T = \langle e(G, G) \rangle\)

- Given \((U, V, G, \alpha U, \beta V, \gamma G)\) it is hard to decide whether \(\gamma = \alpha + \beta\).

PPE

A pairing-product equation is an equation over variables \(X_1, \ldots, X_n \in G\) of the form

\[
\prod_{i=1}^{n} e(A_i, X_i) \prod_{i=1}^{n} \prod_{j=1}^{n} e(X_i, X_j)^{\gamma_{i,j}} = t_T ,
\]

(E)

determined by \(A_i \in G, \gamma_{i,j} \in \mathbb{Z}_p\) and \(t_T \in G_T\), for \(1 \leq i, j \leq n\).
Bilinear Groups and the Decision Linear Assumption [BBS04]

- Bilinear group \((p, G, G_T, e, G)\)
 - \((G, +)\) and \((G_T, \cdot)\) cyclic groups of prime order \(p\)
 - \(e: G \times G \to G_T\) bilinear, i.e. \(\forall X, Y \in G, \forall a, b \in \mathbb{Z}: e(aX, bY) = e(X, Y)^{ab}\)
 - \(G = \langle G \rangle, G_T = \langle e(G, G) \rangle\)
- Given \((U, V, G, \alpha U, \beta V, \gamma G)\) it is hard to decide whether \(\gamma = \alpha + \beta\).

PPE

A *pairing-product equation* is an equation over variables \(X_1, \ldots, X_n \in G\) of the form

\[
\prod_{i=1}^{n} e(A_i, X_i) \prod_{i=1}^{n} \prod_{j=1}^{n} e(X_i, X_j)^{\gamma_{i,j}} = t_T, \quad \text{(E)}
\]

determined by \(A_i \in G, \gamma_{i,j} \in \mathbb{Z}_p\) and \(t_T \in G_T\), for \(1 \leq i, j \leq n\).

Groth, Sahai: NIWI proof of *satisfiability* of PPE
Groth-Sahai II

Setup on input the bilinear group output a commitment key ck

Com on input ck, $X \in \mathbb{G}$, randomness ρ output commitment c_X to X

Prove on input ck, $(X_i, \rho_i)_{i=1}^n$, equation E output a proof ϕ

Verify on input ck, \vec{c}, E, ϕ, output 0 or 1
Groth-Sahai II

Setup on input the bilinear group output a commitment key \(ck \)
Com on input \(ck, X \in \mathbb{G} \), randomness \(\rho \) output commitment \(c_X \) to \(X \)
Prove on input \(ck, (X_i, \rho_i)_{i=1}^n \), equation \(E \) output a proof \(\phi \)
Verify on input \(ck, \vec{c}, E, \phi \), output 0 or 1

Correctness Honestly generated proofs are accepted by Verify

Soundness ExtSetup outputs \((ck, ek) \) s.t.
given \(\vec{c} \) and \(\phi \) s.t. \(\text{Verify}(ck, \vec{c}, E, \phi) = 1 \) then \(\text{Extract}(ek, \vec{c}) \)
returns \(\vec{X} \) that satisfies \(E \)

Witness-Indistinguishability WISetup outputs \(ck^* \) indist. from \(ck \) s.t.

- \(\text{Com}(ck^*, \cdot, \cdot) \) produces statistically hiding commitments i.e.
 \[\forall c \ \forall X \ \exists \rho : \text{Com}(ck^*, X, \rho) = c \]
- Given \((X_i, \rho_i)_i, (X'_i, \rho'_i)_i \) s.t. \(c_i = \text{Com}(ck^*, X_i, \rho_i) = \text{Com}(ck^*, X'_i, \rho'_i) \)
 and \((X_i)_i \) and \((X'_i)_i \) satisfy \(E \) then
 \[\text{Prove}(ck^*, (X_i, \rho_i)_i, E) \sim \text{Prove}(ck^*, (X'_i, \rho'_i)_i, E) \]
Groth-Sahai II

Setup on input the bilinear group output a commitment key

Com on input \(\in \mathbb{G} \), randomness \(\rho \) output commitment \(c_X \) to

Prove on input \(, (i, \rho_i)_{i=1}^n \), equation output a proof \(\phi \)

Verify on input \(, \vec{c}, , \phi \), output 0 or 1

Correctness Honestly generated proofs are accepted by Verify

Soundness ExtSetup outputs \(, (,) \) s.t. given \(\vec{c} \) and \(\phi \) s.t. \(\text{Verify}(, \vec{c}, , \phi) = 1 \) then Extract\((, \vec{c}) \) returns \(\rightarrow \) that satisfies

Witness-Indistinguishability WISetup outputs \(* \) indist. from \(\) s.t.

- \(\text{Com}(* , , \cdot , \cdot) \) produces statistically hiding commitments i.e.
 \[\forall c \ \forall \ \exists \rho : \text{Com}(* , , \cdot) = c \]

- Given \((i, \rho_i)i, (i', \rho'i)i \) s.t. \(c_i = \text{Com}(* , i, \rho_i) = \text{Com}(* , i', \rho'i) \)
 and \((i)i \) and \((i)i \) satisfy then
 \[\text{Prove}(* , (i, \rho_i)i,) \sim \text{Prove}(* , (i', \rho'i)i,) \]
Groth-Sahai II

Setup on input the bilinear group output a commitment key ck

Com on input ck, $X \in \mathbb{G}$, randomness ρ output commitment c_X to X

Prove on input ck, $(X_i, \rho_i)_{i=1}^n$, equation E output a proof ϕ

Verify on input ck, \vec{c}, E, ϕ, output 0 or 1

Correctness Honestly generated proofs are accepted by Verify

Soundness ExtSetup outputs (ck, ek) s.t.

given \vec{c} and ϕ s.t. $\text{Verify}(ck, \vec{c}, E, \phi) = 1$ then $\text{Extract}(ek, \vec{c})$
returns \vec{X} that satisfies E

Witness-Indistinguishability WISetup outputs ck^* indist. from ck s.t.

- $\text{Com}(ck^*, \cdot, \cdot)$ produces statistically hiding commitments i.e.
 $\forall c \forall X \exists \rho : \text{Com}(ck^*, X, \rho) = c$

- Given $(X_i, \rho_i)_i$, $(X'_i, \rho'_i)_i$ s.t. $c_i = \text{Com}(ck^*, X_i, \rho_i) = \text{Com}(ck^*, X'_i, \rho'_i)$
and $(X_i)_i$ and $(X'_i)_i$ satisfy E then
 $\text{Prove}(ck^*, (X_i, \rho_i)_i, E) \sim \text{Prove}(ck^*, (X'_i, \rho'_i)_i, E)$
1 Motivation: Anonymous Proxy Signatures

2 Groth-Sahai Witness-Indistinguishable Proofs

3 Automorphic Signatures
Motivation

- Groth-Sahai proofs allow us to
 - commit to (encrypt) group elements and to
 - prove that they satisfy PPEs

Opener’s public and decryption key: \((ck, ek) \leftarrow \text{ExtSetup}\)

To instantiate generic construction, we need signature scheme s.t.
- signatures are group elements
- verification by PPE
- able to sign public keys
- EUF-CMA
Motivation

- Groth-Sahai proofs allow us to
 - commit to (encrypt) group elements and to
 - prove that they satisfy PPEs

Opener’s public and decryption key: $(ck, ek) \leftarrow\text{ExtSetup}$

To instantiate generic construction, we need signature scheme s.t.
- signatures are group elements
- verification by PPE
- able to sign public keys
- EUF-CMA
Motivation

- Groth-Sahai proofs allow us to
 - commit to (encrypt) group elements and to
 - prove that they satisfy PPEs

Opener’s public and decryption key: \((ck, ek) \leftarrow \text{ExtSetup}\)

- To instantiate generic construction, we need signature scheme s.t.
 - signatures are group elements
 - verification by PPE
 - able to sign public keys
 - EUF-CMA
Groth-Sahai proofs allow us to
- commit to (encrypt) group elements and to
- prove that they satisfy PPEs

Opener’s public and decryption key: $(ck, ek) \leftarrow \text{ExtSetup}$

To instantiate generic construction, we need signature scheme s.t.
- signatures are group elements
- verification by PPE
- able to sign public keys
- EUF-CMA
Motivation

- Groth-Sahai proofs allow us to
 - commit to (encrypt) group elements and to
 - prove that they satisfy PPEs

Opener’s public and decryption key: \((ck, ek) \leftarrow \text{ExtSetup}\)

To instantiate generic construction, we need signature scheme s.t.
- signatures are group elements
- verification by PPE
- able to sign public keys
- EUF-CMA
Groth-Sahai proofs allow us to
- commit to (encrypt) group elements and to
- prove that they satisfy PPEs

Opener’s public and decryption key: $(ck, ek) \leftarrow \text{ExtSetup}$

To instantiate generic construction, we need signature scheme s.t.
- signatures are group elements
- verification by PPE
- able to sign public keys
- EUF-CMA
Motivation

- Groth-Sahai proofs allow us to
 - commit to (encrypt) group elements and to
 - prove that they satisfy PPEs

Opener’s public and decryption key: \((ck, ek) \leftarrow \text{ExtSetup}\)

- To instantiate generic construction, we need signature scheme s.t.
 - signatures are group elements
 - verification by PPE
 - able to sign public keys
 - EUF-CMA

Automorphic Signatures
Boneh-Boyen Signatures

The \(q \)-Strong Diffie-Hellman Problem (SDH) \([BB04]\)
Given \((G, xG, x^2G, \ldots, x^qG) \in \mathbb{G}^{q+1}\) for \(x \leftarrow \mathbb{Z}_p^*\), output \((\frac{1}{x+c}G, c) \in \mathbb{G} \times \mathbb{Z}_p\).

Boneh-Boyen Weak Signatures
Given \(G, xG \in \mathbb{G}\) and \(q - 1\) distinct pairs \((\frac{1}{x+c_i}G, c_i) \in \mathbb{G} \times \mathbb{Z}_p\), output a new pair \((\frac{1}{x+c}G, c) \in \mathbb{G} \times \mathbb{Z}_p\).

Boneh-Boyen Short Signatures
- Secret key \((x, y) \in \mathbb{Z}_p^2\), public key \(X = xG, Y = yG\)
- Sign \(m \in \mathbb{Z}_p\): choose \(r \leftarrow \mathbb{Z}_p\); signature: \((A = \frac{1}{x+m+ry}G, r)\)
- Verify \((A, r)\) on \(m\) under \((X, Y)\) by checking \(e(A, X + mG + rY) = e(G, G)\)
Boneh-Boyun Signatures

The q-Strong Diffie-Hellman Problem (SDH) [BB04]

Given $(G, xG, x^2G, \ldots, x^qG) \in \mathbb{G}^{q+1}$ for $x \leftarrow \mathbb{Z}_p^*$, output $(\frac{1}{x+c}G, c) \in \mathbb{G} \times \mathbb{Z}_p$.

Boneh-Boyun Weak Signatures

Given $G, xG \in \mathbb{G}$ and $q - 1$ distinct pairs $(\frac{1}{x+c_i}G, c_i) \in \mathbb{G} \times \mathbb{Z}_p$, output a new pair $(\frac{1}{x+c}G, c) \in \mathbb{G} \times \mathbb{Z}_p$.

Boneh-Boyun Short Signatures

- Secret key $(x, y) \in \mathbb{Z}_p^2$, public key $X = xG$, $Y = yG$
- Sign $m \in \mathbb{Z}_p$: choose $r \leftarrow \mathbb{Z}_p$; signature: $(A = \frac{1}{x+m+ry}G, r)$
- Verify (A, r) on m under (X, Y) by checking $e(A, X + mG + rY) = e(G, G)$
Boneh-Boyen Signatures

The q-Strong Diffie-Hellman Problem (SDH) [BB04]

Given $(G, xG, x^2G, \ldots, x^qG) \in \mathbb{G}^{q+1}$ for $x \leftarrow \mathbb{Z}_p^*$, output
$(\frac{1}{x+c}G, c) \in \mathbb{G} \times \mathbb{Z}_p$.

Boneh-Boyen Weak Signatures

Given $G, xG \in \mathbb{G}$ and $q - 1$ distinct pairs $(\frac{1}{x+c_i}G, c_i) \in \mathbb{G} \times \mathbb{Z}_p$, output a new pair $(\frac{1}{x+c}G, c) \in \mathbb{G} \times \mathbb{Z}_p$.

Boneh-Boyen Short Signatures

- Secret key $(x, y) \in \mathbb{Z}_p^2$, public key $X = xG$, $Y = yG$
- Sign $m \in \mathbb{Z}_p$: choose $r \leftarrow \mathbb{Z}_p$; signature: $(A = \frac{1}{x+m+ry}G, r)$
- Verify (A, r) on m under (X, Y) by checking $e(A, X + mG + rY) = e(G, G)$
Boneh-Boyen Signatures

The q-Strong Diffie-Hellman Problem (SDH) [BB04]

Given $(G, xG, x^2G, \ldots, x^qG) \in \mathbb{G}^{q+1}$ for $x \leftarrow \mathbb{Z}_p^*$, output $(\frac{1}{x+c}G, c) \in \mathbb{G} \times \mathbb{Z}_p$.

Boneh-Boyen Weak Signatures

Given $G, xG \in \mathbb{G}$ and $q - 1$ distinct pairs $(\frac{1}{x+c_i}G, c_i) \in \mathbb{G} \times \mathbb{Z}_p$, output a new pair $(\frac{1}{x+c}G, c) \in \mathbb{G} \times \mathbb{Z}_p$.

Boneh-Boyen Short Signatures

- Secret key $(x, y) \in \mathbb{Z}_p^2$, public key $X = xG, Y = yG$
- Sign $m \in \mathbb{Z}_p$: choose $r \leftarrow \mathbb{Z}_p$; signature: $(A = \frac{1}{x+m+ry}G, r)$
- Verify (A, r) on m under (X, Y) by checking $e(A, X + mG + rY) = e(\frac{1}{x+m+ry}G, (x + m + ry)G) = e(G, G)$
Boneh-Boyen Weak Signatures

Given $G, X := xG \in \mathbb{G}$ and $q - 1$ distinct pairs $(\frac{1}{x+c_i} G, c_i) \in \mathbb{G} \times \mathbb{Z}_p$, output a new pair $(\frac{1}{x+c} G, c) \in \mathbb{G} \times \mathbb{Z}_p$.
The Hidden SDH [BW07]

Given $G, H, X := xG \in \mathbb{G}$ and $q - 1$ distinct triples $(\frac{1}{x+c_i} G, c_i G, c_i H) \in \mathbb{G}^3$, output a new triple $(\frac{1}{x+c} G, cG, cH) \in \mathbb{G}^3$.
The Hidden SDH [BW07]

Given $G, H, X := xG \in \mathbb{G}$ and $q - 1$ distinct triples $(\frac{1}{x+c_i} G, c_i G, c_i H) \in \mathbb{G}^3$, output a new triple $(\frac{1}{x+c} G, cG, cH) \in \mathbb{G}^3$.

- All components are group elements
- Validity of a triple (A, C, D) is verifiable by PPEs:

 $$e(A, X + C) = e(G, G)$$
 $$e(C, H) = e(G, D)$$
Assumptions I

F, Pointcheval, Vergnaud: Transferable Constant-Size Fair E-Cash [CANS’09]

SDH implies hardness of the following:

Given $G, K, X := xG \in \mathbb{G}$ and $q - 1$ triples

$$\left(\frac{1}{x+c_i} (K+ v_i G), c_i, v_i \right) \in \mathbb{G} \times \mathbb{Z}_p^2,$$

output a new triple

$$\left(\frac{1}{x+c} (K+ v G), c, v \right) \in \mathbb{G} \times \mathbb{Z}_p^2.$$
Assumptions I

F, Pointcheval, Vergnaud: Transferable Constant-Size Fair E-Cash [CANS’09]

SDH implies hardness of the following:

Given $G, K, X := xG \in \mathbb{G}$ and $q - 1$ triples
$$\left(\frac{1}{x+c_i} (K+v_i G), c_i, v_i \right) \in \mathbb{G} \times \mathbb{Z}_p^2$$
output a new triple
$$\left(\frac{1}{x+c} (K+v G), c, v \right) \in \mathbb{G} \times \mathbb{Z}_p^2$$.

Asymmetric Double Hidden SDH (ADHSDH)

Given $G, K, F, H, X := xG, Y := xH \in \mathbb{G}$ and $q - 1$ tuples
$$\left(\frac{1}{x+c_i} (K+v_i G), c_i F, c_i H, v_i G, v_i H \right)$$
output a new tuple
$$\left(\frac{1}{x+c} (K+v G), cF, cH, v G, v H \right)$$.
Assumptions II

Verification

(A, C, D, V, W) satisfies

- \(e(A, Y + D) = e(\frac{1}{x+c}(K + vG), x\mathbb{1} + c\mathbb{1}) = e(K + V, \mathbb{1}) \),
- \(e(C, \mathbb{1}) = e(cF, \mathbb{1}) = e(F, D) \)
- \(e(V, \mathbb{1}) = e(vG, \mathbb{1}) = e(G, W) \)
(A, C, D, V, W) satisfies

- \(e(A, Y + D) = e\left(\frac{1}{x+c}(K + vG), x \square + c \square \right) = e(K + V, \square) \),
- \(e(C, \square) = e(cF, \square) = e(F, D) \),
- \(e(V, \square) = e(vG, \square) = e(G, W) \)

(Weak) Flexible CDH (WFCDH)

Given \((G, aG, bG) \in \mathbb{G}^3\), output \((R, aR, bR, abR) \in \mathbb{G}^4\) with \(R \neq 0\).
Automorphic Signature

- **Parameters**: \((G, K, F, \mathbb{H}, T) \leftarrow \mathbb{G}^5\), which define the message space as \(\mathcal{DH} := \{(mG, m\mathbb{H}) \mid m \in \mathbb{Z}_p\}\).
- **KeyGen**: secret key \(x \leftarrow \mathbb{Z}_p\), public key \((X := xG, Y := y\mathbb{H})\)
- **Sign** \((M, N) \in \mathcal{DH}\): choose \(c, r \leftarrow \mathbb{Z}_p\), set
 \[
 (A := \frac{1}{x+c}(K+rT + M), C := cF, D := c\mathbb{H}, R := rG, S := r\mathbb{H})
 \]
- A signature on a message \((M, N) \in \mathcal{DH}\) is valid iff
 \[
 e(A, Y + D) = e(K + M, \mathbb{H})e(T, S) \\
 e(C, \mathbb{H}) = e(F, D) \\
 e(R, \mathbb{H}) = e(G, S)
 \]
Automorphic Signature

- Parameters: $(G, K, F, T) \leftarrow \mathbb{G}^5$, which define the message space as $\mathcal{DH} := \{(mG, mT) \mid m \in \mathbb{Z}_p\}$.
- KeyGen: secret key $x \leftarrow \mathbb{Z}_p$, public key $(X := xG, Y := yH)$
- Sign $(M, N) \in \mathcal{DH}$: choose $c, r \leftarrow \mathbb{Z}_p$, set

 $$(A := \frac{1}{x+c}(K + rT + M), C := cF, D := cH, R := rG, S := rH)$$

- A signature on a message $(M, N) \in \mathcal{DH}$ is valid iff
 $$e(A, Y + D) = e(K + M, T) e(T, S) \quad e(C, H) = e(F, D) \quad e(R, H) = e(G, S)$$

The above scheme is EUF-CMA under ADHSDH and WFCDH.
Applications

Efficiency

- Messages and public keys in \mathbb{G}^2, signatures in \mathbb{G}^5
- Verification: 7 pairing evaluations
- Also instantiable in asymmetric bilinear groups

In combination with Groth-Sahai proofs, automorphic signatures enable efficient instantiations of generic concepts.
Applications

Efficiency

- Messages and public keys in G^2, signatures in G^5
- Verification: 7 pairing evaluations
- Also instantiable in *asymmetric* bilinear groups

In combination with Groth-Sahai proofs, automorphic signatures enable efficient instantiations of generic concepts.

- Round-Optimal Blind Signatures
- Group Signatures
- Anonymous Proxy Signatures with new features:
 - Delegator anonymity (by randomizing Groth-Sahai proofs)
 - Blind delegation (using blind signatures)
Thank you! 😊