Automorphic Signatures in Bilinear Groups

Georg Fuchsbaeur

École normale supérieure

UCL, 23.03.2010
1 Motivation: Anonymous Proxy Signatures

2 Groth-Sahai Witness-Indistinguishable Proofs

3 Automorphic Signatures
Motivation: Anonymous Proxy Signatures

Groth-Sahai Witness-Indistinguishable Proofs

Automorphic Signatures
Anonymous Consecutive Delegation of Signing Rights

F, Pointcheval: Anonymous Proxy Signatures [SCN’08]

Delegation
A delegator delegates his signing rights to a proxy signer (or delegatee) who can then sign on the delegator’s behalf.

Consecutiveness
A delegatee may re-delegate the received signing rights ⇒ intermediate delegators

Anonymity
All intermediate delegators and the proxy signer remain anonymous.
Delegation

A **delegator** delegates his signing rights to a **proxy signer** (or **delegatee**) who can then sign on the delegator’s behalf.

Consecutiveness

A delegatee may **re-delegate** the received signing rights ⇒ **intermediate delegators**

Anonymity

All intermediate delegators and the proxy signer remain anonymous.
Delegation

A delegator delegates his signing rights to a proxy signer (or delegatee) who can then sign on the delegator’s behalf.

Consecutiveness

A delegatee may re-delegate the received signing rights ⇒ intermediate delegators.

Anonymity

All intermediate delegators and the proxy signer remain anonymous.
Anonymous Consecutive Delegation of Signing Rights

F, Pointcheval: Anonymous Proxy Signatures [SCN’08]

Delegation

A **delegator** delegates his signing rights to a **proxy signer** (or **delegatee**) who can then sign on the delegator’s behalf.

Consecutiveness

A delegatee may **re-delegate** the received signing rights ⇒ intermediate delegators

Anonymity

All intermediate delegators and the proxy signer remain **anonymous**

After verifying a proxy signature one knows that someone entitled signed but nothing more.
Application: GRID computing

User authenticates herself and starts process which needs to authenticate to resources / start subprocesses

⇒ Delegation and re-delegation of signing rights

No need to know that it was not the user herself to be authenticated

Relation to Other Primitives

Anonymous proxy signatures are a generalization of

- Proxy signatures (consecutive delegation)
 formalized by [BPW03]

- (Dynamic) group signatures (anonymity)
 formalized by [BSZ05]

and satisfy the respective security notions.
Application: GRID computing

User authenticates herself and starts process which needs to authenticate to resources / start subprocesses

⇒ Delegation and re-delegation of signing rights

No need to know that it was not the user herself to be authenticated

Relation to Other Primitives

Anonymous proxy signatures are a generalization of

- **Proxy signatures** (consecutive delegation)
 formalized by [BPW03]

- **(Dynamic) group signatures** (anonymity)
 formalized by [BSZ05]

and satisfy the respective security notions.
Application: GRID computing

User authenticates herself and starts process which needs to authenticate to resources / start subprocesses
⇒ Delegation and re-delegation of signing rights
No need to know that it was not the user herself to be authenticated

Relation to Other Primitives

Anonymous proxy signatures are a generalization of

- **Proxy signatures** (consecutive delegation)
 formalized by [BPW03]

- **(Dynamic) group signatures** (anonymity)
 formalized by [BSZ05]

and satisfy the respective security notions.

- more recently: **Delegatable Anonymous Credentials** [BCCKLS09]
(Dynamic) Group Signatures

Group public key: pk

Verification: $\text{Verify}(pk, \text{msg}, \sigma) = 1$
Proxy Signatures, Consecutive Delegations

Delegator (pk_D)

Delegator 2

Delegator 3

Proxy Signer

σ
Proxy Signatures, Consecutive Delegations

Delegator \((pk_D)\)

Delegator 2

Delegator 3

ANONYMOUS

Proxy Signer

\(\sigma\)
Proxy Signatures, Consecutive Delegations

Delegator \((pk_D)\)

Delegator 2

Delegator 3

ANONYMOUS

Proxy Signer

Opener \((ok)\)

\[\sigma \]

open
\[1^\lambda \rightarrow \text{Setup} \rightarrow pp, ik, ok \]
Algorithms of Anonymous Proxy Signature Scheme

\[1^\lambda \rightarrow \text{Setup} \rightarrow pp, ik, ok \]
Algorithms of Anonymous Proxy Signature Scheme

1^λ \rightarrow \text{Setup} \rightarrow pp, ik, ok

sk_x, pk_y \rightarrow \text{Del} \rightarrow arr_{x\rightarrow y}

Issuer (ik) \quad \cdots \quad Reg \quad \cdots \quad User

pk

pk, sk

Geo rgh Fu hsbauer (ENS)

UCL, 23.03.2010
Algorithms of Anonymous Proxy Signature Scheme

Issuer (i_k) \[\rightarrow\] … \[\rightarrow\] Reg \[\rightarrow\] … \[\rightarrow\] User

pk \[\rightarrow\]

$1^\lambda \rightarrow$ Setup \[\rightarrow\] pp, ik, ok

$sk_x, [arr_{\rightarrow x},] pk_y \rightarrow$ Del \[\rightarrow\] $arr_{\rightarrow x \rightarrow y}$
Algorithms of Anonymous Proxy Signature Scheme

1^\lambda \rightarrow \text{Setup} \rightarrow \text{pp, ik, ok}

sk_x, [arr_{\rightarrow x},] pk_y \rightarrow \text{Del} \rightarrow \text{arr}_{[\rightarrow]_{x \rightarrow y}}

sk_y, arr_{x \rightarrow \ldots \rightarrow y}, M \rightarrow \text{PSig} \rightarrow \sigma
Algorithms of Anonymous Proxy Signature Scheme

\[1^\lambda \rightarrow \text{Setup} \rightarrow \text{pp, } ik, ok \]

\[sk_x, [arr_{x \rightarrow}], pk_y \rightarrow \text{Del} \rightarrow \text{arr}_{[\rightarrow]x \rightarrow y} \]

\[sk_y, arr_{x \rightarrow \ldots \rightarrow y}, M \rightarrow \text{PSig} \rightarrow \sigma \]

\[pk_x, M, \sigma \rightarrow \text{PVer} \rightarrow b \in \{0, 1\} \]
Algorithms of Anonymous Proxy Signature Scheme

\[1^\lambda \rightarrow \text{Setup} \rightarrow pp, ik, ok \]

\[sk_x, \{ arr_{\rightarrow x} \}, pk_y \rightarrow \text{Del} \rightarrow arr_{[\rightarrow]x\rightarrow y} \]

\[sk_y, arr_{\rightarrow x\rightarrow \ldots\rightarrow y}, M \rightarrow \text{PSig} \rightarrow \sigma \]

\[pk_x, M, \sigma \rightarrow \text{PVer} \rightarrow b \in \{0, 1\} \]

\[ok, M, \sigma \rightarrow \text{Open} \rightarrow \text{a list of users or } \bot \text{ (failure)} \]
Security

<table>
<thead>
<tr>
<th>Anonymity</th>
<th>intermediate delegates and proxy signer remain anonymous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traceability</td>
<td>every valid signature can be traced to its intermediate delegates and proxy signer</td>
</tr>
<tr>
<td>Non-Frameability</td>
<td>no one can produce a signature that, when opened, wrongfully reveals a delegator or signer</td>
</tr>
</tbody>
</table>
Security

Anonymity
intermediate delegators and proxy signer remain anonymous

Traceability
every valid signature can be traced to its intermediate delegators and proxy signer

Non-Frameability
no one can produce a signature that, when opened, wrongfully reveals a delegator or signer
Security

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anonymity</td>
<td>intermediate delegators and proxy signer remain anonymous</td>
</tr>
<tr>
<td>Traceability</td>
<td>every valid signature can be traced to its intermediate delegators and proxy signer</td>
</tr>
<tr>
<td>Non-Frameability</td>
<td>no one can produce a signature that, when opened, wrongfully reveals a delegator or signer</td>
</tr>
</tbody>
</table>
Generic Construction: Ingredients

Generic Construction

using

- Digital signatures (EUF-CMA)
- Public-key encryption (IND-CPA)
- Non-interactive zero-knowledge proofs
Generic Construction: Ingredients

using

- Digital signatures (EUF-CMA)
- Public-key encryption (IND-CPA)
- Non-interactive zero-knowledge proofs

(Existence follows from trapdoor permutations)
Generic Construction: Overview

<table>
<thead>
<tr>
<th>Setup</th>
<th>Generates decryption key for opening authority; signing key for issuer. Parameters: resp. public keys, crs for NIZK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register</td>
<td>Issuer signs user’s public key \rightarrow certificate</td>
</tr>
<tr>
<td>Delegate</td>
<td>Sign delegatee’s public key \rightarrow warrant</td>
</tr>
<tr>
<td>Re-delegate</td>
<td>additionally forward received warrants</td>
</tr>
<tr>
<td>Proxy-Sign</td>
<td>Sign message, encrypt</td>
</tr>
<tr>
<td></td>
<td>- interm. delegators’ verification keys and certificates</td>
</tr>
<tr>
<td></td>
<td>- warrants</td>
</tr>
<tr>
<td></td>
<td>- signature on message</td>
</tr>
<tr>
<td>Output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ciphertext</td>
</tr>
<tr>
<td></td>
<td>- NIZK proof that plaintext contains valid signatures</td>
</tr>
<tr>
<td>Verify</td>
<td>Verify NIZK proof</td>
</tr>
<tr>
<td>Open</td>
<td>Decrypt ciphertext</td>
</tr>
</tbody>
</table>
Generic Construction: Overview

Setup Generates decryption key for opening authority; signing key for issuer
Parameters: resp. public keys, \(crs \) for NIZK

Register Issuer signs user’s public key \(\rightarrow \) *certificate*

Delegate Sign delegatee’s public key \(\rightarrow \) *warrant*
Re-delegate: additionally forward received warrants

Proxy-Sign Sign message, encrypt
- interim. delegators’ verification keys and certificates
- warrants
- signature on message

Output
- ciphertext
- NIZK proof that plaintext contains valid signatures

Verify Verify NIZK proof

Open Decrypt ciphertext
Generic Construction: Overview

Setup
Generates decryption key for opening authority; signing key for issuer
Parameters: resp. public keys, *crs* for NIZK

Register
Issuer signs user’s public key → *certificate*

Delegate
Sign delegatee’s public key → *warrant*
Re-delegate: additionally forward received warrants

Proxy-Sign
Sign message, encrypt
- interim. delegators’ verification keys and certificates
- warrants
- signature on message

Output
- ciphertext
- NIZK proof that plaintext contains valid signatures

Verify
Verify NIZK proof

Open
Decrypt ciphertext
Generic Construction: Overview

Setup
Generates decryption key for opening authority;
signing key for issuer
Parameters: resp. public keys, crs for NIZK

Register
Issuer signs user’s public key \rightarrow *certificate*

Delegate
Sign delegatee’s public key \rightarrow *warrant*
Re-delegate: additionally forward received warrants

Proxy-Sign
Sign message, encrypt
- interim. delegators’ verification keys and certificates
- warrants
- signature on message

Output
- ciphertext
- NIZK proof that plaintext contains valid signatures

Verify
Verify NIZK proof

Open
Decrypt ciphertext
Generic Construction: Overview

Setup
Generates decryption key for opening authority; signing key for issuer
Parameters: resp. public keys, `crs` for NIZK

Register
Issuer signs user’s public key \rightarrow *certificate*

Delegate
Sign delegatee’s public key \rightarrow *warrant*
Re-delegate: additionally forward received warrants

Proxy-Sign
Sign message, encrypt
- interim. delegates’ verification keys and certificates
- warrants
- signature on message

Output
- ciphertext
- NIZK proof that plaintext contains valid signatures

Verify
Verify NIZK proof

Open
Decrypt ciphertext
Generic Construction: Overview

Setup
Generates decryption key for opening authority; signing key for issuer
Parameters: resp. public keys, \(crs \) for NIZK

Register
Issuer signs user’s public key → *certificate*

Delegate
Sign delegatee’s public key → *warrant*
Re-delegate: additionally forward received warrants

Proxy-Sign
Sign message, encrypt
- interm. delegators’ verification keys and certificates
- warrants
- signature on message

Output
- ciphertext
- NIZK proof that plaintext contains valid signatures

Verify
Verify NIZK proof

Open
Decrypt ciphertext
F. Pointcheval: Proofs on Encrypted Values in Bilinear Groups and an Application to Anonymity of Signatures. [PAIRING ’09]

- Encryption and proofs based on a generalization of techniques of Boyen-Waters Group Signatures [PKC’07] based on Subgroup Decision Assumption
- Signature scheme inefficient due to bit-by-bit techniques
1 Motivation: Anonymous Proxy Signatures

2 Groth-Sahai Witness-Indistinguishable Proofs

3 Automorphic Signatures
Non-Interactive Witness-Indistinguishable Proofs

An NP language \mathcal{L} is defined by relation R as $\mathcal{L} := \{x \mid \exists w : (x, w) \in R\}$.

A NIWI for \mathcal{L} consists of Setup, Prove and Verify.

- **Setup** outputs a common reference string crs
- **Prove**(crs, x, w) outputs a proof π
- **Verify**(crs, x, π) and outputs 1 or 0
Non-Interactive Witness-Indistinguishable Proofs

An NP language \mathcal{L} is defined by relation R as $\mathcal{L} := \{x \mid \exists w : (x, w) \in R\}$.

A NIWI for \mathcal{L} consists of **Setup**, **Prove** and **Verify**.

- **Setup** outputs a common reference string crs
- **Prove(crs, x, w)** outputs a proof π
- **Verify(crs, x, π)** and outputs 1 or 0

It satisfies

- completeness
- soundness
- witness indistinguishability
Bilinear Groups and the Decision Linear Assumption [BBS04]

- Bilinear group \((p, G, G_T, e, G)\)
 - \((G, +)\) and \((G_T, \cdot)\) cyclic groups of prime order \(p\)
 - \(e : G \times G \rightarrow G_T\) bilinear, i.e. \(\forall X, Y \in G, \forall a, b \in \mathbb{Z}: e(aX, bY) = e(X, Y)^{ab}\)
 - \(G = \langle G \rangle, G_T = \langle e(G, G) \rangle\)
Bilinear Groups and the Decision Linear Assumption [BBS04]

- Bilinear group \((p, G, G_T, e, G)\)
 - \((G, +)\) and \((G_T, \cdot)\) cyclic groups of prime order \(p\)
 - \(e : G \times G \rightarrow G_T\) bilinear, i.e. \(\forall X, Y \in G, \forall a, b \in \mathbb{Z}: e(aX, bY) = e(X, Y)^{ab}\)
 - \(G = \langle G \rangle, G_T = \langle e(G, G) \rangle\)

- Given \((U, V, G, \alpha U, \beta V, \gamma G)\) it is hard to decide whether \(\gamma = \alpha + \beta\).
Bilinear Groups and the Decision Linear Assumption [BBS04]

- Bilinear group \((p, G, G_T, e, G)\)
 - \((G, +)\) and \((G_T, \cdot)\) cyclic groups of prime order \(p\)
 - \(e: G \times G \rightarrow G_T\) bilinear, i.e. \(\forall X, Y \in G, \forall a, b \in \mathbb{Z}: e(aX, bY) = e(X, Y)^{ab}\)
 - \(G = \langle G \rangle, G_T = \langle e(G, G) \rangle\)

- Given \((U, V, G, \alpha U, \beta V, \gamma G)\) it is hard to decide whether \(\gamma = \alpha + \beta\).

PPE

A \textit{pairing-product equation} is an equation over variables \(X_1, \ldots, X_n \in G\) of the form

\[
\prod_{i=1}^{n} e(A_i, X_i) \prod_{i=1}^{n} \prod_{j=1}^{n} e(X_i, X_j)^{\gamma_{i,j}} = t_T, \tag{E}
\]

determined by \(A_i \in G, \gamma_{i,j} \in \mathbb{Z}_p\) and \(t_T \in G_T\), for \(1 \leq i, j \leq n\).
Bilinear Groups and the Decision Linear Assumption [BBS04]

- Bilinear group \((p, G, G_T, e, G)\)
 - \((G, +)\) and \((G_T, \cdot)\) cyclic groups of prime order \(p\)
 - \(e : G \times G \rightarrow G_T\) bilinear, i.e. \(\forall X, Y \in G, \forall a, b \in \mathbb{Z}:\)
 \[e(aX, bY) = e(X, Y)^{ab}\]
 - \(G = \langle G \rangle, G_T = \langle e(G, G) \rangle\)
- Given \((U, V, G, \alpha U, \beta V, \gamma G)\) it is hard to decide whether \(\gamma = \alpha + \beta\).

PPE

A *pairing-product equation* is an equation over variables \(X_1, \ldots, X_n \in G\) of the form

\[
\prod_{i=1}^{n} e(A_i, X_i) \prod_{i=1}^{n} \prod_{j=1}^{n} e(X_i, X_j)^{\gamma_{i,j}} = t_T ,
\]

(E)

determined by \(A_i \in G, \gamma_{i,j} \in \mathbb{Z}_p\) and \(t_T \in G_T\), for \(1 \leq i, j \leq n\).

Groth, Sahai: NIWI proof of *satisfiability* of PPE
Setup on input the bilinear group output a commitment key ck.

Com on input ck, $X \in \mathbb{G}$, randomness ρ output commitment c_X to X.

Prove on input ck, $(X_i, \rho_i)_{i=1}^n$, equation E output a proof ϕ.

Verify on input ck, \vec{c}, E, ϕ, output 0 or 1.
Groth-Sahai II

Setup on input the bilinear group output a **commitment key** ck

Com on input ck, $X \in \mathbb{G}$, randomness ρ output commitment c_X to X

Prove on input ck, $(X_i, \rho_i)_{i=1}^n$, equation E output a **proof** ϕ

Verify on input ck, \vec{c}, E, ϕ, output 0 or 1

Correctness Honestly generated proofs are accepted by **Verify**

Soundness ExtSetup outputs (ck, ek) s.t.

Given \vec{c} and ϕ s.t. $\text{Verify}(ck, \vec{c}, E, \phi) = 1$ then $\text{Extract}(ek, \vec{c})$

returns \vec{X} that satisfies E

Witness-Indistinguishability WISetup outputs ck^* indist. from ck s.t.

- $\text{Com}(ck^*, \cdot, \cdot)$ produces statistically hiding commitments i.e.
 \[\forall c \ \forall X \ \exists \rho : \text{Com}(ck^*, X, \rho) = c \]
- Given $(X_i, \rho_i)_i$, $(X'_i, \rho'_i)_i$ s.t. $c_i = \text{Com}(ck^*, X_i, \rho_i) = \text{Com}(ck^*, X'_i, \rho'_i)$ and $(X_i)_i$ and $(X'_i)_i$ satisfy E then
 \[\text{Prove}(ck^*, (X_i, \rho_i)_i, E) \sim \text{Prove}(ck^*, (X'_i, \rho'_i)_i, E) \]
Groth-Sahai II

Setup on input the bilinear group output a commitment key ck

Com on input ck, $X \in \mathbb{G}$, randomness ρ output commitment c_X to X

Prove on input ck, $(X_i, \rho_i)_{i=1}^n$, equation E output a proof ϕ

Verify on input ck, \vec{c}, E, ϕ, output 0 or 1

Correctness Honestly generated proofs are accepted by Verify

Soundness ExtSetup outputs (ck, ek) s.t.

given \vec{c} and ϕ s.t. $\text{Verify}(ck, \vec{c}, E, \phi) = 1$ then $\text{Extract}(ek, \vec{c})$

returns \vec{X} that satisfies E

Witness-Indistinguishability WISetup outputs ck^* indist. from ck s.t.

- $\text{Com}(ck^*, \cdot, \cdot)$ produces statistically hiding commitments i.e.
 \[
 \forall c \ \forall X \ \exists \rho : \text{Com}(ck^*, X, \rho) = c
 \]

- Given $(X_i, \rho_i)_i, (X'_i, \rho'_i)_i$ s.t. $c_i = \text{Com}(ck^*, X_i, \rho_i) = \text{Com}(ck^*, X'_i, \rho'_i)$ and $(X_i)_i$ and $(X'_i)_i$ satisfy E then
 \[
 \text{Prove}(ck^*, (X_i, \rho_i)_i, E) \sim \text{Prove}(ck^*, (X'_i, \rho'_i)_i, E)
 \]
Setup on input the bilinear group output a **commitment key** ck

Com on input ck, $X \in \mathbb{G}$, randomness ρ output **commitment** c_X to X

Prove on input ck, $(X_i, \rho_i)_{i=1}^n$, equation E output a **proof** ϕ

Verify on input ck, \vec{c}, E, ϕ, output 0 or 1

Correctness Honestly generated proofs are accepted by **Verify**

Soundness **ExtSetup** outputs (ck, ek) s.t.

given \vec{c} and ϕ s.t. $\text{Verify}(ck, \vec{c}, E, \phi) = 1$ then $\text{Extract}(ek, \vec{c})$ returns \vec{X} that satisfies E

Witness-Indistinguishability **WISetup** outputs ck^* indist. from ck s.t.

- $\text{Com}(ck^*, \cdot, \cdot)$ produces statistically hiding commitments i.e.
 $$\forall c \ \forall X \ \exists \rho : \text{Com}(ck^*, X, \rho) = c$$

- Given $(X_i, \rho_i)_i, (X'_i, \rho'_i)_i$ s.t. $c_i = \text{Com}(ck^*, X_i, \rho_i) = \text{Com}(ck^*, X'_i, \rho'_i)$ and $(X_i)_i$ and $(X'_i)_i$ satisfy E then
 $$\text{Prove}(ck^*, (X_i, \rho_i)_i, E) \sim \text{Prove}(ck^*, (X'_i, \rho'_i)_i, E)$$
Motivation: Anonymous Proxy Signatures

Groth-Sahai Witness-Indistinguishable Proofs

Automorphic Signatures
Motivation

- Groth-Sahai proofs allow us to
 - commit to (encrypt) group elements and to
 - prove that they satisfy PPEs

Opener’s public and decryption key: \((ck, ek) \leftarrow \text{ExtSetup}\)

To instantiate generic construction, we need signature scheme s.t.
- signatures are group elements
- verification by PPE
- able to sign public keys
- EUF-CMA
Motivation

- Groth-Sahai proofs allow us to
 - commit to (encrypt) group elements and to
 - prove that they satisfy PPEs

Opener’s public and decryption key: \((ck, ek) \leftarrow \text{ExtSetup}\)

- To instantiate generic construction, we need signature scheme s.t.
 - signatures are group elements
 - verification by PPE
 - able to sign public keys
 - EUF-CMA
Motivation

- Groth-Sahai proofs allow us to
 - commit to (encrypt) group elements and to
 - prove that they satisfy PPEs

Opener’s public and decryption key: \((ck, ek) \leftarrow \text{ExtSetup}\)

To instantiate generic construction, we need signature scheme s.t.
- signatures are group elements
- verification by PPE
- able to sign public keys
- EUF-CMA
Motivation

- Groth-Sahai proofs allow us to
 - commit to (encrypt) group elements and to
 - prove that they satisfy PPEs

 Opener’s public and decryption key: \((ck, ek) \leftarrow \text{ExtSetup}\)

To instantiate generic construction, we need signature scheme s.t.
- signatures are group elements
- verification by PPE
 - able to sign public keys
 - EUF-CMA
Motivation

- Groth-Sahai proofs allow us to
 - commit to (encrypt) group elements and to
 - prove that they satisfy PPEs

Opener’s public and decryption key: \((ck, ek) \leftarrow \text{ExtSetup}\)

- To instantiate generic construction, we need signature scheme s.t.
 - signatures are group elements
 - verification by PPE
 - able to sign public keys
 - EUF-CMA
Motivation

- Groth-Sahai proofs allow us to
 - commit to (encrypt) group elements and to
 - prove that they satisfy PPEs

 Opener’s public and decryption key: \((ck, ek) \leftarrow \text{ExtSetup}\)

To instantiate generic construction, we need signature scheme s.t.
- signatures are group elements
- verification by PPE
- able to sign public keys
- EUF-CMA
Groth-Sahai proofs allow us to
- commit to (encrypt) group elements and to
- prove that they satisfy PPEs

Opener’s public and decryption key: $(ck, ek) \leftarrow \text{ExtSetup}$

To instantiate generic construction, we need signature scheme s.t.
- signatures are group elements
- verification by PPE
- able to sign public keys
- EUF-CMA

Automorphic Signatures
Boneh-Boyen Signatures

The \(q \)-Strong Diffie-Hellman Problem (SDH) [BB04]

Given \((G, xG, x^2G, \ldots, x^q G) \in G^{q+1}\) for \(x \leftarrow \mathbb{Z}_p^*\), output \((\frac{1}{x+c} G, c) \in G \times \mathbb{Z}_p\).

Boneh-Boyen Weak Signatures

Given \(G, xG \in G\) and \(q-1\) distinct pairs \((\frac{1}{x+c_i} G, c_i) \in G \times \mathbb{Z}_p\), output a new pair \((\frac{1}{x+c} G, c) \in G \times \mathbb{Z}_p\).

Boneh-Boyen Short Signatures

- Secret key \((x, y) \in \mathbb{Z}_p^2\), public key \(X = xG, Y = yG\)
- Sign \(m \in \mathbb{Z}_p\): choose \(r \leftarrow \mathbb{Z}_p\); signature: \((A = \frac{1}{x+m+ry} G, r)\)
- Verify \((A, r)\) on \(m\) under \((X, Y)\) by checking \(e(A, X + mG + rY) = e(G, G)\)
The q-Strong Diffie-Hellman Problem (SDH) [BB04]

Given $(G, xG, x^2G, \ldots, x^qG) \in \mathbb{G}^{q+1}$ for $x \leftarrow \mathbb{Z}_p^*$, output $(\frac{1}{x+c}G, c) \in \mathbb{G} \times \mathbb{Z}_p$.

Boneh-Boyen Weak Signatures

Given $G, xG \in \mathbb{G}$ and $q - 1$ distinct pairs $(\frac{1}{x+c_i}G, c_i) \in \mathbb{G} \times \mathbb{Z}_p$, output a new pair $(\frac{1}{x+c}G, c) \in \mathbb{G} \times \mathbb{Z}_p$.

Boneh-Boyen Short Signatures

- Secret key $(x, y) \in \mathbb{Z}_p^2$, public key $X = xG$, $Y = yG$
- Sign $m \in \mathbb{Z}_p$: choose $r \leftarrow \mathbb{Z}_p$; signature: $(A = \frac{1}{x+m+ry}G, r)$
- Verify (A, r) on m under (X, Y) by checking $e(A, X + mG + rY) = e(G, G)$
Boneh-Boyen Signatures

The \(q \)-Strong Diffie-Hellman Problem (SDH) [BB04]

Given \((G, xG, x^2 G, \ldots, x^q G) \in \mathbb{G}_q^{q+1}\) for \(x \leftarrow \mathbb{Z}_p^*\), output \((\frac{1}{x+c} G, c) \in \mathbb{G} \times \mathbb{Z}_p\).

Boneh-Boyen Weak Signatures

Given \(G, xG \in \mathbb{G}\) and \(q - 1\) distinct pairs \((\frac{1}{x+c_i} G, c_i) \in \mathbb{G} \times \mathbb{Z}_p\), output a new pair \((\frac{1}{x+c} G, c) \in \mathbb{G} \times \mathbb{Z}_p\).

Boneh-Boyen Short Signatures

- **Secret key** \((x, y) \in \mathbb{Z}_p^2\), public key \(X = xG, Y = yG\)
- **Sign** \(m \in \mathbb{Z}_p\): choose \(r \leftarrow \mathbb{Z}_p\); signature: \((A = \frac{1}{x+m+ry} G, r)\)
- **Verify** \((A, r)\) on \(m\) under \((X, Y)\) by checking \(e(A, X + mG + rY) = e(G, G)\)
Boneh-Boyen Signatures

The q-Strong Diffie-Hellman Problem (SDH) [BB04]

Given $(G, xG, x^2G, \ldots, x^qG) \in \mathbb{G}^{q+1}$ for $x \leftarrow \mathbb{Z}_p^*$, output $(\frac{1}{x+c}G, c) \in \mathbb{G} \times \mathbb{Z}_p$.

Boneh-Boyen Weak Signatures

Given $G, xG \in \mathbb{G}$ and $q-1$ distinct pairs $(\frac{1}{x+c_i}G, c_i) \in \mathbb{G} \times \mathbb{Z}_p$, output a new pair $(\frac{1}{x+c}G, c) \in \mathbb{G} \times \mathbb{Z}_p$.

Boneh-Boyen Short Signatures

- Secret key $(x, y) \in \mathbb{Z}_p^2$, public key $X = xG$, $Y = yG$
- Sign $m \in \mathbb{Z}_p$: choose $r \leftarrow \mathbb{Z}_p$; signature: $(A = \frac{1}{x+m+ry}G, r)$
- Verify (A, r) on m under (X, Y) by checking
 \[e(A, X + mG + rY) = e(\frac{1}{x+m+ry}G, (x + m + ry)G) = e(G, G) \]
Boneh-Boyen Weak Signatures

Given $G, X := xG \in G$ and $q - 1$ distinct pairs $(\frac{1}{x+c_i}G, c_i) \in G \times \mathbb{Z}_p$, output a new pair $(\frac{1}{x+c}G, c) \in G \times \mathbb{Z}_p$.
The Hidden SDH [BW07]

Given $G, H, X := xG \in \mathbb{G}$ and $q - 1$ distinct triples $(\frac{1}{x+c_i} G, c_i G, c_i H) \in \mathbb{G}^3$, output a new triple $(\frac{1}{x+c} G, cG, cH) \in \mathbb{G}^3$.
Variants of Boneh-Boyen

The Hidden SDH [BW07]

Given $G, H, X := xG \in \mathbb{G}$ and $q - 1$ distinct triples $(\frac{1}{x+c_i} G, c_i G, c_i H) \in \mathbb{G}^3$, output a new triple $(\frac{1}{x+c} G, cG, cH) \in \mathbb{G}^3$.

- All components are group elements
- Validity of a triple (A, C, D) is verifiable by PPEs:

\[
\begin{align*}
 e(A, X + C) &= e(G, G) \\
 e(C, H) &= e(G, D)
\end{align*}
\]
F, Pointcheval, Vergnaud: Transferable Constant-Size Fair E-Cash [CANS’09]

SDH implies hardness of the following:

Given $G, K, X := xG \in \mathbb{G}$ and $q - 1$ triples

$\left(\frac{1}{x+c_i} (K + v_i G), c_i, v_i \right) \in \mathbb{G} \times \mathbb{Z}_p^2$, output a new triple

$\left(\frac{1}{x+c} (K + v G), c, v \right) \in \mathbb{G} \times \mathbb{Z}_p^2$.

Asymm. Double Hidden SDH (ADHSDH)

Given $G, K, F, H, X := xG, Y := xH \in \mathbb{G}$ and $q - 1$ tuples

$\left(\frac{1}{x+c_i} (K + v_i G), c_i, v_i, F, H, v_i G, v_i H \right) \in \mathbb{G} \times \mathbb{Z}_p^2$, output a new tuple

$\left(\frac{1}{x+c} (K + v G), c, v, F, H, v G, v H \right) \in \mathbb{G} \times \mathbb{Z}_p^2$.

Georg Fuchsbauer (ENS) Automorphic Signatures UCL, 23.03.2010 22 / 26
Assumptions I

F, Pointcheval, Vergnaud: Transferable Constant-Size Fair E-Cash [CANS’09]

SDH implies hardness of the following:

Given $G, K, X := xG \in \mathbb{G}$ and $q - 1$ triples

$$\left(\frac{1}{x+c_i} (K+v_iG), c_i, v_i \right) \in \mathbb{G} \times \mathbb{Z}_p^2,$$

output a new triple

$$\left(\frac{1}{x+c} (K+vG), c, v \right) \in \mathbb{G} \times \mathbb{Z}_p^2.$$

Asymm. Double Hidden SDH (ADHSDH)

Given $G, K, F, H, X := xG, Y := xH \in \mathbb{G}$ and $q - 1$ tuples

$$\left(\frac{1}{x+c_i} (K + v_iG), c_iF, c_iH, v_iG, v_iH \right),$$

output a new tuple

$$\left(\frac{1}{x+c} (K + vG), cF, cH, vG, vH \right).$$
Assumptions II

Verification

\((A, C, D, V, W)\) satisfies

- \(e(A, Y + D) = e\left(\frac{1}{x+c} (K + vG), xH + cH\right) = e(K + V, H)\),
- \(e(C, H) = e(cF, H) = e(F, D)\)
- \(e(V, H) = e(vG, H) = e(G, W)\)
Verification

\((A, C, D, V, W)\) satisfies

- \(e(A, Y + D) = e\left(\frac{1}{x+c}(K + vG), xH + cH\right) = e(K + V, H)\),
- \(e(C, H) = e(cF, H) = e(F, D)\)
- \(e(V, H) = e(vG, H) = e(G, W)\)

(Weak) Flexible CDH (WFCDH)

Given \((G, aG, bG) \in \mathbb{G}^3\), output \((R, aR, bR, abR) \in \mathbb{G}^4\) with \(R \neq 0\).
Automorphic Signature

- Parameters: \((G, K, F, H, T) \leftarrow \mathbb{G}^5\), which define the message space as \(\mathcal{DH} := \{(mG, mH) \mid m \in \mathbb{Z}_p\}\).
- KeyGen: secret key \(x \leftarrow \mathbb{Z}_p\), public key \((X := xG, Y := yH)\)
- Sign \((M, N) \in \mathcal{DH}\): choose \(c, r \leftarrow \mathbb{Z}_p\), set
 \[A := \frac{1}{x+c}(K + rT + M), C := cF, D := cH, R := rG, S := rH\]
- A signature on a message \((M, N) \in \mathcal{DH}\) is valid iff
 \[e(A, Y + D) = e(K + M, H) e(T, S)\]
 \[e(C, H) = e(F, D)\]
 \[e(R, H) = e(G, S)\]
Automorphic Signature

- Parameters: \((G, K, F, H, T) \leftarrow \mathbb{G}^5\), which define the message space as \(DH := \{(mG, mH) | m \in \mathbb{Z}_p\}\).
- KeyGen: secret key \(x \leftarrow \mathbb{Z}_p\), public key \((X := xG, Y := yH)\)
- Sign \((M, N) \in DH\): choose \(c, r \leftarrow \mathbb{Z}_p\), set
 \[
 (A := \frac{1}{x+c}(K + rT + M), C := cF, D := cH, R := rG, S := rH)
 \]
- A signature on a message \((M, N) \in DH\) is valid iff
 \[
 e(A, Y + D) = e(K + M, H) \cdot e(T, S) \quad e(C, H) = e(F, D) \\
 e(R, H) = e(G, S)
 \]

The above scheme is EUF-CMA under ADHSDH and WFCDH.
Applications

Efficiency

- Messages and public keys in \mathbb{G}^2, signatures in \mathbb{G}^5
- Verification: 7 pairing evaluations
- Also instantiable in asymmetric bilinear groups

In combination with Groth-Sahai proofs, automorphic signatures enable efficient instantiations of generic concepts.
Applications

Efficiency

- Messages and public keys in \mathbb{G}^2, signatures in \mathbb{G}^5
- Verification: 7 pairing evaluations
- Also instantiable in asymmetric bilinear groups

In combination with Groth-Sahai proofs, automorphic signatures enable efficient instantiations of generic concepts.

- Round-Optimal Blind Signatures
- Group Signatures
- Anonymous Proxy Signatures with new features:
 - Delegator anonymity (by randomizing Groth-Sahai proofs)
 - Blind delegation (using blind signatures)
Thank you! 😊