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Abstract. Since its introduction, impossible differential cryptanalysis
has been applied to many ciphers. Besides the specific application of the
technique in various instances, there are some very basic results which
apply to generic structures of ciphers, e.g., the well known 5-round im-
possible differential of Feistel ciphers with bijective round functions.

In this paper we present a new approach for the construction and
the usage of impossible differentials for Generalized Feistel structures.
The results allow to extend some of the previous impossible differentials
by one round (or more), answer an open problem about the ability to
perform this kind of analysis, and tackle, for the first time the case of
non-bijective round functions.

Keywords: Impossible differential cryptanalysis, Miss in the middle,
Generalized Feistel, Matrix method.

1 Introduction

Impossible differential attack [3] is a method of using differential concepts in
cryptanalytic attacks. While regular differential cryptanalysis [5] exploits differ-
entials with as high probability as possible, impossible differential cryptanalysis
exploits differentials that cannot happen, i.e., have probability of zero. The actual
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F ⊕

Fig. 1. CAST-like Structure with Four Threads

use of the impossible differential resembles the one of a high probability differen-
tials: given a pair that may “satisfy” the differential, the adversary obtains the
subkey(s) suggested by the pair. Unlike differential cryptanalysis, where such a
subkey is more likely to be the right subkey, in impossible differential cryptanal-
ysis, once a subkey is suggested by a candidate pair, it is necessarily a wrong
one (and thus discarded).

To start an impossible differential attack, the adversary has to identify such
impossible differentials. Most of these differentials are constructed in a miss-
in-the-middle approach [4]. The approach is based on combining two probabil-
ity 1 truncated differentials that cannot coexist. For example, there is a generic
5-round impossible differential for Feistel constructions with a bijective round
function (first identified in [12]) of the form (0, α) �→ (0, α) (depicted in Figure 2).

A method for finding such impossible differentials is presented in [11] under
the name U-method. In this method, one can construct probability 1 truncated
differentials, which in turn leads to finding contradictions. An automated ver-
sion of the method is presented in [10]. The tool (called the matrix method).
The automated analysis shows several results for generalizations of the Feistel
cipher (the Generalized Feistel Network of [14], MARS-like constructions [6], and
CAST-like constructions [1]).

As an example, consider a CAST-like construction (depicted in Figure 1). The
matrix method suggests an impossible differential of n2 − 1 rounds for n ≥ 3
threads assuming that the round function is bijective. The impossible differential
has the form of (0, 0, . . . , 0, α) �→ (0, 0, . . . , 0, ω) for any non-zero α and ω, and
is based on the fact that the (n − 1)-round truncated differential starting at
(0, 0, . . . , 0, α) predicts a zero difference in the one before last word, while the
n(n− 1)-round truncated differential ending at (0, 0, . . . , 0, ω) predicts that the
same word has a non-zero difference.

The U-method was later improved in [13] to incorporate a much larger set
of contradictions. Such new set of contradictions may include the use of specific
differences in the input and the output (rather than truncated differences) or
conditions on XORing a few words together.

In this paper we take a deeper look into the construction of impossible dif-
ferentials. We start the analysis by considering a slightly different approach for
the analysis, a one which does not classify the state of the word as part of a small
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Table 1. Comparison of Impossible Differentials for Feistel Networks

Structure Number of Round Source
Words Rounds Function

Feistel 2 5 bijective [12]
Generalized Feistel Network 2 7 bijective [10]
Generalized Feistel Network 2n 3n+ 2 bijective [10]
CAST-like n n2 − 1 bijective [11]
CAST-like n n2 + 3 bijective [7,13]
MARS-like n 2n− 1 bijective [10]
MARS-like n 2n+ 3 bijective [13]
RC6-like 2n 4n+ 1 bijective [10]

CAST-like n n2 any Sect. 4
MARS-like n 2n any Sect. 4

set of values.1 Instead, we try to look at the specific differences that may form a
contradiction, taking the structure of the round function into account. The main
property we use is the existence of impossible differentials in the round function.

This allows us to extend the impossible differentials by an additional round,
leading to improved attacks on some structures of block ciphers. Moreover, follow-
ing the new point of view, one can even reduce the requirements from the round
function. For example, as part of our analysis, we can offer n2-round impossible
differentials for CAST-like ciphers, even if their round function is not bijective. We
note that our results contradict a claim made in [16], which claims that “generic”
impossible differentials for this structure exist only up to n2− 1 rounds. We com-
pare the previously known results with our new results in Table 1.

We continue and define the differential expansion rate of a round function for
a (set of) input difference(s). The rate tries to measure the speed in which the
set of possible differences evolves through invocations of the round function. To
some extent, it is the equivalent of the expanding rate of a graph.

We then study how to use our new impossible differential in an actual attack,
and how useful is the new impossible differential. We describe attacks using
our new extended impossible differentials, with the same time complexity as
previous attacks (under some natural conditions on the round function), and
covering more rounds.

The structure of this paper is as follows: In Section 2 we cover the basics
of differential cryptanalysis and impossible differential cryptanalysis. Section 3
discusses the previous results and the matrix method. In Section 4 we suggest a
new approach for constructing impossible differentials, and in Section 5 we show
that impossible differential attacks that use the previous impossible differentials
can be extended to more rounds when instantiated with our newly found im-
possible differentials (almost with no additional complexity). Finally, Section 6
concludes this paper.
1 The matrix method classifies the state of a word as one of five states: zero difference,

fixed difference, unknown non-zero difference, the XOR of a fixed difference with an
unknown non-zero difference, or unknown.



246 C. Bouillaguet et al.

2 Preliminaries

Differential cryptanalysis [5] is one of the corner stones of modern cryptanalytic
techniques. It was used to successfully attack block ciphers, hash functions, and
even stream ciphers. The core idea behind differential cryptanalysis is to look
at the development of differences through the encryption function rather than
at the actual values directly. This approach leads to a much stronger knowledge
of the adversary concerning the encryption process, as it allows “replacing” the
key addition with probabilistic behavior in the nonlinear parts of the cipher.

For sake of simplicity we shall concentrate on differential cryptanalysis used for
the cryptanalysis of block ciphers. In such a case, the adversary first finds a differ-
ential (or a differential characteristic) of high probability p, e.g., ΔIN → ΔOUT

with probability p. The differential can be for the full cipher, but in many cases,
a slightly shorter differential is used. After identifying the differential (charac-
teristic), the adversary asks for the encryption of O(1/p) pairs of plaintexts with
input difference ΔIN and collects the corresponding ciphertexts. Then, the ad-
versary tries to identify the subkey used in the last rounds of the cipher, by
partially decrypting the ciphertext pairs, or by analyzing the last rounds of the
differential characteristics. For the right subkey, it is expected that a few pairs
with difference ΔOUT appear, while the number of pairs with difference ΔOUT

is expected to be significantly lower for wrong guesses.
As the data complexity (and consequently, the time complexity) of differential

attacks are proportional to 1/p, the existence of high probability differentials is
considered a weakness of the block cipher. Hence, many block cipher designers
suggest methodologies to ensure that there are no differentials with high prob-
ability for (almost) the entire cipher. For example, in the case of AES [19], it
can be shown that any 4-round differential characteristic has probability not
higher than 2−150 [8] and that no 4-round differential with probability higher
than 2−113 exists [9].

At that point, it was observed that differential cryptanalysis, as a statistical
attack, uses the fact that the number of pairs counted for the right subkey guess
and the wrong subkey guesses differs. The standard differential attack assumes
that the number of pairs suggested by right subkey is higher than for a wrong
subkey, but it is also possible to mount an attack when the number of pairs
suggested by the right subkey is lower. This led to the introduction of impossible
differential attacks (first at [12] as a dedicated attack on the DEAL cipher, and
then as a general cryptanalytic tool at [3,4]). These attacks are based on finding
differentials whose probability is 0. Namely, for the right subkey guess no pairs
with output difference ΔOUT exist, while for wrong subkey guesses, such pairs
may be “discovered”.

Hence, the impossible differential attack is based on taking a set of plain-
text pairs, asking for their encryption, and then partially decrypting these pairs
under the subkey candidates. Once a subkey candidate suggests that a specific
ciphertext pair “satisfies” the differential, i.e., that ΔIN → ΔOUT has occurred,
we can be assured that this subkey is wrong and discard it.
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The miss-in-the-middle follows the fact that the input and output differences force the
output difference of the third round to be 0. At the same time, due to the bijectiveness
of the round function the input difference of the third round is necessarily non-zero.
The two cannot coexist, as the round function is bijective.

Fig. 2. A Generic 5-Round Impossible Differential for Feistel Ciphers with a Bijective
Round Function

The most successful method for constructing impossible differentials is the miss
in the middle method. In this method, a probability one truncated differential
ΔIN → ΔA and a probability one truncated differential in the backward direction
ΔB ← ΔOUT are identified, such thatΔA andΔB cannot coexist simultaneously.
For example, Figure 2 describes a 5-round Feistel construction with a bijective
round function, for which (α, 0) �→ (α, 0) is an impossible differential.

2.1 Notations

In this paper we use the following notations:

– n — denotes the number of threads in a given structure.
– w — denotes the size (in bits) of a given thread.
– α, β, . . . — denotes a non-zero difference.
– 0 — denotes a zero difference (in a thread).
– ? — denotes an unknown difference.
– →i, ←i — denotes the propagation of a (truncated) difference for i rounds

in the encryption/decryption direction.
– α � β — denotes the event that an input difference α to a round function
F may result in an output difference β, i.e., Prx[F (x)⊕ F (x⊕ α) = β] > 0.
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3 Previous Results and the Matrix Method

Similarly to looking for good differentials, the search for impossible differentials
is not an easy task. While good impossible differentials were found by hand
(e.g., the one of Figure 2 or the 24-round impossible differential of SKIPJACK
from [3]), it was suggested to try and automate the process of finding these
impossible differentials [10,11,13].

One tool, based on the U-method (of [11]), is the matrix method [10], a mech-
anism to identify truncated differentials of probability 1. The intermediate en-
cryption value is divided into words (or threads), where each such word can be
in one of five states, each associated with a number: a zero difference (denoted
by 0), a fixed non-zero difference (denoted by 1), a non-fixed non-zero difference
(denoted by 1∗), the XOR of a fixed non-zero difference with a non-fixed one
(denoted by 2), and an unknown difference (denoted by 2∗ or any other number
larger than 3, with or without ∗).

The tool targets mostly ciphers whose round function contains one nonlinear
function, which is in itself a bijective function. The round function is represented
as a matrix composed of 0’s, 1’s, and at most one special entry denoted by 1F .
The automated search starts with a vector {0, 1}n, which is multiplied by the
special matrix, repeatedly, to reveal the properties of the truncated difference
after each round.

The main idea behind the matrix multiplication, is to represent the possible
transitions in a way that conveys the actual difference in the state. The matrix
has size of n×n (for an n-thread construction). If thread i does not affect thread
j, then entry (i, j) of the matrix is 0. If thread i affects thread j, then the entry
is 1 (if thread i is XORed/copied into thread j) or 1F (if thread i is sent through
the nonlinear function F and the output is XORed or copied to thread j).

Now, one can define the arithmetics. For example, if the thread has state 0,
then it has no affect on other threads (independent of the operation). A thread
i whose state is 1, contributes 0, 1, or 1∗, to thread j when the corresponding
entry in the matrix is 0,1, or 1F , respectively. A thread i whose state is 1∗,
contributes 0, 1∗, or 1∗, when the corresponding entry in the matrix is 0,1, or
1F , respectively. Other states, α (or x∗), contribute 0, α (respectively, x∗), and
x+ 1, when the matrix is 0,1, or 1F , respectively.

Then, each new thread is summed under the following addition rules: 0+x = x,
1 + 1 = 1, 1 + 1∗ = 2, 1 + x = 2∗ (for x > 1 or x∗ > 1∗), and any other addition
just sums the actual numbers (and maintains the ∗). This gives the new state
after the round function, and one can compute as many rounds as possible, until
the entire intermediate encryption value is composed of only 2∗ and x > 2 (with
or without ∗), which denote the longest truncated differential of probability 1
that can be found and that conveys some “useful” characteristics.

It is also possible to run the same algorithm in the backward direction (with
the corresponding matrix), to obtain the longest truncated differential or prob-
ability 1 of that direction.

Given two truncated differentials ΔIN → ΔA and ΔB ← ΔOUT , one can scan
ΔA and ΔB to find inconsistencies. For example, if a word has a a non-zero
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F ⊕ F ⊕ F ⊕ F ⊕

Fig. 3. A Generalized Feistel Network (GFN4) with 8 Threads

F
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Fig. 4. A MARS-like Cipher

F ⊕ F ⊕

Fig. 5. An RC6-like Cipher

difference (fixed or not) in ΔA but a zero difference in ΔB, both ΔA and ΔB

cannot coexist, which leads to the miss in the middle differential ΔIN �→ ΔOUT .
This fact is described by the matrix method as pairs of contradicting states, e.g.,
0 and 1 (or 0 and 1∗) or 1 and 2.

The method was applied for several constructions: Generalized Feistel Net-
works (introduced in [14]), CAST-like ciphers (based on the CAST-256 block
cipher [1]), MARS-like ciphers (based on MARS [6]), RC6-like ciphers (based on
RC6 [17]), and various variants of SKIPJACK-like ciphers [18]. We outline the
structure of the first four structures in Figures 3, 1, 4, and 5, respectively.

For GFN with 4 threads (called GFN2), there exist several 7-round impossible
differentials assuming that the round function is bijective. For example, the input
difference (0, 0, 0, α) becomes after 6 rounds (?, ?, ?, δ), while the output differ-
ence (β1, 0, β2, 0) is decrypted by one round to the difference (β2, ?, 0, 0) which
cannot coexist. For sake of simplicity we use the notation (0, 0, 0, α)→6 (?, ?, ?, δ)
and (β2, ?, 0, 0)←1 (β1, 0, β2, 0) to denote these truncated differentials. Combin-
ing these two truncated differentials we obtain that (0, 0, 0, α) �→7 (β1, 0, β2, 0).

Similarly, for GFNn (with 2n threads) there exists a (3n+ 2)-round impossi-
ble differential of the form (0, 0, . . . , 0, α) �→3n+2 (β1, 0, β2, 0, 0, . . . , 0) follow-
ing the truncated differentials (0, 0, . . . , 0, α) →2n (?, ?, . . . , ?, δ, ?, ?, ?, ?) and
(?, ?, . . . , ?, 0, ?, ?, ?, ?)←n+2 (β1, 0, β2, 0, 0, . . . , 0).2

2 We note that in [10], a small typo suggests that the word which causes the contra-
diction is the fourth from the right while it is actually the fifth.
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For an n-thread CAST-like construction (for n ≥ 3), there exists an
(n2 − 1)-round impossible differential (0, 0, . . . , 0, α) �→n2−1 (β, 0, 0, . . . , 0) fol-
lowing the truncated differentials (0, 0, . . . , 0, α) →3n−3 (?, ?, . . . , ?, δ) and
(?, ?, . . . , ?, 0)←n2−3n+2 (β, 0, 0, . . . , 0).

For an n-thread MARS-like construction (again, for n ≥ 3), the two trun-
cated differentials (0, 0, . . . , 0, α) →n+1 (?, ?, . . . , ?, δ) and (?, ?, . . . , ?, 0) ←n−2

(β, 0, 0, . . . , 0) are combined into an 2n − 1-round impossible differential of the
form (0, 0, . . . , 0, α) �→2n−1 (β, 0, 0, . . . , 0).

In the case of RC6-like structure with n-threads, the impossible differential is
(0, 0, . . . , 0, αi, 0, . . . , 0) �→4n+1 (0, 0, . . . , 0, βi+1, 0, . . . , 0), where αi = βi+1 and
αi is positioned in the ith thread (and βi+1 in the (i + 1)’th thread) for some
odd i.

For details concerning the SKIPJACK-like variants, we refer the interested
reader to [10].

The UID-method of [13] is a generalization of the U-method. In this variant,
each word is not associated with a mere state, but its history (of the actual dif-
ference) is tracked. Using this history, it is possible to compose longer impossible
differentials, as one may look at the XOR of a few words at some point (which
may still contain non-trivial state information even after all words of the state
become “?”). We note that this method still relies on the fact that the round
function is bijective.

4 New Impossible Differentials

Our new impossible differentials on CAST-like and MARS-like ciphers follow a
more subtle analysis.

4.1 CAST-Like Ciphers

We first consider a 4-thread CAST-like cipher. In such a cipher, there is a 4-round
truncated differential with probability 1 of the form (0, 0, 0, α)→4 (β, 0, 0, α) for
non-zero α and some β (which may be zero if F is not bijective). At the same
time, there exists a 12-round truncated differential in the decryption direction
of the form (ω, ?, ?, φ) ←12 (ω, 0, 0, 0) for non-zero ω and some φ (which may
be zero if the round function is not bijective). We outline the differentials in
Table 2.

Observation 1 We note that the above two truncated differentials can coexist if
and only if β = ω. Hence, if an input difference α to the round function may not
cause an ω difference at the output, i.e., if α �� ω is an impossible differential
for F , then these two differentials cannot coexist, and we obtain a 16-round
impossible differential of the form (0, 0, 0, α) �→16 (ω, 0, 0, 0) for the cipher.

Given the structure of the round function F , it is possible to determine
whether α � ω through F . Consider for example the round function of DES,
for which determining whether α � ω can be easily done by checking each of
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Table 2. The Two Truncated Differentials Used in Our New 16-Round Impossible
Differential on 4-Thread CAST-like Ciphers

Round Difference Round Difference

Input (0) (0, 0, 0, α) Output (16) (ω, 0, 0, 0)

1 (0, 0, α, 0) 15 (0, ω, 0, 0)
2 (0, α, 0, 0) 14 (0, 0, ω, 0)
3 (α, 0, 0, 0) 13 (0, 0, 0, ω)
4 (β, 0, 0, α) 12 (ω,ψ, 0, 0)

11 (0, ω, ψ, 0)
10 (0, 0, ω,ψ)
9 (ψ, χ, 0, ω)
8 (ω, ?, χ, 0)
7 (0, ω, ?, χ)
6 (χ,φ, ω, ?)
5 (?, ?, φ, ω)
4 (ω, ?, ?, φ)

Differences are given after the round.

the 8 S-boxes separately. We note that in DES’ round function, given a pair of
random input/output differences from an S-box, there is an 80% chance of the
transition being possible. Hence, for a random α and ω, the probability of x � a
is only 0.88 ≈ 0.17.3

In the more general case, where the form of the round function is Fk(x) =
G(x ⊕ k), one can exhaustively try all possible pairs with input difference α,
and see if any of them leads to ω output difference. For a w-bit G(·) this takes
2w invocations of G(·), even if we only have a black box access to G(·) (but
not to Fk(·)). Of course, when the description of G(·) is known, this verification
is expected to be significantly faster. As we show in Section 5, even under the
worst case assumption, i.e., when G(·) is unknown, this has no real effect on the
actual attack that uses this impossible differential.

Moreover, we note that for a function G(·) of this form, the probability that
α � ω is at most 0.5 for a random4 α and ω (following the fact that the row
corresponding to α in the difference distribution table has at most half of its
entries as non-zero). If we assume that G(·) is a random function, then according
to [15] we can determine that about 60.6% of the possible (α, ω) pairs yield an
impossible differential.

An interesting point concerning the truncated differentials suggested above is
the fact that their existence is independent of the actual differential properties
of the round functions. Namely, in the case Fk(·) is not bijective, the above
truncated differentials still hold, and thus, also the impossible differential. More

3 Even though the actual inputs to the different S-boxes are independent of each other,
assuming the key is chosen randomly, the differences are not. Hence, the actual value
of the full round function may be slightly different.

4 Most impossible differential attacks face a large amount of (α, ω) pairs which are
generated in a random manner.
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precisely, even if different round functions are used, the only one of interest is
the one of round 4.

Now, one can easily generalize the above impossible differential, and can easily
see that for an n-thread CAST-like block cipher, the following is an impossible
differential: (0, 0, 0, . . . , α) →n2 (ω, 0, . . . , 0) if α �� ω following the n-round
truncated differential (0, 0, 0, . . . , 0, α) →n (β, 0, 0, . . . , 0, α) and the n(n − 1)-
round truncated differential (ω, ?, . . . , ?, φ)←n(n−1) (φ, 0, . . . , 0).

4.2 MARS-Like ciphers

The same approach can also be used to extend the impossible differential sug-
gested for a MARS-like structure. As before, we start with a 4-thread example,
and then generalize it. In such a cipher, there is a 5-round truncated differen-
tial (0, 0, 0, α)→5 (?, ?, ?, β) and a 3-round truncated differential (ω, 0, 0, 0)←3

(0, 0, 0, ω). As β is the output difference caused by an α input difference, the two
can coexist if and only if α � ω through the corresponding F (·). We outline the
differentials in Table 3.5

Table 3. The Two Truncated Differentials Used in Our New 8-Round Impossible
Differential on 4-Thread MARS-like Ciphers

Round Difference Round Difference

Input (0) (0, 0, 0, α) Output (8) (ω, 0, 0, 0)

1 (0, 0, α, 0) 7 (0, ω, 0, 0)
2 (0, α, 0, 0) 6 (0, 0, ω, 0)
3 (α, 0, 0, 0) 5 (0, 0, 0, ω)
4 (β, γ, δ, α)
5 (?, ?, ?, β)

Differences are given after the round.

We can of course generalize the above truncated differentials for the case
of an n-thread MARS-like cipher. The backwards differential is the same, i.e.,
5 We note that the differentials presented in Table 3 assume that the differences that

are XORed into each of the three threads is different (as in the real MARS there
are three different functions). When the same output is XORed into all the three
threads (in the real MARS, additions and subtractions are also used) then one can
construct a longer impossible differential for 9 rounds. In the forward direction we
use the following 5-round differential:

(0, 0, 0, α)→4 (β, β, β, α)→ (γ, γ, δ, β)

where δ = α ⊕ β ⊕ γ �= γ (whenever α �� α through F (·)), and in the backward
direction we use the following 4-round differential:

(ω,ψ, ψ, ψ)← (0, 0, 0, ω)←3 (ω, 0, 0, 0)

and it is easy to see that the two cannot coexist, as the XOR of the two intermediate
words cannot be the same.
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an (n − 1)-round differential of the form (0, 0, . . . , 0, ω) ←n−1 (ω, 0, . . . , 0) and
the forward differential is of the form (0, 0, . . . , 0, α)→n+1 (?, ?, . . . , ?, β) which
cannot coexist if α �� ω through the corresponding F (·).

4.3 A Larger Class of Impossible Differentials

We can extend the above impossible differentials by taking an even closer look
into the round function. Instead of looking for impossible differential in the round
function, we now look for impossible differentials in the iterated round function.
We can do this more delicate analysis based on the following definition of the
output difference set of an unkeyed function F (·) and a set S of input difference:

Definition 1. For a function F (·) and a set ΔS of input differences, we de-
fine the output difference set ΔF (ΔS) to be the set containing all the output
differences that are feasible by an input difference in ΔS.

Now, we can define the differential expansion rate of an unkeyed function f(·):

Definition 2. The differential expansion rate of a function F (·) is

max
|ΔS|>0

|ΔF (ΔS)|
|ΔS| ,

i.e., the maximal increase in the size of a difference set through the round
function.

We first note that the above definitions are set for unkeyed functions. However,
for round functions of the form Fk(x) = G(x ⊕ k), one can disregard the key
addition, and use the same results. Moreover, once the key is fixed, this is the
case for any round function. For the following discussion, we shall assume that
indeed F (·) is of that form.

Now, if the differential expansion rate of a function is small, thenΔF (ΔF ({α}))
for a fixed input difference α may not be large enough to cover all possible dif-
ferences. Assume that this is indeed the case for a round function F (·) (we later
describe an example of such a round function), then one can easily extend the
16-round impossible differential for CAST-like structure with 4 threads by one
round by using the following truncated differentials: (0, 0, 0, α) →5 (γ, 0, α, β)
and (ω, ?, ?, φ) ←12 (ω, 0, 0, 0). If ω �∈ ΔF (ΔF ({α})), one can easily see that
(0, 0, 0, α) �→17 (ω, 0, 0, 0).

More generally, if the differential expansion rate is c < 2w/2 then
|ΔF (ΔF ({x}))| < 2w, which means that there are many ω values for which
ω �∈ ΔF (ΔF ({α})). The smaller the value of c is, there is a larger set of dif-
ferences which are not in |ΔF (ΔF ({α}))|, and thus, allow for longer impossible
differentials.

These results can be generalized. If c < 2w/3, then the above arguments
can be repeated and the forward differential can be extended to a 6-round



254 C. Bouillaguet et al.

differential (0, 0, 0, α) →6 (δ, α, β, γ) where δ ∈ ΔF (ΔF (ΔF ({α}))), and if
ω �∈ ΔF (ΔF (ΔF ({α}))), then obviously both differentials cannot coexist. Ex-
tending this analysis to more rounds is feasible, by taking into consideration
that the next set of differences is XORed with a difference α (which affects the
difference set, but not its size).

We note that even when the differential expansion rate is large, there are still
cases where we can extend the 16-round impossible differential. This follows the
fact that the differential expansion rate may be determined by a special set of
differences that are not relevant for the impossible differential.

Consider for example a CAST-like structure with 4 threads, whose round
function is from 64 bits to 64 bits, and is based on applying eight 8-bit to 8-bit
S-boxes in parallel, accompanied by a linear transformation L (e.g., the round
function of Camellia [2]). We can even assume that this linear transformation
has a branch number of 9, which ensures that a difference in one S-box affects
all output bytes. Following the properties of differential cryptanalysis, consider
an input difference α with one active byte, where all other bytes have a zero
difference. ΔF ({α}), thus, contains at most 128 possible differences, each with
all the bytes active. For each such difference, applying F again, can yield at most
1288 = 256 possible differences. This implies that the size of ΔF (ΔF ({α})) is
upper bounded by 263, which allows the extension of the impossible differential
to 17 rounds.

If the linear transformation L does not have a maximal branch number b (e.g.,
the actual round function of Camellia uses a linear transformation with branch
number of 4), then we can extend the attack to 18 rounds. Indeed, given values
ω and θ with a single active S-box and ω = Lθ, we have ω /∈ ΔF (ΔF (ΔF ({α})))
for most choices of ω and u. This comes from the fact that α �� ω is an impossible
differential for F ◦F ◦F , following the miss in the middle principle. The differences
in ΔF ({ω}) all have the same pattern of b active S-boxes with some inactive
S-boxes. On the other hand, the differences in ΔF−1({ω}) have a single S-box
(the same as in θ), therefore the differences in ΔF−1(ΔF−1({ω})) all have the
same pattern of at least b active S-boxes, with some inactive ones. If ω and α
are chosen so that the pattern are incompatible, we have α �� ω for F ◦ F ◦ F .

There are two issues that need to be addressed using this new extension. The
first is what is the ratio of impossible combinations. In the first example given
above, the probability that for a random ω, and a random α of the form sug-
gested, the probability that ω �∈ ΔF (ΔF ({α})) is indeed at least 0.5, which still
offers a high probability of contradiction (which is needed to form the impossible
event).

The second concern is the ability to checkwhether a givenω is inΔF (ΔF ({α})).
Unfortunately, at the moment, even if F (·) is of the form Fk(x) = G(x⊕k), for an
unknownG(·), we are not aware of any algorithm, besides enumerating all possible
differences. At the same time, if the structure of the round function is known, it
can be used to offer an easy way to check whether ω ∈ ΔF (ΔF ({α}))

For example, in the above example (with a Camellia round function), it is
possible to use a meet-in-the-middle approach. First, apply the inverse linear
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transformation on ω, and obtain the required output differences in every S-box
of the second F (·). Then, by trying all 128 values of ΔF ({α}) one can check
whether the difference distribution table of the S-box offers this transition.

4.4 Changes to the Matrix Method

We note that it is possible to extend the matrix method of [10] such that it would
suggest impossible differentials of the above structure. The main idea behind the
change is to know for each non-fixed input difference the size of the set of possible
differences.

The simplest change would be to store for each initial state the size of possible
differences (which is 1 for each word, either active or not). Then, when an active
word passes through the round function, the size of the set is increased by a
factor of c, the differential expansion rate of the round function. Finally, when
XORing two active thread, one with t1 options, and one with t2 options, the
number of possible differences in the output is at most t1 · t2.

In the step when we look for contradictions, we first search for the previous
class of contradictions. Then, we also look for pairs of words, one in ΔA (with
t1 options) and one in ΔB (with t2 options), such that t1 · t2 < 2w, as for
such words, it is probable that the differences cannot coexist (the probability for
contradiction is 1− t1 · t2/2w).

4.5 A 7-Round Impossible Differentials for Feistel Block Ciphers
with Small Differential Expansion Rate

For some block ciphers with small differential expansion rate (or whose round
function allows selecting such differences), it is possible to suggest a 7-round
impossible differential. The impossible differential is based on two truncated
differentials of three rounds each (α, 0) →3 ({X}, ?) and ({Y }, ?) ←3 (ω, 0),
where

{X} = {α⊕ β|β ∈ ΔF (ΔF ({α}))}
and

{Y } = {ω ⊕ ψ|ψ ∈ ΔF (ΔF ({ω}))}.
If the differential expansion rate of the round function is smaller than 2w/4,

then it is expected that |{X}| · |{Y }| < 2n, which means that there are combina-
tions of X and Y which cannot coexist. We note that this impossible differential
does not assume that the round function is bijective. We note that the 7-round
impossible differential of DES mentioned in [4] can be found using this approach
(when starting with α and ω for which there is only one active S-box).

5 New Attacks Using the New Impossible Differentials

Given the new impossible differentials, we need to show that they can be used for
the analysis of block ciphers. As mentioned before, our impossible differentials
are more restricted than the previous ones, and thus they may be of a lesser
usage in attacks.
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To show the contrary, we consider an attack which uses the 16-round impos-
sible differential on 4-thread CAST-like structure and compare it to a similar
attack the uses the original 15-round impossible differential. As before, for sim-
plicity, we shall consider round functions of the form Fk(x) = G(x ⊕ k), which
are very common in block ciphers.

We first note that both the 16-round impossible differential and the 15-round
impossible differential share the same structure, i.e., (0, 0, 0, α) �→ (ω, 0, 0, 0).
Hence, the use of structures and early abort in the attacks is (almost) the same.

In Figure 6 we compare the 16-round attacks using the 15-round impossible
differential (there are two variants, in one the additional round is before the
impossible differential, and in the second it is after the impossible differential)
with the 17-round attacks using the 16-round impossible differential. As can be
seen, the attack algorithms are very similar, and the analysis of them is also
very similar. For example, the data complexity of the 16-round attack with an
additional round after the impossible differential is 2w · 22w chosen plaintexts,
while for the equivalent 17-round attack, the data complexity is 4w · 22w chosen
plaintexts.6 We compare the complexities of these attacks in Table 4.

Table 4. Comparison of the complexities of the (n+ 1)-round attacks

Rounds in Attacked Size of Complexity
Imp. Diff. Round Structures Data Time Memory

15 After 2w 2w · 22w 2w · 22w 2w

Before 22w w · 22w w · 22w 22w

16 After 2w 4w · 22w 4w · 22w 2w

Before 22w 2w · 22w 2w · 22w 22w

We note that the attack, requires the identification whether ω ∈ ΔG({α}).
We note that in the worst case, this requires calling G(·) about 2w times (with
all 2w−1 pairs of distinct pairs with input difference α). However, the number
of candidate α and ω’s is about O(w · 2w) (depending on the attack), whose
evaluation is faster than evaluating the full block cipher. Moreover, by collecting
the pairs of α, ω, one can check several pairs using the same invocations of G(·),
thus incurring very little overhead to the attack.

In cases where α and ω are known, one can discard the pairs for which α � ω
beforehand, and repeat the same steps as in the original attack. This allows
extending previous attacks by one more round, in exchange for at most twice
the data and time. In other cases, where there are more candidate pairs, and
when α and ω cannot be determined directly from the plaintext/ciphertext pairs,
one can postpone the verification whether ω �∈ ΔG({α}), to the step just before
discarding the full subkey. If such an attack uses an early abort approach (i.e.,
stops the analysis of a pair immediately as it found to be useless), it is possible

6 This assumption is made under the worst case assumption, where the function G(·)
is an almost perfect nonlinear permutation (for which half of the input/output
differences α and ω satisfy that ω ∈ ΔG({α})).
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16-Round Attacks 17-Round Attacks

– Pick structures of the form
(Ai, Bi, Ci, �) (where Ai, Bi, Ci are
fixed in the structure), and ask for
their encryption.

– Locate in each structure (inde-
pendently) ciphertext pairs whose
difference is (ψ, 0, 0, ω).

– For each remaining pair, discard
any subkey K16 that suggest that
the difference before the last round
is (ω, 0, 0, 0).

– Pick structures of the form
(A,B,C, �) (where Ai, Bi, Ci are
fixed in the structure), and ask for
their encryption.

– Locate in each structure (inde-
pendently) ciphertext pairs whose
difference is (ψ, 0, 0, ω), and de-
note their plaintext difference by
(0, 0, 0, α).

– If ω ∈ ΔF ({α}), discard the pair.
– For each remaining pair, discard

any subkey K17 that suggest that
the difference before the last round
is (ω, 0, 0, 0).

– Pick structures of the form
(�, �, Ci,Di) (where Ci,Di are
fixed in the structure), and ask for
their encryption.

– Locate in each structure (inde-
pendently) ciphertext pairs whose
difference is (ω, 0, 0, 0), and their
plaintext difference is (α, β, 0, 0).

– For each remaining pair, discard
any subkey K1 that suggest that
the difference after the first round
is (0, 0, 0, α).

– Pick structures of the form
(�, �, Ci,Di) (where Ci, Di are
fixed in the structure), and ask for
their encryption.

– Locate in each structure (inde-
pendently) ciphertext pairs whose
difference is (ω, 0, 0, 0), and their
plaintext difference is (α, β, 0, 0).

– If ω ∈ ΔF ({α}), discard the pair.
– For each remaining pair, discard

any subkey K1 that suggest that
the difference after the first round
is (0, 0, 0, α).

Fig. 6. Attacks of (n+ 1) rounds using an n-round impossible differentials

to show that performing this check only when ω and α are both known, again
increases the data and time by a factor of two at most.

We conclude that the new attacks are indeed one round longer (when the
impossible differential is one round longer), and can be made longer, depending
on the exact impossible differential. At the same time, the data and time com-
plexities of the attacks increase by at most factor of two (the accurate increase
is the 1/p where p is the ratio of non-zero entries in the difference distribution
of G(·)).

Finally, we note that when more complex impossible differentials are used,
the same results apply, as long as the differential expansion rate of G(·) is small
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enough, or in the cases where the structure of G(·) allows quick verification of
the existence of contradiction.

6 Summary and Conclusions

In this paper we show how to extend several impossible differentials for gener-
alized Feistel schemes by one or more round, using a more subtle analysis of the
round function. We follow and show that attacks which are based on these new
impossible differentials require almost the same data and time complexity as the
previous attacks, which proves that these impossible differentials are not only of
theoretical interest, but can also be used in the analysis of block ciphers.

The new measure we introduced, the differential expansion rate of a round
function, is expected to motivate block ciphers designers to re-think some of the
basic approaches in block cipher design. For example, it is commonly believed
that even if only a small amount of nonlinearity is used in the round function,
then the cipher can still be secure. While this belief is not necessarily contradicted
by our findings, we do show that it is possible to exploit this small nonlinearity
in more complex attacks, such as impossible differential attacks, a combination
that was not suggested before.

Additionally, our results may suggest that constructions which take the oppo-
site approach than MARS, i.e., strong outer rounds with weaker inner rounds,
may be susceptible to impossible differential attacks. This follows the fact that
the development of difference sets that interest us, happen not in the outer
rounds, but instead in the inner rounds.
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