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Abstract. This paper formalizes the security adversarial games for on-
line symmetric cryptosystems in a unified framework for deterministic
and probabilistic encryption schemes. On-line encryption schemes allow
to encrypt messages even if the whole message is not known at the begin-
ning of the encryption. The new introduced adversaries better capture
the on-line properties than classical ones. Indeed, in the new model, the
adversaries are allowed to send messages block-by-block to the encryp-
tion machine and receive the corresponding ciphertext blocks on-the-fly.
This kind of attacker is called blockwise adversary and is stronger than
standard one which treats messages as atomic objects.
In this paper, we compare the two adversarial models for on-line en-
cryption schemes. For probabilistic encryption schemes, we show that
security is not preserved contrary to for deterministic schemes. We prove
in appendix of the full version that in this last case, the two models are
polynomially equivalent in the number of encrypted blocks. Moreover in
the blockwise model, a polynomial number of concurrent accesses to en-
cryption oracles have to be taken into account. This leads to the strongest
security notion in this setting. Furthermore, we show that this notion is
valid by exhibiting a scheme secure under this security notion.

1 Introduction

In 2002, Joux, Martinet and Valette introduce the blockwise adaptive attacks
(BA) in [17], in order to better model attackers in the real world. This adversarial
model is particularly relevant to study the security of on-line schemes where
output blocks are viewed gradually by the adversary since for example the whole
encrypted message cannot be stored by the encryption machine. Indeed, usually
in order to encrypt a message M with a symmetric scheme, M is first split into
blocks of the length of the block cipher: M = M [1]M [2] . . .M [l]. An encryption
scheme is said to be on-line if the encryption of the block M [i] only depends
on the previous blocks M [1],M [2], . . . ,M [i] and not on the next ones M [i +
1] . . .M [l]. Consequently, the encryption function can compute and return C[i]
before the introduction of M [i+1] . . .M [l]. There exist a lot of on-line encryption
schemes such as ECB, CBC, OFB, CFB [19] or OCB [1]. However, some schemes



require a pre-treatment on the whole plaintext before the encryption process [20]
or require two encryption passes in two directions [16], and thus are not on-line.

In this paper, we propose to study the relations between the security notions
in the standard and blockwise models for probabilistic and deterministic on-line
encryption schemes.

1.1 Standard vs. Blockwise Adversarial Model

The standard attack model for the CPA security is message oriented : i.e. the
messages are viewed as atomic object which cannot be split into blocks. Thus,
adversaries can only be adaptive between the messages. This model correctly cap-
tures the interactions of an adversary with an encryption machine for schemes
which require the whole plaintext before to start the encryption process or im-
plementations that can record the entire plaintext before the beginning of the
encryption.

However, sometimes the encryption process has to be started even if the entire
plaintext is not known. For example, in real-time applications, the cryptographic
device cannot store the whole plaintext before the starting of the encryption.
Consequently, on-line encryption schemes are useful in such scenario. Moreover,
in many practical applications, cryptographic devices (smart cards) are memory
restricted. Then, if messages are too large, they cannot be stored in the crypto-
graphic module before the beginning of the encryption process. Therefore, the
message must be sent block by block to the cryptographic module which returns
on-the-fly the output block C[i], say just after the query of the input block M [i]
in some implementations. As a consequence, the adversary model needs to be
changed to take into account attackers querying messages block by block. In
the BA model, attackers are more adaptive than standard adversaries: they are
adaptive during the encryption query, i.e. between each block of messages, and
not only between the encryption queries, i.e. between the messages. Hence the
name of “blockwise” adversaries. Obviously the BA model is stronger than the
standard one. In the sequel, we respectively denote BCPA and CPA adversaries
in the BA and standard models.

It is important to thwart such adversaries since they can lead to theoretical
attacks on traditional cryptosystems, such as on the CBC encryption mode or
on the authenticated encryption mode presented by Jutla [17]. In [3], Bellare
et al. have proved that the CBC encryption scheme is secure in the standard
model up to the encryption of 2n/2 blocks, where n denotes the block length
of a block cipher. However, in [17], Joux, Martinet and Valette have presented
a new simple attack showing that the CBC encryption scheme is not secure in
the BA model after only two encrypted blocks. This kind of adversary is mainly
meaningful in the private-key setting when long messages are encrypted. It is
worth noticing that blockwise adversaries are not only of theoretical interest
as the attacks in [17] seem to show. In [17], the attacks invalidate the security
proof by building distinguisher but do not allow to recover the secret key or
to totally break the scheme. However, it is easy to show that for example the
CBC encryption scheme in the BA model is as sensible as the ECB mode in the

2



standard model against a key recovery attack since the adversary can adapt his
queries to the block cipher by xoring its queries to the previous output blocks.

1.2 Backgrounds and Previous Results

Usually, in cryptography, security notions are defined by combining a security
goal and an attack model [4]. Different security goals have been proposed so far,
such as indistinguishability of ciphertexts (IND), one-wayness, non-malleability,...
For example, semantic security [14] formalizes the adversary’s inability to learn
any information about a plaintext M underlying a challenge ciphertext C. This
captures a strong notion of privacy and is also defined as indistinguishability of
ciphertexts. In the symmetric setting of interest to us, IND has been redefined
as left-or-right (LOR), real-or-random (ROR), and find-then-guess (FTG) indis-
tinguishability. All these latter notions, described in [3], encompass the same
security definition. Bellare et al. in [3] have defined several security goals, while
Katz and Yung, in [18], present a complete characterization of the security no-
tions for encryption scheme in the standard model. Based on these two works,
we examine the relations between the standard and the blockwise models.

The blockwise model has been introduced at Crypto 2002 by Joux, Martinet
and Valette in [17]. They show that several encryption schemes such as the CBC
and IACBC are not secure in the BA model. At FSE 2003, Fouque, Martinet
and Poupard in [10] show that a slight variant of the on-line CBC encryption
scheme, and the CFB mode of operation can be proved secure against blockwise
chosen plaintext attack. For this, they introduce a strong security model. We
show here that this model is the strongest one. At SAC 2003, Fouque et al. in [9]
study the security of authenticated on-line encryption mode against blockwise
chosen ciphertext attacks. Finally, at RSA Conf 2004, Boldyreva and Taesombut
introduced new security notions for chosen-ciphertext attacks in [6]. We will not
here take into account such adversaries due to lack of places.

1.3 Our Results

Several papers have considered blockwise adversaries either in order to attack
some schemes such as in [17] or in order to prove security against such adversaries
as in [10, 9, 7]. Our aim is to study the relations between the security notions
in the standard model and in the blockwise model. Therefore, in section 2 we
define more formally several security notions in order to study the relationship
between these notions and the related notions in the standard attacker model.
Then, in section 3, we study relations between the FTG and LOR security goals
for blockwise adaptive chosen plaintext attacks (BCPA) and standard chosen
plaintext attacks (CPA). First of all, in theorem 1, we generalize the result stating
that security in the standard model does not imply security in the blockwise
model. We also show that an equivalence for probabilistic schemes does not hold
for on-line encryption schemes against the new adversarial model. In [18], Katz
and Yung have mainly analyzed the relations between the non-malleability and
the FTG notions for different adversaries having access or not to encryption or
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decryption oracles. For the FTG security game, they have proved that oracle
accesses only before the challenge phase is equivalent to oracle accesses before
and after this phase. We show in theorems 2 and 3 that this equivalence no
longer holds in the BA model.

Furthermore, the equivalence of the LOR and FTG security goal is not security
preserving. In fact, the main results of Bellare et al. in [3] of interest for us about
probabilistic schemes are that LOR is the strongest security notion and that
LOR and FTG are not security preserving but are polynomially-equivalent in the
number of messages. We show in theorem 5 (section 3) that LOR and FTG are
not security preserving in the BA model. We show that in the BA model two
definitions of LOR exist. The stronger one corresponds to adversaries which can
concurrently access the oracles. This is the strongest security notion we define.
Moreover, we also exhibit in section 4 a special class of encryption schemes
for which the weakest LOR definition and FTG are exactly equivalent in both
models and not only polynomially related (theorems 4 and 6). This allows better
reductions for these schemes since security is preserved once we have a security
proof under the FTG security notion. Finally, in section 5, we show that the
security under concurrent blockwise adversarial can be achieved with the counter
mode for example.

In appendix A, we fully characterize the relations between the security of
ciphers in the BA model and in the standard one and prove that for on-line
ciphers, also known as deterministic schemes, the two models are polynomially-
equivalent in the number of encrypted blocks. However, this reduction does not
preserve the security since it is quadratic in the number of encrypted blocks.
Furthermore, we show that the bound is tight by exhibiting an on-line cipher
for which the security in the BA adversary model is not guaranteed if the cipher
encrypts more than N blocks although the security in the standard model is
preserved up to the encryption of (N − 1)(N − 2)/2 blocks.

1.4 Notations

In the rest of this paper, we use standard notations and conventions for writing
probabilistic algorithms and experiments. If A is a probabilistic algorithm, then
A(x1, x2, . . . ; r) is the result of running A on inputs x1, x2, . . . and coins r. We let
y ← A(x1, x2, . . . ; r) denote the experiment of picking r at random and letting y
be A(x1, x2, . . . ; r). If S is a finite set then x← S is the operation of picking an
element uniformly from S. We say that y can be output by A(x1, x2, . . .) if there is
some r such that A(x1, x2, . . . ; r) = y. If p(x1, x2, . . .) is a predicate, the notation
Pr[x1 ← S;x2 ← A(x1, y2, . . .); . . . : p(x1, x2, . . .)] denotes the probability that
p(x1, x2, . . .) is true after ordered execution of the listed experiments. In the
sequel, q denotes the number of message queries and µ denotes the total number
of blocks queried. We note by Dd,n the set of d-bit strings, where d is a multiple
of n, and by Permn, the set of permutations on n-bit blocks.
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2 Security notions for on-line encryption schemes

2.1 Description of on-line encryption schemes

We assume that if C = C[0] . . . C[l] is the encryption of M = M [1]M [2] . . ., then
C[0] represents some information used to randomize the encryption process such
as the initialization vector in the CBC encryption mode. Encryption of M [i] is
denoted by C[i]. This formalism is not restrictive and most of the encryption
schemes satisfy it. Moreover, it can be adapted to more exotic schemes.

A (symmetric) on-line encryption scheme SE = (K, E ,D) consists in three
algorithms.

– The randomized key generation algorithm K takes as input a security pa-
rameter k ∈ N and returns a key k; we write k

R← K(k).
– The encryption algorithm E can be randomized or stateful. It takes the key

k and a plaintext M and returns a ciphertext C; we write C
R← Ek(M). (If

randomized it flips new coins on each invocations. If stateful, it uses and then
updates a state that is maintained across invocations such as a counter.)
Moreover, on-line encryption schemes can encrypt block M [i] using only
M [1],M [2], . . . ,M [i].

– The decryption algorithm D is deterministic and stateless. It takes the key
k and a string C and returns either the corresponding plaintext M or the
symbol ⊥; we write x ← Dk(C) where x ∈ {0, 1}∗ ∪ {⊥}. We require that
Dk(Ek(M)) = M for all M ∈ {0, 1}∗. Moreover, on-line decryption can de-
crypt C[i] only using C[0], . . . , C[i].

2.2 Security notions for on-line encryption schemes

In this section, we adapt the standard security notions for symmetric encryption
schemes to the BA model. Find-Then-Guess. Semantic security captures the

intuitive notion of privacy for an encrypted text. The formulation of semantic
security stipulates that given a ciphertext, a polynomially-bounded adversary
cannot gain any information about the corresponding plaintext (except maybe
its length). The Find-Then-Guess (FTG) goal is an equivalent security notion, as
shown in [3]. The adversary A, viewed as three sub-adversaries A = (A1, Ac, A2),
tries to win the following game: in the find phase, A1 tries to get some infor-
mation and returns some state information in s0. Then in the challenge phase,
Ac gradually submits two messages M0 and M1 to the encryption oracle which
chooses a random bit b at the beginning of the encryption process, encrypts the
blocks of Mb and returns the corresponding blocks Cb to Ac in an interactive
manner. Finally in the guess phase, A2 tries to distinguish whether Cb is the
encryption of M0 or M1. In the standard model, the adversary A1 chooses the
messages M0 and M1. In the BA model, we need to assume that in some cases,
the two messages are chosen by the adversary Ac since this new attacker is more
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adaptive and can choose the two messages either at the beginning of the chal-
lenge phase or during it. We add the adversary Ac in order to take into account
the two adversarial models in a single definition.

In the FTG game, A may have access to different oracles during each phase. To
avoid obfuscating security notions, we only define the three most representative
notions: if A is blockwise adaptive in the find phase, then we write BCPA-P1, or in
the find and guess phases, then we write BCPA-P2, or during the challenge phase
and in the find and guess phases, and then we write BCPA-D. The adversary
advantage in winning the FTG game in these different settings for a symmetric
scheme Π is given by:

Advftg−atk
Π,A (k) def=

∣∣∣∣∣∣2 · Pr

k← K(1k); b← {0, 1}; s0 ← AO1
1 (1k);

(M0,M1, s1, C)← AOc
c (s0) :

AO2
2 (s1,M0,M1, C) = b

− 1

∣∣∣∣∣∣
where

if atk=BCPA-P1, then O1 = Ebl
k (.) and Oc = Ek(., ., b) and O2 = ε

if atk=BCPA-P2, then O1 = Ebl
k (.) and Oc = Ek(., ., b) and O2 = Ebl

k (.)
if atk=BCPA-D, then O1 = Ebl

k (.) and Oc = Ebl
k (., ., b) and O2 = Ebl

k (.)

We measure as Advftg−atk
Π (k, t, q, µ) = max

A
{Advftg−atk

Π,A (k)} the security of the

scheme Π, where the maximum is over all legitimate A having time-complexity t,
making to the oracle at most q encryption queries totaling µ blocks. A secret-key
encryption scheme is said to be FTG -secure against blockwise adaptive chosen
plaintext attack in the FTG sense if for all polynomial-time probabilistic adver-
saries, the advantage in this guessing game is negligible as a function of the
security parameter k.

Left-Or-Right Indistinguishability. In the LOR security goal, the adver-
sary is allowed to make queries of the form (M0,M1) where M0 and M1 are
equal-length messages. Two experiments are considered. In the first one, each
query is answered with the encryption of the left message; in the second, the
right message is encrypted. Formally, the adversary has access to the left-or-
right oracle EK(LR(., ., b)), where b ∈ {0, 1}: it takes as input pairs of messages
(M0,M1) and, if b = 0, it computes C ← EK(M0) and returns C; else it computes
C ← EK(M1) and returns C. We consider an encryption scheme to be “good” if
a “reasonable” adversary cannot obtain “significant” advantage in distinguishing
the cases b = 0 and b = 1 given access to the left-or-right oracle.

In the BA model, adversaries are allowed to feed the oracle block by block.
This introduces new interactions since the adversary can interleave encryption
blocks for different messages. Consequently, we present two LOR games. In the
first game, called LORS, for LOR with sequential message queries, the adversary
has to finish an encryption query before requesting the next message. In the
second game, called LORC, for LOR with concurrent accesses, the adversary can
interleaved the block queries of different messages.
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The Ebl,s
k (M0[i],M1[i], b) oracle is a LOR-block encryption oracle: the adver-

sary is allowed to query multiple pairs of messages (M j
0 ,M j

1 ) with the restriction
that it begins the encryption of a new pair of messages only if it has finished
the encryption of the previous pair. In the Ebl,c

k (M j
0 [i],M j

1 [i], b) oracle, we add
a session identifier sid since the adversary is not limited to sequence its pairs of
messages but can interleaved the session queries. The session identifier will be
the first element in the query. Equivalently, we can say that the adversary can
run multiple Ebl,c

k (sid,M j
0 [i],M j

1 [i], b) oracles concurrently.

Advlors−bcpa
Π,A (k) =

∣∣∣2 · Pr
[
k← K(1k); b← {0, 1} : AEbl,s

k (LR(.,.,b))(k) = b
]
− 1

∣∣∣
Advlorc−bcpa

Π,A (k) =
∣∣∣2 · Pr

[
k← K(1k); b← {0, 1} : AEbl,c

k (LR(.,.,.,b))(k) = b
]
− 1

∣∣∣
Therefore, we define the Advlors−bcpa

Π (k, t, q, µ) = max
A
{Advlors−bcpa

Π,A (k)}, where

the maximum is over all legitimate A having time-complexity t, making to
the concurrent oracles at most q encryption queries totaling µ blocks (resp.
Advlorc−bcpa

Π (k, t, q, µ) = max
A
{Advlorc−bcpa

Π,A (k)}). A secret-key encryption scheme

is said to be LOR-secure against blockwise adaptive chosen plaintext attack in
the LORS sense (resp. LORC) if, for all polynomial-time probabilistic adversaries,
the advantage in this guessing game is negligible as a function of the security
parameter k.

3 Relations between the standard and blockwise models

In this section, we study relations between the BA and standard models for
probabilistic schemes. Figure 1 presents the main relations we prove in the sequel.
First, it is easy to see that FTG-BCPA-P1 implies FTG-CPA-P1, FTG-BCPA-
P2 implies FTG-CPA-P2, and LORS-BCPA implies LOR-CPA since the standard
model can be easily simulated in the BA model. Secondly, it is also clear from the
definitions of FTG-BCPA-P1, FTG-BCPA-P2, FTG-BCPA-D, LORC and LORS,
that FTG-BCPA-P2 implies FTG-BCPA-P1, FTG-BCPA-D implies FTG-BCPA-
P2, and LORC-BCPA implies LORS-BCPA. Thirdly, using hybrid arguments, it
is easy to prove the implication between LORS-BCPA and FTG-BCPA-D (see in
appendix of the full version).

In a lot of counterexamples, we use encryption schemes Π that treat the
blocks such that there is no way to distinguish an input block from an output
(in particular no redundancy is added on the input blocks): ∀i ≥ 1, n = |C[0]| =
|M [i]| = |C[i]|.

We use the notation A⇒ B to indicate a security-preserving reduction from
notion A to notion B. A

q→ B indicates a reduction (not necessarily security-
preserving) from A to B. We also assume that E is a symmetric encryption
scheme operating on n-bit blocks with a k-bit secret key k.
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Fig. 1. Relations between the FTG and LOR security goals in the standard and BA mod-
els. In the figure, a plain arrow means that security in the first notion implies security in
the second, a hatched arrow means that the first notion does not imply the second, and
a dashed arrow indicates that the security between the two notions is not preserved.

3.1 Blockwise adversaries are stronger than standard ones

The following theorem shows the separation between BCPA and CPA adversaries
for the goals FTG-P1, FTG-P2 and LORS. It is a generalization of a result of
paper [17] which only state that FTG-CPA-P2 6⇒ FTG-BCPA-P2.

Theorem 1. [FTG-CPA-P1 6⇒ FTG-BCPA-P1 and FTG-CPA-P2 6⇒ FTG-BCPA-
P2 and LOR-CPA6⇒ LORS-BCPA] If there exists an on-line encryption scheme Π
which is secure in the sense of FTG-CPA-P1 (resp. FTG-CPA-P2 or LOR-CPA),
then there exists an on-line encryption scheme Π ′ which is also secure in the
sense of FTG-CPA-P1 (resp. FTG-CPA-P2 or LOR-CPA) but which is not FTG-
BCPA-P1 secure (resp. FTG-BCPA-P2 or BCPA-LORS) assuming the existence
of pseudo-random permutations.

Proof. Assume that there exists some FTG-CPA-P1 secure on-line encryption
scheme Π = (K, E ,D), since otherwise the theorem is vacuously true. We now
modify Π to a new on-line encryption scheme Π ′ = (K, E ′,D′) which is also
FTG-CPA-P1 secure but not secure in the FTG-BCPA-P1 sense:

Algorithm E ′k(M [i]) Algorithm D′k(C[i]‖v)
If i = 2 and M [2] = C[1] return Dk(C[i])

then return Ek(M [2])‖k
else return Ek(M [i])‖0k

In the description of Π ′, 0k denotes the concatenation of k zeros, and v denotes
a k-bit value.

A BCPA adversary can choose the message blocks so that the relation M [2] =
C[1] holds with probability 1. Hence a BCPA adversary obtains the secret key
and easily wins the FTG game. Thus Π ′ is not FTG-BCPA-P1 secure.
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However a CPA adversary cannot choose the blocks. Then the relation holds
with probability 1/2n for each message queried if Ek is a pseudo-random per-
mutation. Indeed, except if the relation M [2] = C[1] holds, the CPA adver-
sary gains no additional advantage in winning the FTG game against Π ′ than
against Π. Therefore, it is easy to show that if Π is secure, then so is Π ′:
Advftg−cpa−p1

Π′ (k, t, q, µ) ≤ Advftg−cpa−p1
Π (k, t, q, µ) + 2q/2n. We can prove this

result using different games as in [21]. The first game G0 is the real security
game and in the next game G1, the simulation is stopped as soon as the relation
M [2] = C[1] holds. The difference between the two games can be analyzed using
the probability of collision. Let F be the event M [2] = C[1], S be the event of
the adversary wins the FTG security game against Π and S′ be the event the
adversary wins the FTG security game against Π ′. As long as F does not occur,
Pr[S] = Pr[S′] so Pr[S∧¬F ] = Pr[S′∧¬F ]. Therefore, |Pr[S]−Pr[S′]| ≤ Pr[F ] as
a lemma in [21] shows. Then, it is easy to upper bound Pr[F ] by q/2n since each
call will be independent (a new random value is used for each message query)
and Advftg−cpa−p1

Π′ (k, t, q, µ) ≤ Advftg−cpa−p1
Π (k, t, q, µ) + 2q/2n. The factor of 2

comes from the fact that the advantage is twice the probability of success minus
1. Consequently, Π ′ is FTG-CPA-P1 secure but is not FTG-BCPA-P1 secure. This
conversion can be adapted to prove the separation between FTG-BCPA-P2 and
FTG-CPA-P2, and between LORS-BCPA and LOR-CPA.

3.2 Adaptive adversaries can be more powerful in the blockwise
model

Adaptive adversaries. Katz and Yung show in [18] that accesses to an adap-
tive encryption oracle after the challenge phase do not help an CPA adversary.
Formally, they show that FTG-CPA-P1 is polynomially-equivalent in the num-
ber of message queries to FTG-CPA-P2. In the BA model, this equivalence is no
longer valid and we prove that BCPA-P2 adversaries are strictly stronger than
BCPA-P1 ones since the CBC encryption mode is FTG-BCPA-P1 but not FTG-
BCPA-P2 according to [17]. Finally, it is worth noticing in the following proof
that if the condition M [4] = C[3] is not present, the scheme Π ′ is not FTG-CPA-
P1. Thus, as one could believe at first glance, the counterexample we use in the
proof cannot be applied in the standard model.

Theorem 2. [FTG-BCPA-P1 6⇒ FTG-BCPA-P2] If there exists an on-line en-
cryption scheme Π which is FTG-BCPA-P1 secure, then there exists an on-line
encryption scheme Π ′ which is also secure FTG-BCPA-P1 secure but not FTG-
BCPA-P2 secure assuming the existence of pseudo-random permutations.

Proof. Assume that there exists some FTG-BCPA-P1 secure on-line encryption
scheme Π = (K, E ,D), since otherwise the theorem is vacuously true. We now
modify Π to a new on-line encryption scheme Π ′ = (K, E ′,D′) which is also
FTG-BCPA-P1 secure but not secure in the FTG-BCPA-P2 sense. The new on-
line encryption scheme Π ′ = (K, E ′,D′) is defined as follows:

9



Algorithm E ′k(M [i]) Algorithm D′k(C[i]‖b′)
If (i = 4) ∧ (M [4] = C[3]) ∧ (Dm

k (M [2]‖M [3]) = M [1]) return Dk(C[i])
then return Ek(M [4])‖1

else return Ek(M [i])‖0
where Dm

k (C) denotes the decryption of the whole ciphertext C using the
secret key k and not only as the decryption of one block of the ciphertext. More
precisely, in the above description, the block M [2] is treated for example as the
initialization vector C[0] and M [3] is the encryption of the first block.

Every BCPA adversary can choose the blocks of messages such that the relation
M [4] = C[3] holds with probability 1. We show that a FTG-BCPA-P2 adver-
sary A, can win its FTG game, i.e. distinguish between the encryption of M0

and M1. Now A tries to correctly guess the bit b. In the challenge phase, A
chooses two different random blocks {0, 1}n, M0[1] and M1[1] and sends them
to the encryption oracle which returns Cb[0]‖Cb[1]. In the guess phase, A sends
M [1] = M0[1] and receives C[0]‖C[1]. Then, A sends M [2] = Cb[0], receives
C[2], and sends M [3] = Cb[1] except the last bit and receives C[3]. Finally, A
sends M [4] = C[3] and the encryption oracle returns Ek(M [4])‖d. If d = 1, then
A has correctly guessed the bit b = 0, since Dm

k (M [2]‖M [3]) = M [1] (because
if b = 0, then Dm

k (Cb[0]‖Cb[1]) = M0[1]). Therefore A wins the FTG game with
probability 1. Hence a FTG-BCPA-P1 adversary B, which has not access to a
blockwise encryption oracle after the challenge phase cannot win the game with
significant advantage. Indeed, assume that there exists a FTG-BCPA-P1 adver-
sary A against scheme Π ′, then we will construct a FTG-BCPA-P1 attacker B
against scheme Π. The attacker B will simulate the challenger to the adversary
A. The event Dm

k (M [2]‖M [3]) = M [1] can appear in two situations: either at
random with probability 1/2n for each message, if Ek is a pseudo-random permu-
tation, or since the attacker B knows all encryption queries of A, he can decide
when this event occurs in the second case. Consequently, B is able to simulate
the encryption process to A except in the first case which appears with small
probability. Consequently, Π ′ is FTG-BCPA-P1 secure but is not FTG-BCPA-P2
secure.

Adaptive adversaries during the challenge phase. We also prove that
adversaries adaptive before, during and after the challenge phase, BCPA-D, are
stronger than adversary, BCPA-P2 adaptive before and after. The notion of
BCPA-D adversaries is equivalent to BCPA-P2 in the standard adversarial model
since messages are treated as atomic objects.

Theorem 3. [FTG-BCPA-P2 6⇒ FTG-BCPA-D] If there exists an on-line en-
cryption scheme Π which is FTG-BCPA-P2 secure, then there exists an on-line
encryption scheme Π ′ which is also FTG-BCPA-P2 secure but not FTG-BCPA-D
secure assuming the existence of pseudo-random permutations.

Proof. Assume that there exists some FTG-BCPA-P2 secure on-line encryption
scheme Π = (K, E ,D), since otherwise the theorem is vacuously true. We now
modify Π to a new on-line encryption scheme Π ′ = (K, E ′,D′) which is also
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FTG-BCPA-P2 secure but not FTG-BCPA-D secure. The new on-line encryption
scheme Π ′ = (K, E ′,D′) is a slight modification of the encryption function E
defined as follows:

Algorithm E ′k(M [i]) Algorithm D′k(C[i])
If i = 3 and M [2] = C[1] If i = 3 and M [2] = C[1]

then return M [3] then return C[3]
else return Ek(M [i]) else return Dk(C[i])

Clearly Π ′ is FTG-BCPA-P2 secure as Π as shown in the previous proofs. A
BCPA adversary can choose the blocks of messages such that the relation M [2] =
C[1] holds with probability 1 during the challenge phase. Therefore a FTG-
BCPA-D adversary A can distinguish between the encryption of M0 and M1: A
first sends (M0[1],M1[1]), gets C[0]‖C[1], and then queries (M0[2],M1[2]) where
M0[2] = C[1] and M0[2] 6= C[1]. Finally, he queries (M0[3],M1[3]) such that
M0[3] 6= M1[3]. Consequently, if he receives C[3] = M0[3], then b = 0, otherwise
b = 1. Hence Π ′ is FTG-BCPA-P2 secure but is not FTG-BCPA-D secure.

Relation between FTG and LOR in the BA model. In [3] Bellare et al.
prove that in the standard model FTG and LOR are polynomially-equivalent in
the number of encrypted queries. We prove here in the BA model that this rela-
tion holds between FTG-BCPA-D and LORS-BCPA. The proof is an adaptation
of [3] and uses the same hybrid argument (introduced in [12]) in the blockwise
setting. It is given in appendix of the full version.

Theorem 4. [LORS-BCPA ⇒ FTG-BCPA-D
q→ LORS-BCPA] For any scheme

SE = (K, E ,D),

Advftg−bcpa−d
SE (k, t, q, µ) ≤ Advlors−bcpa

SE (k, t, q, µ) ≤ q × Advftg−bcpa−d
SE (k, t, q, µ)

3.3 Concurrent adversaries

Finally, we show that LORC-BCPA is the strongest security notion in the block-
wise model. Concurrent adversaries have already been considered in other con-
texts such as zero-knowledge proofs in [8]. According to our knowledge, it is
the first time that concurrent adversaries appear in encryption schemes. In the
BA model and for the LOR game, this notion is natural.

Theorem 5. [LORS-BCPA6⇒ LORC-BCPA] If there exists an on-line encryption
scheme Π which is LORS-BCPA secure, then there exists an on-line encryption
scheme Π ′ which is also LORS-BCPA secure but not LORC-BCPA secure assum-
ing the existence of pseudo-random permutations.

Proof. Assume that there exists some LORS-BCPA secure on-line encryption
scheme Π = (K, E ,D), since otherwise the theorem is vacuously true. We now
modify Π to a new on-line encryption scheme Π ′ = (K′, E ′,D′) which is also
LORS-BCPA secure but not secure in the LORC-BCPA sense. The new on-line
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encryption scheme Π ′ = (K, E ′,D′) is a slight modification of the functions E
and D :

Algorithm E ′k(M [i])
If i = 3 and C[1] = Dm

k (M [2]‖M [3])
then return M [3]

else return Ek(M [i])
where Dm

k (M) denotes the decryption of the whole message M using the key k
and the decryption can be easily adapted.

Clearly Π ′ is LORS-BCPA secure as the initial scheme Π. Indeed, assume for
the sake of contradiction that there exists a LORS-BCPA adversary A′ against
Π ′. We must show that there also exists a LORS-BCPA adversary A against Π.
We have to simulate the challenger against A′. The only difference between the
two schemes is in the encryption of the third block if some relation occurs. The
relation can hold either by a correct guess of the adversary which is negligible if
Ek behaves as a pseudo-random permutation or if a collision occurs with previous
encryption queries. The last event is easily detectable by adversary A since all
encryption queries goes through A which forwards them to its challenger. Hence,
it is easy for A to not encrypt the third block if the relation occurs. In this case,
the simulation is quite perfect.

Any LORC-BCPA adversary can choose the message blocks such that the rela-
tion C[1] = Dm

k (M [2]‖M [3]) holds with probability 1. Indeed, a LORC-BCPA ad-
versary A begins the encryption of a pair of messages (M0,M1) by sending
(M0[1],M1[1]) to a first instance of the LOR-block encryption oracle which re-
turns Cb[0]‖Cb[1]. Then, he sends (M ′

0[1],M ′
1[1]) where M ′

0[1] = Cb[1] to a
second instance running concurrently and gets C ′

b[0]‖C ′
b[1]. He continues the

encryption of (M0,M1) by sending (M0[2],M1[2]) such that M0[2] = C ′
b[0] and

M1[2] is a random block. Finally, he queries (M0[3],M1[3]) with M0[3] = C ′
b[1].

A simple manipulation shows that if b = 0, then C0[1] = Dm
k (C ′

0[0]‖C ′
0[1]) and

consequently Ek(M0[3]) = M0[3]. Therefore Π ′ is LORS-BCPA secure but is not
LORC-BCPA secure.

4 On-line Encryption Schemes with a special property

In this section we define a new property for on-line encryption schemes, called
Resettable-Or-Continuous (ROC). For these schemes, the two security notions
LORS-BCPA and FTG-BCPA-D are exactly equivalent.

The Resettable-Or-Continuous property can be defined informally as fol-
lows: it is computationally hard for a polynomial-time adversary to distinguish
with non-negligible advantage between the encryption of the concatenation of a
polynomial number of messages, E(M1‖M2‖ . . . ‖M`(k)), and the concatenation
of the encryptions of the same messages E(M1)‖E(M2)‖ . . . ‖E(M`(k)) for state-
ful encryption schemes such as the counter mode or for a stateless encryption
scheme between E(M1‖r1‖M2‖r2 . . . ‖r`(k)−1‖M`(k)), where the ri’s denote ran-
dom blocks such that the length of the two bitstring be the same. This special
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class captures many important on-line encryption schemes such as the CBC and
CTR mode [3].

Formally, we define the resettable-or-continuous oracle ROC(Ebl
k (.), b), tak-

ing as input a message M and working as follows for a stateless encryption
scheme such as the CBC. At the beginning of the game, the ROC oracle chooses
a random bit b. The first message M = M [1]M [2] . . .M [l] is encrypted by the
ROC oracle which returns C[0]C[1] . . . C[l]. The adversary is free to stop this
encryption by using the stop command or to submit a new message block
by block. When the adversary submits the stop command and if b = 0, the
ROC encryption oracle stops the encryption of M and starts the encryption
of the new message M ′[1], . . . M [l′] under the key k and a new random value
C ′[0] and returns C ′ = C ′[0]C ′[1] . . . C ′[l′]. However if b = 1, the ROC oracle
does not stop the encryption of the first message. He takes a random block
r1 ∈ {0, 1}n, encrypts it into C ′[0] as if r1 was the next block in M . Then, he
encrypts the message M ′[1]M ′[2] . . .M ′[l′] block by block and returns gradu-
ally C ′[0]C ′[1]C ′[2] . . . C ′[l′]. In the case b = 1, the ROC encryption oracle has
encrypted the concatened message M [1] . . .M [l]‖r1‖M ′[1] . . .M ′[l′]. This game
continues for the other queries. This simulation can be made for any stateless
encryption scheme such as the CBC mode. For a stateful encryption scheme such
as the CTR mode, the random block is not present when b = 1. This property
can also be defined in the standard model.

Advind−roc
Π,A (k, t, q, µ) def=

∣∣∣2 · Pr
[
k← K(1k); b← {0, 1} : AROC(Ebl

k (.),b)(k) = b
]
− 1

∣∣∣
Therefore, the security bound for the scheme Π is given by Advind−roc

Π (k, t, q, µ) =
max

A
{Advind−roc

Π,A (k)}, where the maximum is over all legitimate A having time-

complexity t, making to the oracle at most q encryption queries totaling µ blocks.
A secret-key encryption scheme is said to be IND-secure against blockwise adap-
tive chosen plaintext attack in the ROC sense if for all polynomial-time proba-
bilistic adversaries, the advantage in this game is negligible as a function of the
security parameter. The ROC class is the set of encryption schemes satisfying
the ROC property.

Theorem 6. [FTG-BCPA-D ROC⇒ LORS-BCPA] For any ROC scheme SE,

Advlors−bcpa
SE (k, t, q, µ) ≤ Advftg−bcpa−d

SE (k, t, q, µ) + Advind−roc
SE (k, t, q, µ)

Proof. The proof goes by contradiction. Let SE be a ROC encryption scheme.
Assume for the sake of contradiction that a LORS-BCPA adversary A wins the
LORS game against SE with non-negligible advantage. Then it can be used to
build a BCPA-D attacker B winning a FTG game against SE with non-negligible
advantage. The FTG adversary B does not use his find phase and begins the
challenge phase by running A. To simulate the LORS encryption queries of A,
B forwards the pairs of messages block by block and does not send the stop
command at the end of a message query. All messages are chained. The messages
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are separated with a random block chosen by B in the case of stateless schemes
and are not separated for stateful schemes. This simulation is perfect for schemes
having the ROC property. Therefore, A wins the LORS game with non-negligible
advantage and B forwards the bit guessed by A and also wins the FTG game
with non-negligible advantage.

5 Security under concurrent adversary

In this section, we prove that security against concurrent adversaries can be
achieved. We prove that the randomized counter mode, called XOR in [3] is se-
cure. We note that encryption with XOR or CTR mode of operation does not
require permutations. Therefore we use only functions. We prove such scheme
and not the standard counter mode where the counter is incremented between
each message since in the concurrent scenario, the adversary can begin the en-
cryption of several messages in parallel.

We consider several attacker games such that the distance between each game
can be easily shown. In the last game, it will be clear that the adversary has no
way to get some information about the random bit b in the LORC security game.

Theorem 7. For any adversary A running within time bound t, with less than
q < 2n/2 calls to the function F , totalling at most µ blocks,

Advlorc−bcpa
XOR,A (k, t, q, µ) ≤ Advprf

F,A(k, t, q) +
q(q − 1)

2n

where n denotes the block length, Advprf
F,A(k, t, q), the advantage of the adversary

A in distinguishing a function taken from F to a random function with at most
q black-box queries within time bounded by t. The same kind of definition can be
given for Advlorc−bcpa

XOR,A (k, t, q, µ).

Proof. Let A be an adversary, and let G0 be the attack game. Let b the value
chosen by the challenger in the LORC security game and b′ the bit returned by
A, and let S0 be the event that b = b′.

Game G0 : This is the real protocol. In this game, we are interested in the event
S0, which occurs if b = b′, where b is the bit chosen by the encryption oracle and
b′ is the output of the LORC-adversary A.

Game G1 : We modify the encryption oracle as follows. If a collision happens
between two inputs of the block cipher, we stop the encryption where the collision
is going to happen.

Let F1 be the event that in game G1 a collision happens that would not
have been stopped under the rules of game G0. Since these two games proceed
identically until F1 occurs, we have Pr[S0 ∧ ¬F1] = Pr[S1 ∧ ¬F1], and applying
Lemma 1 of [21] with (S0, S1, F1), we have |Pr[S1]− Pr[S0]| ≤ Pr[F1].

So it suffices to bound Pr[F1]. This probability is bounded by q(q−1)
2n as shown

in [3] we have the following result :
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|Pr[S1]− Pr[S0]| ≤
q(q − 1)

2n
(1)

Game G2 : In this game, we try to avoid the use of the secrete key in the
scheme. Instead of using a block cipher, we use a truly random function that we
construct when we need to define it at some point.

Indeed, assume that A is an attacker that breaks the LORC security game
with advantage ε running in time t, then we construct a A′ adversary which is
able to distinguish the output of a random function taken in the family F of the
output of a truly random function with advantage ε′ in time t′. At the beginning
of this game, A′ has access to a function f , for which its task is to tell whether
it is a random function (b = 0)or a member of F (b = 1). Also A′ chooses at
random a bit b′ and according to this bit, A′ will encrypt either the left or the
right message in the LORC security game. Then A′ runs the attacker A using
f to simulate all the queries as in the previous game. Eventually, A will reply
with a bit b′′. Then, if b′ = b′′, then A correctly guesses the bit b′ and wins the
LORC game. A′ returns a bit b? which is equal to 0 if b′ = b′′.

ε′ + 1
2

= Pr[b? = b] =
1
2
· [Pr[b? = 0|b = 0] + Pr[b? = 1|b = 1]]

=
1
2
· [Pr[b′ = b′′|f ← F ] + Pr[b′ 6= b′′|f random function]]

=
1
2
· [Pr[S2] + (1− Pr[b′ = b′′|f random function])]

=
1
2
· [Pr[S2] + (1− Pr[S3])]

Consequently, |Pr[S2]− Pr[S1]| = |ε′| and

|Pr[S2]− Pr[S1]| ≤ Advprf
F,A(k, t, q) (2)

Finally,

Pr[S2] = 1/2 (3)

since we can replace the random output by the function F xored the message
block by a random block. According to the properties of the xor, this is equivalent
and therefore, as the message is no longer used, in this last game, the advantage
of the adversary is clearly 0.

Putting together (1), (2), (3) we obtain

Advlorc
XOR,A(k, t, q, µ) ≤ Advprf

F,A(k, t, q) +
q(q − 1)

2
(4)
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6 Conclusion

In this paper we have analyzed the relations between the block adversary and the
standard models for probabilistic and deterministic schemes. For probabilistic
schemes, the relations are modified and we introduce new security notions. The
resettable-or-continuous property extends the result of Bellare et al.. Moreover,
we also prove that concurrent accesses lead to the strongest security notion
and we show that some schemes can be secure in this setting. Finally, we show
that the models are equivalent for deterministic schemes in appendix of the full
version.
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7 Appendix A : On-line Ciphers

7.1 Description of on-line ciphers

A cipher over a domain D is a function F : {0, 1}k×D → D such that, for each
key k, the map F (k, .) is a length-preserving permutation on D. The knowledge
of k enables to both compute and invert F (k, .). The most popular examples are
block ciphers, where D = {0, 1}n for some n, called the block length. However,
one might want to encipher large data. In this case one needs a cipher with
domain D appropriately large. Consequently, ciphers with variable input length
have been built from ciphers with fixed input length such as block ciphers [5].
Ciphers are interesting since they can be used in order to construct disk sector
encryption (cf. [15]). On-line ciphers are ciphers that the enciphering of the block
M [i] only depends on the block M [1]...M [i].

7.2 Security notions for ciphers

To analyze the security of a block cipher E, it is usual to view it as a family
of permutations indexed by a key K and to use the notion of a pseudorandom
permutation (PRP) as defined in [13]. A family of permutations is pseudoran-
dom if no probabilistic algorithm A running in polynomial time in the security
parameter k can distinguish the permutations in E from Permn, the set of all
permutations on {0, 1}n. In [2], this security goal has been adapted for on-line
ciphers with arbitrarily large domain. Indeed, since an on-line cipher is a de-
terministic scheme enciphering gradually the plaintext blocks, if two messages
have the same first blocks, then their encryptions collide on these first blocks.
Therefore, such ciphers are no longer indistinguishable from permutations on the
whole domain D. The relevant security goal is called indistinguishability from
on-line pseudorandom permutation (OPRP).

On-line Pseudorandom Permutations. In [2], Bellare et al. have defined
the OPRP security notion. Let OPermd,n be the set of all on-line permutations
π on domain Dd,n. A cipher is secure in the sense of on-line PRP if it is com-
putationally infeasible, given an oracle Ob, to have non-negligible advantage in
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distinguishing between the case where Ob is a random instance of E and the case
where Ob is a random element of OPermd,n. On-line PRP is a weaker security
notion than PRP. However, this notion is meaningful to capture practical secu-
rity of schemes. We denote by Obl(.) (respectively by O(.)), a ciphering oracle
block oriented (respectively message oriented). The difference between the two
models is that in the BA model, messages can be queried block by block. We
say that an on-line cipher is OPRP-BCPA secure (resp. OPRP-CPA secure), if it
is indistinguishable from an OPRP against a BCPA (resp. CPA) adversary:

Advoprp−bcpa
E,A (k) def=

∣∣∣∣2 · Pr
[

k← K(1k);Obl
0 (.)← OPermd,n;

Obl
1 (.)← Ek(.); b← {0, 1} : AObl

b (.)(1k) = b

]
− 1

∣∣∣∣
Advoprp−cpa

E,A (k) def=
∣∣∣∣2 · Pr

[
k← K(1k);O0(.)← OPermd,n;

O1(.)← Ek(.); b← {0, 1} : AOb(.)(1k) = b

]
− 1

∣∣∣∣
We define Advoprp−atk

E (k, t, q, µ) = max
A
{Advoprp−atk

E,A (k)}, where the maxi-

mum is over all legitimate A having at most time-complexity t, making to the
oracle at most q encryption queries totaling µ blocks. As stated in [3], we define
the time complexity as the worst case total execution time of the experiment,
plus the size of the code of the adversary in some fixed RAM model of compu-
tation.

7.3 On-line ciphers: Equivalence of the models

In this section we prove that security of on-line ciphers in both adversarial models
are polynomially-equivalent. Furthermore we present an on-line cipher achieving
the bounds, proving that our reduction is tight.

An on-line cipher OLC is secure in the OPRP sense if it is difficult for a
polynomial-time adversary to distinguish with non-negligible advantage OLC
from a random on-line permutation operating on {0, 1}nl, where n is the block
length of the underlying PRP and l is the number of blocks.

Clearly OPRP-BCPA secure ciphers are also OPRP-CPA secure. The opposite
is also true and the proof goes by contradiction. Assume, for the sake of contra-
diction, that there exists an OPRP-BCPA adversary A against some cipher OLC.
Then, we construct an OPRP-CPA attacker B against OLC which uses A. The at-
tacker B simulates the blockwise encryption oracle of A by using its own message
encryption queries: if A queries the message M = M [1]M [2] . . .M [l], B queries
l successive messages M [1], then M [1]M [2], . . ., and finally M [1]M [2] . . .M [l].
The total number of encrypted blocks asked by adversary B is (µ− 1)(µ− 2)/2.
This simulation is perfect and polynomial in the total number of blocks. At
the end of the game, B forwards the bit guessed by A. Finally, we obtain the
following theorem:

Theorem 8. Let OLC = (K, E ,D) be an on-line cipher. If OLC is secure in
the BA model, then OLC is secure in the standard model. Moreover, if OLC is
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secure in the standard model, then OLC is secure in the BA model. Furthermore,
we have:

Advoprp−cpa
OLC (k, t, q, µ) ≤ Advoprp−bcpa

OLC (k, t, q, µ) ≤ Advoprp−cpa
OLC (k, t′, µ′)

where t′ = t + (µ− 1)(µ− 2)/2× TE, µ′ = (µ− 1)(µ− 2)/2, and TE represents
the time to encrypt one block with the block cipher E.

Proof. Moreover, we show that the second bound is tight by constructing an
on-line cipher for which a BCPA adversary can win the OPRP security goal
with µ̄ blocks but a CPA adversary cannot gain significant advantage if strictly
less than (µ̄ − 1)(µ̄ − 2)/2 blocks are queried. Assume that there exists some
OPRP-CPA secure on-line cipher OLC = (K, E ,D), since otherwise the theorem
is vacuously true. We now modify OLC to a new on-line cipher OLC′ = (K, E ′,D)
which is also OPRP-CPA secure if strictly less than (µ̄− 1)(µ̄− 2)/2 blocks are
queried but not secure against an OPRP-BCPA adversary querying µ̄ blocks. The
new on-line cipher OLC′ = (K, E ′,D) is obtained by slightly modifying E in the
following way:

Algorithm E ′k(M [i])
If i = µ̄ and M [2] = C[1] and M [3] = C[2] and . . . and M [µ̄− 1] = C[µ̄− 2]

then return M [µ̄]
else return Ek(M [i])

By using a single message of µ̄ blocks, a BCPA adversary can gradually choose all
the blocks such that all the relations M [2] = C[1], M [3] = C[2], . . ., M [µ̄− 1] =
C[µ̄−2] hold. A CPA adversary A can correctly choose the first i blocks with the
following strategy. He first queries M [1] and receives C[1]. Then, A can query
the message M [1]C[1] and receives C[1]C[2], and so on... This technique can
be used recursively to find a µ̄ blocks message for which all the relations hold.
Furthermore, one can show that either this method requires at least (µ̄− 1)(µ̄−
2)/2 blocks or A correctly guesses the answer of some blocks. This last event can
be upper bounded by 1/2n which is negligible.

8 Appendix B : Proof of theorem 4

[LORS-BCPA⇒ FTG-BCPA-D
q→ LORS-BCPA] For any scheme SE = (K, E ,D),

Advftg−bcpa−d
SE (k, t, q, µ) ≤ Advlors−bcpa

SE (k, t, q, 2µ) ≤ q · Advftg−bcpa−d
SE (k, t, q, µ)

Proof: Theorem 4.3 states that FTG-BCPA-D and LORS-BCPA are polynomially-
equivalent in the number of message queries. It is easy to prove that LORS-
BCPA implies FTG-BCPA-D. The proof goes by contradiction. Assume for the
sake of contradiction that a BCPA-D adversary A wins the FTG game with
non-negligible advantage. We turn it into a BCPA attacker B which wins the
LORS game with non-negligible advantage. Adversary B simulates the encryp-
tion queries of A as follows. When A submit a message M , B forwards the
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pair of message (M0 = M,M1 = M) block by block. This gives access to an
encryption oracle. The oracle queries of A are transmitted to the challenge or-
acle without modification by B. This simulation of the block encryption oracle
of A is perfect. Finally, B transmits the bit guessed by A. Since A wins the
LORS game with non-negligible advantage, consequently B wins the FTG game
with non-negligible advantage.

Now, we prove that FTG-BCPA-D implies LORC-BCPA. The proof goes by
contradiction. Assume for the sake of contradiction that a BCPA adversary A
wins the LORS game with non-negligible advantage. We turn it into a BCPA at-
tacker B, winning the FTG game also with non-negligible advantage. The FTG at-
tacker picks at random i in {1, . . . , q}. He runs the LORS-BCPA adversary and
answers its encryption oracle queries by encrypting the first message thanks to
its encryption oracle in the find phase, until the point at which it makes the
ith encryption oracle query which we denote (M i

0,M
i
1). To encrypt the pair of

messages (M i
0,M

i
1), the FTG-BCPA-D adversary queries its FTG block encryp-

tion oracle in the challenge phase and receives block by block the ciphertext
C. Then, he answers block by block the encryption of the LORS adversary to
the ith pair by forwarding C. Then, the same simulation as in the find phase is
performed answering pair of messages by encrypting the right message. Clearly,
t′ = t, q′ = q and µ′ = µ.

We can compute the advantage of the FTG attacker using a hybrid argument.
We define a sequence of q+1 experiments: for j = 0, . . . , q define Exphyb−atk−j

SE,A (k)
to be an experiment in which one chooses K ← K(1k) and runs A, answering
the first j encryption oracle queries of A via EK(LR(., ., 0)) and the rest via
EK(LR(., ., 1)). The output of the experiment is defined to be the output of A.

Now consider the experiment Expftg−bcpa−b
SE,B (k) where B is the algorithm. In

this experiment, if b = 0, then C = EK(M i
0) and, in the simulation, A’s output

would be that of Exp
hyb−atk−(i+1)
SE,A (k). On the other hand, if b = 1 then C =

EK(M i
1) and, in the simulation, A’s output would be the same as Exphyb−atk−i

SE,A (k).
Since i is chosen randomly from {1, . . . , q} by B, we have:

Advftg−bcpa
SE,B (k) = (1/q) ·

q−1∑
i=0

(Pr[Exphyb−atk−i
SE,A (k)]− Pr[Exp

hyb−atk−(i+1)
SE,A (k)])

= (1/q) · (Pr[Exphyb−atk−0
SE,A (k)]− Pr[Exphyb−atk−q

SE,A (k)])

= (1/q) · (Advlors−bcpa
SE,A (k))

Since A is an arbitrary adversary, the claimed relation in the advantage
functions follows. �
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