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Abstract. This paper presents a practical cryptanalysis of the Identification
Scheme proposed by Patarin at Crypto 1996. This scheme relies on the hardness
of the Isomorphism of Polynomial with One Secret (IP1S), and enjoys shorter
key than many other schemes based on the hardness of a combinatorial problem
(as opposed to number-theoretic problems). Patarin proposed concrete parameters
that have not been broken faster than exhaustive search so far. On the theoretical
side, IP1S has been shown to be harder than Graph Isomorphism, which makes
it an interesting target. We present two new deterministic algorithms to attack the
IP1S problem, and we rigorously analyze their complexity and success probabil-
ity. We show that they can solve a (big) constant fraction of all the instances of
degree two in polynomial time. We verified that our algorithms are very efficient
in practice. All the parameters with degree two proposed by Patarin are now bro-
ken in a few seconds. The parameters with degree three can be broken in less than
a CPU-month. The identification scheme is thus quite badly broken.

1 Introduction

Multivariate cryptography is concerned with the use of multivariate polynomials over
finite fields to design cryptographic schemes. The use of polynomial systems in cryp-
tography dates back to the mid eighties with the design of C∗ [33], and many others
proposals appeared afterwards [37,38,39,28,47]. The security of multivariate schemes
is in general related to the difficulty of solving random or structured systems of multi-
variate polynomial equations. This problem has been proved to be NP-complete [22],
and it is conjectured [2] that systems of random polynomials are hard to solve in prac-
tice. As usual when a trapdoor must be embedded in a hard problem, easy instances are
transformed into random-looking instances using secret transformations. In multivariate
cryptography, it is common to map an easily-invertible collection of polynomials a into
an apparently random one b. It is then assumed that, being supposedly indistinguish-
able from random, b should be hard to solve. The structure-hiding transformation is
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very often the composition with linear (or affine) invertible mappings S and T , namely
b = T ◦ a ◦ S. The matrices S and T are generally part of the secret-key.

The Isomorphism of Polynomials (IP) is the problem of recovering the secret
transformations S and T given a and b. It is a fundamental problem of multivariate
cryptography, since its hardness implies the difficulty of the key-recovery for various
multivariate cryptosystems. Notorious examples include C∗ [33], the traitor tracing
scheme proposed by Billet and Gilbert [8], the SFLASH signature scheme [38], the
�-IC signature scheme [12], the square-vinegar signature scheme [1] and the Square
encryption scheme [11]1. All these schemes have been broken, because the structure of
the central map was not hidden well enough. The corresponding IP problem was then
not random, but structured. However, when no apparent structure exists in both a and
b, then the IP problem is fairly difficult. This motivated Patarin to introduce it as an
intractable assumption by itself in [35]. So far only exponential algorithms [40,17] are
known to attack the general IP problem.

An important special case of IP is the IP problem with one secret (IP1S for short),
where T is the identity matrix. Patarin suggested in 1996 [36] to construct a zero-
knowledge identification scheme relying on the hardness of IP1S, inspired by the Zero-
Knowledge proof system for Graph Isomorphism of [25]. The proposed parameters
lead to relatively small key sizes (for instance to secret and public keys of 256 bits each
and no additional information), as the complexity of the problem was believed to be
exponential. The proposed parameters have not been broken so far, and no technique
better than exhaustive search is known to attack the scheme. The IP1S problem is also
interesting from a complexity-theoretic point of view. It has been proved in [40] that
IP1S is Graph Isomorphism-hard (GI-hard for short). This leads Patarin et al. to claim
that IP1S is unlikely to be solvable in polynomial time, because no polynomial algo-
rithm is known for GI in spite of more than forty years of research. On the other hand,
GI is not known to be NP-complete. Generating hard instances GI is pretty non-trivial,
and there are powerful heuristics as well as expected linear time algorithms for random
graphs [19]. This compromises the use of GI as an identification mechanism, and was
part of the motivation for introducing IP1S as an alternative. Moreover, when used in
this context, instances of the IP problem are random, which presumably avoids all the
attacks on the cryptographic schemes mentioned above.

Previous and Related Work. The identification scheme based on IP1S is not based on
number-theoretic assumptions, unlike for instance the well-known Fiat-Shamir proto-
col [18]. Many other identification schemes are not based on number theoretic assump-
tions [42,43,44,45,31]. However, the IP1S-based identification scheme enjoys shorter
keys than most others.

To our knowledge, the first algorithm dedicated to IP1S can be found in Geisel-
mann et al. [23]. The authors of [23] remarked that each row of a matrix solution of
IP1S verifies an algebraic system of equations. They then used an exhaustive search
to find the solutions of such system. Soon after, this technique has been improved by
Levy-dit-Vehel and Perret [13] who replaced this exhaustive search by a Gröbner basis

1 In the description of some of these schemes, the easily-invertible central map contains param-
eters that are part of the secret-key. However, in this case there exists an equivalent secret key
where these parameters have a fixed value. This is notoriously the case of C∗.
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computation. This still yields exponential algorithms, and the improvement induced by
this replacement is is as significant as the gain obtained when comparing Gröbner basis
and exhaustive search for solving random algebraic systems. It is negligible over small
field (i.e., typically, F2), but significant for instances of IP1S over large fields. However,
the complexity of those algorithms remains exponential by nature.

Finally, Perret [41] shows that the affine and linear variants of IP1S are equivalent,
i.e., one can without loss of generality restrict our attention to the case where S is linear
(as opposed to affine). In addition, a new approach for solving IP1S using the Jacobian
matrix was proposed. The algorithm is polynomial when the number u of polynomials
in a and b is equal to the number of variables n. However, when u < n, the complexity
of this approach is not well understood. Moreover, when the number of polynomials is
very small, for instance u = 2, this algorithm is totally inefficient.

The main application of IP1S is the identification scheme proposed in [40]. The
public key being composed of two sets of u polynomials, it is interesting to keep the
number of polynomials as small as possible (1 or 2). For such parameters, the authenti-
cation mechanism based on IP1S looks appealing in terms of key size. Additionally, it
does not require hash functions or commitments.

All in all, the existing literature on the IP and IP1S problem can be split in two cat-
egories: heuristic algorithms with (more or less vaguely) “known” complexity and un-
known success probability [40], and rigorous algorithms that always succeeds but with
unknown complexity [17,41,13,23]. This situation makes it very difficult, if not plainly
impossible to compare these algorithms based on their theoretical features. The class
of instances that can be solved by a given algorithm of the first type is in general not
known. Conversely, the class of instances over which an algorithm of the second type
terminates quickly are often not known as well. This lead the authors of IP/IP1S algo-
rithms to measure the efficiency of their techniques in practice, or even not to measure
it at all. Several sets of concrete parameters for IP and IP1S were proposed by Patarin
in [36], and can be used to measure the progress accomplished since their introduction.
The techniques presented in this paper allow to break all these challenges in practice.

Techniques. The algorithms presented here are deterministic, and rely on the two
weapons that have dealt a severe blow to multivariate cryptography: linear algebra and
Gröbner bases. Our ideas borrow to the recent differential cryptanalysis of multivariate
schemes. While the algorithms are not very complicated, analyzing their running time
is fairly non-trivial, and requires the invocation of not-so-well-known results about lin-
ear algebra (such as the dimension of the commutant of a matrix, or the properties of
the product of two skew-symmetric matrices), as well as known results about random
matrices, most notably the distribution of the rank and the probability of being cyclic.
The two most delicate steps of the analysis involve lower-bounding the dimension of the
kernel of a homogeneous system of matrix equations, and upper-bounding the degree
of polynomials manipulated by a Gröbner-basis algorithm.

Our Results. We present two new “rigorous” and deterministic algorithms. On the
practical side, these algorithms are efficient: random quadratic IP1S instances and ran-
dom cubic inhomogeneous IP1S instances can be broken in time O (n6

)
for any size

of the parameters. In particular, all the quadratic IP1S challenges proposed by Patarin
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are now broken in a few seconds. The biggest homogeneous cubic IP1S challenge can
be broken in less than 1 CPU-month. The IP1S identification scheme is thus broken
beyond repair in the quadratic case. In the case of cubic IP1S, our attack runs in time
O (n6 · qn

)
, and the security parameter have to be seriously reconsidered, which makes

the scheme much less attractive, since the key size is cubic in n.
A rigorous analysis of our algorithms is both necessary and tricky. When generating

linear equations, special care has to be taken to count how many of them are indepen-
dent. The recent history of algebraic cryptanalysis taught us that failure to do so may
have drastic consequences. Additionally, the complexity of Gröbner bases computation,
even though a bit more well-understood now in the generic case, is still often a delicate
matter for structured systems.

A unique and distinctive feature of our algorithms compared to the previous state of
affairs, and one of our main theoretical contribution, is that we characterize the class
of instances that can be solved by our techniques in polynomial time. We show, for
instance, that a (big) constant fraction of all quadratic IP1S instances can be solved in
polynomial time.

This break however has little consequences in the multivariate cryptology ecosys-
tem, except that it brings the IP1S-based identification scheme down. The security of
UOV [27] in particular is not related to the hardness of IP1S, because in UOV the vector
of polynomial composed with a linear change of variable (the “a” part) is kept secret.

Organisation of the paper. In section 2, we recall some useful facts about the IP1S
problem. Then, in section 3, we introduce the identification scheme based on the hard-
ness of IP1S and compare it to other non-number theoretic based ID schemes. We then
introduce our algorithms to break IP1S in the quadratic case in section 4, and in the
cubic case in section 5.

2 The IP1S Problem

We recall the definition of the IP1S problem. Given two families of u polynomials a
and b in Fq[x1, . . . , xn] the task is to find an invertible matrix S ∈ GLn (Fq) and a
vector c ∈ (Fq)

n such that:
b(x) = a(S · x + c). (1)

We will denote by f (k) the homogeneous component of degree k of f , and by ex-
tension a(k) denotes the vector of polynomials obtained by taking the homogeneous
components of degree k of all the coordinates of a. We define the derivative of a in c to
be the function ∂a

∂c : x �→ a(x+ c)−a(x). The following lemma, which is very similar
to [17, lemma 4] is very useful.

Lemma 1. i) For all k ≥ 1, we have:

b(k) =
(
a +

∂a
∂c

)(k)

◦ S.



Practical Cryptanalysis of the Identification Scheme 477

ii) If d is the degree of a and b, then b(d) = a(d) ◦ S.
iii) S transforms the set of common zeroes of a(d) into the set of common zeroes of b(d).

Proof. It follows from the definition of the derivative that:

b =
(
a +

∂a
∂c

)
◦ S

This equality also holds if only the degree-k homogeneous component is considered.
The point is that since S is linear (and thus not “degree-changing”), if P is a multivariate
polynomial we have:

(P ◦ S)(k) = P (k) ◦ S

This establishes the first statement of the lemma. The second statement follows from
the fact that if a is of degree d, then the function ∂a

∂c is of degree d − 1. Thus the
homogeneous component of degree d of ∂a

∂c is identically zero. The third statements is
a direct consequences of the second one. ��

A useful consequence of lemma 1 is that without loss of generality we may assume c to
be the null vector2. A consequence of point ii) is that from any instance of the problem
we can deduce a linear homogeneous instance by considering only the homogeneous
component of highest degree. If this instance can be solved, and S can be retrieved, then
recovering c is not difficult, using a slight generalization of the idea shown in [24]. If S
is known, then ∂a

∂c can be explicitly computed, and c can usually be deduced therefrom.
More specifically, focusing on the homogeneous component of degree one yields a
system of u ·n linear equations in n variables that admits c as a solution. In most cases,
it will in fact admit only c as a solution, which enables recovering c.

It was pointed out in [40] that if there is only one quadratic polynomial, then the
problem is easily solved in polynomial time. This follows from the fact that quadratic
forms admit a canonical representation (see for instance [30]). The change of coordinate
can then be easily computed. We will therefore focus on the case of u ≥ 2 when the
polynomials are quadratic.

For various reasons, the IP1S problem becomes easier when u is close to n, and
harder when u is small. For instance, the algorithm given in [41] deals with the case
u = n in polynomial time, but cannot tackle the case where u = 2 and n is big, which
prevented it from breaking the parameters proposed by Patarin. Additionally, small val-
ues of u leads to smaller public keys. Therefore, we will restrict our attention to the
case where u = 2 when the polynomials are quadratic, and where u = 1 when they are
cubic. These are the most cryptographically relevant cases, and the most challenging.
We will also consider the case where Fq is a field of characteristic two. It can be shown
that this makes the problem a bit harder, but again this is the most cryptographically
relevant case. The quadratic and cubic IP1S problems are very different and lead to
specific approaches, therefore we will discuss them separately.

2 This was already observed in [41].
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3 Patarin’s IP1S-Based Identification Scheme

Zero-Knowledge proofs were introduced in 1985 by Goldwasser, Micali and Rackoff
in [26]. Soon afterwards, Fiat and Shamir [18] used the hardness of quadratic resid-
uosity to build an efficient identification scheme. Many other identification schemes
appeard afterwards, all relying on the hardness of number-theoretic assumptions. Some
cryptographers took a different line of research, and tried to design identification scheme
from different computational assumptions, not relying on number theory, but instead on
the NP-hardness of some specific combinatorial problems.

One of the very-first combinatorial identification scheme was proposed by Shamir
[43], and relied on the hardness of the Permuted Kernel Problem (PKP). Later on,
Stern proposed in [44] a scheme based on the intractability of Syndrome Decoding
(SD), and in [45] a scheme based on the intractability of Constrained Linear Equa-
tions (CLE). Finally, Pointcheval [42] proposed a scheme related to the hardness of the
Perceptron Problem, originating from the area of learning theory. All these problems
are NP-complete (as opposed to IP1S). The designers proposed practical parameters,
aiming for a security level of 264 or more, which are summarized in table 1. In all
these schemes, it is required that all users share a public common set of information,
a “common setting”, usually describing the instance of the hard problem. For instance,
in number-theoretic problems, the description of the curve, or of the group over which
a discrete logarithm problem is considered is a common public information. While this
information is not a “key” stricto sensu, it must nevertheless be stored by the prover
and by the verifier, leading to higher memory requirements. However, in some case it
can be chosen randomly, or generated online from a small seed using a PRNG.

Table 1. Key sizes in bits corresponding to practical parameters proposed in [42,43,44,45,36] in
order to obtain a security level of roughly 264

Scheme Common Setting Public Key Secret Key

PKP
2048 256 374
7992 512 808

SD
131 072 256 512
524 288 512 1024

CLE
3600 80 80
3600 96 96

Perceptron 10807 144 117

IP1S 0 256 272

On the contrary, the IP1S-based identification scheme proposed by Patarin in [35,36]
does not need the prover and the verifier to share additional information (except maybe
the description of the finite field, which is very small). It works very similarly to the
original identification scheme based on a zero-knowledge proof system for Graph-
Isomorphism (GI) by Goldreich, Micali and Wigderson [25]. One of the reasons for
replacing GI by IP1S is the existence of efficient heuristic algorithms for GI, capable
of solving efficiently random instances. The generation of hard instances of GI is a del-
icate matter [19]. Replacing the GI problem by IP1S yields shorted key, and random
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Table 2. Concrete parameters for IP1S. Patarin proposed challenges A,B,C and D in [36]. We
introduce challenge E.

Challenge n q Degree Polynomial(s) Public Key Private Key

A 16 2 2 2 272 bits 256 bits
B 16 2 3 1 816 bits 256 bits
C 6 16 2 2 168 bits 144 bits
D 6 16 3 1 224 bits 144 bits
E 32 2 2 2 1056 bits 1024 bits

instances of IP1S were a priori secure. Patarin proposed concrete parameters, which
are shown in table. 2. The PKP and SD schemes lead to bigger keys than IP1S, while
the Perceptron scheme leads to comparable key-sizes, and CLE yields smaller keys than
IP1S, if we neglect the additional memory requirement imposed by the common string
shared between all the participants.

Additionnaly, the IP1S-based identification scheme does not makes use of either
hash functions or commitment schemes. This is in strong contrast with all the other
proposals.

The IP1S challenges described in table 2 cannot be attacked using the existing tech-
niques [17,23,41]. As such, the best attack remains exhaustively searching for the secret
key. As a final note, let us mention that Lyubashevsky recently proposed in [31] to build
an identification scheme using the hardness of lattice problems, but did not propose
concrete parameters.

4 Cryptanalysis of Quadratic IP1S

The main observation underlying our quadratic IP1S algorithm is that by differentiating
equation (1), it is possible to collect linear equations between the coefficients of S and
those of S−1.

We denote by Df : (Fq)
n×(Fq)

n → Fq
u the differential of a function f : F

n
q → F

u
q .

Df is defined by:

Df(x,y) = f(x + y) − f(x) − f(y) + f(0)

It is easy to see that Df(x,y) = Df(y,x). If f is a polynomial of total degree d, then
Df is a polynomial of total degree d, but of degree d − 1 in x and y. Thus, when f is
quadratic, then Df is a symmetric bilinear mapping.

Going back to the quadratic IP1S problem, for all vectors x,y ∈ (Fq)
n, we have:

∀x,y ∈ (Fq)
n

, Db(x,y) = Da (S · x, S · y) .

Using the change of variable y′ = S · y, this equation becomes:

∀x,y′ ∈ (Fq)
n

, Db(x, S−1 · y′) = Da(S · x,y′). (2)

Since a and b are of total degree 2, then Da and Db are bilinear (symmetric) mappings.
In this case, since equation (2) is valid for all x and y, then in particular it is valid on
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a basis of (Fq)
n × (Fq)

n, and substituting fixed basis vectors for x and y yields linear
equations between the coefficients of S and those of S−1.

This idea for obtaining linear equations can also be described relatively simply using
the usual theory of quadratic forms. If Fq is a field of even (resp. odd) characteristic,
then the set of homogeneous quadratic polynomials in n variables over Fq is in one-
to-one correspondance with the set of symmetric matrices with zero diagonal (resp.
of symmetric matrices). Let P (ak) denote the matrix of the symmetric bilinear form
associated with ak (it is related to the polar form of ak in odd characteristic). Recall
that the coefficient of index (i, j) of P (ak) is Dak (ei, ej), where (ei)1≤i≤n is a basis
of (Fq)

n. We then have:

S :

⎧
⎪⎨

⎪⎩

S−1 · P (b1) = P (a1) · tS
...

S−1 · P (bu) = P (au) · tS

(3)

Each one of these u matrix equations yields n2 linear homogeneous equations between
the 2n2 coefficients of S and those of S−1. These last u ·n2 homogeneous linear equa-
tions cannot be linearly independent as they admit a non-trivial solution

(
S−1, S

)
. The

kernel of S is thus non-trivial, and our hope would be that it describes only one so-
lution. When u is strictly greater than two, we then have much more linear equations
than unknowns, and we empirically find only one solution (when the polynomials are
randomly chosen). When u = 2, which is again the most relevant case, the situation is
unfortunately not as nice; Theorem 1 below shows that the kernel of S is of dimension
higher that 2n in characteristic two (at least n in odd characteristic). This means that
solving the linear equations cannot by itself reveal the solution of the IP1S problem,
because S admits at least qn solutions, out of which only very few are actual solutions
of the IP1S instance3. However, the linear equations collected this way can be used to
simplify the resolution of the IP1S problem.

When looking at one coordinate of (1), we have an equality between two multivariate
polynomials that holds for any value of the variables. Therefore the coefficients of the
two polynomials can be identified (this is essentially the algorithm presented in [17]).
This yields a system Squad of u ·n2/2 quadratic equations in n2 unknown over Fq . With
u = 2, this precisely gives n2 equations in n2 unknown, which cannot be solved by any
existing techniques faster than exhaustive search.

However, we now know that
(
S, S−1

)
lives in the kernel of S, and therefore S can

be written as the sum of k = dim kerS matrices that can be easily computed using
standard linear algebra. Identifying coefficients in (1) then yields a system Squad of
u · n2/2 quadratic equations in k unknown. Our hope is that k is small enough for
the system to be very overdetermined, so that computing a Gröbner basis of Squad is
polynomial in theory, and feasible in practice.

The analysis of the attack then proceeds in two steps:

1. Estimate the rank of S (i.e., the value of k).
2. Estimate the complexity of the Gröbner basis computation.

3 We note that this contradicts the hope expressed in section 9 of [40].
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Fig. 1. Experimental distribution of dim kerS

For the sake of simplicity, we will analyze the attack algorithm under some assump-
tions on the input system. For instance, we will assume that that n is even, and that
one of the two quadratic forms we are dealing with is non-degenerate. We will then
argue that a random instance satisfies this assumption with high probability, but we are
well aware that some structured instance may not. This is in fact quite logical, because
a worst-case polynomial algorithm for IP1S would imply a worst-case polynomial for
Graph-Isomorphism (a fact that would be quite surprising). The situation of the IP1S
problem is in this respect quite similar to that of GI: heuristics are capable of dealing
efficiently with the random case, while some very special instances make them fail (in-
terestingly, hard instances for GI are transformed into hard instances for IP1S through
the reduction). Lastly, we mention that our algorithm does not necessarily fail on an in-
stance that does not meet our assumptions. However, we no longer have a guarantee on
its running time. Random instances fail to meet the assumption with a small probability,
but we empirically observed that the algorithm solves them in reasonable time as well.

4.1 Counting Linearly Independent Equations

Obtaining guarantees on the number of linearly independent equations in S is the most
important and the most delicate part of the attack. Since dim kerS is a function of the
instance, it makes sense to consider the random variable giving dim kerS assuming the
instance was randomly chosen. Fig. 1 above shows its (experimentally observed) distri-
bution for various sizes of the base field. We immediately see that in odd characteristic,
dim kerS is often n, while in characteristic two it is often 2n. In the sequel we provide
mathematical arguments to back this observation up. We will focus on the (harder) case
of fields of characteristic two, since this is the more cryptographically relevant case.

Our results are expressed in terms of the similarity invariants P1, . . . , Ps of a matrix
M . Their product is the characteristic polynomial of M , Ps is the minimal polynomial
of M , and Pi divides Pi+1. The main technical result needed to understand the rank of
S is the following theorem.

Theorem 1. Let A1, A2, B1, B2 be four given matrices of size n×n with coefficients in
Fq. Let us consider the set of all pairs (X, Y ) of n×n matrices satisfying the following
linear equations:
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S :
{

B1 = X · A1 · Y
B2 = X · A2 · Y

Let us assume that S admits at least one solution (X0, Y0) with both X0 and Y0 invert-
ible, and that A1 is also invertible.

i) There is a vector-space isomorphism between the kernel of S and the commutant
of C = A2 · A−1

1 .
ii) n ≤ dim kerS.

iii) Let P1, . . . , Ps be the similarity invariants of C. Then:

dim kerS =
s∑

j=1

(2s − 2j + 1) · deg Pj

Proof. Because a solution of S exists, then B1 is invertible. Thanks to this, we can
write:

S :
{

Y = A−1
1 · X−1 · B1

B2 · B−1
1 · X = X · A2 · A−1

1

Using the particular solution X0 then gives:

S :

{
Y = A−1

1 · X−1 · B1

C ·
(
X−1

0 · X
)

=
(
X−1

0 · X
)
· C

From there, it is not difficult to see that the kernel of S is in one-to-one correspondance
with the commutant of C, the isomorphism being (X, Y ) �→ X−1

0 ·X . The second point
of the theorem follows from the well-known fact that n lower-bounds the dimension
of the commutant of any endomorphism on a vector space of dimension n (see for
instance [7, Fact 2.18.9]). The third point follows from a general result on the dimension
of the commutant [20, chapter 6, exercise 32]. ��

Theorem 1 directly applies to our study of the rank of S with Ai = P (ai) and Bi =
P (bi). However, it holds only if P (a1) or P (a2) is invertible (we may swap them
if we wish, or even take a linear combination). Note that since P (a1) is a random
skew-symmetric matrix, it cannot be invertible if n is odd, and the analysis is more
complicated in that case. This is why we focus on the case where n is even, and where
one of the two quadratic forms is non-degenerate. The following lemma gives us the
probability that P (ai) (or P (bi)) is invertible.

Lemma 2 ([32], theorem 3). Let N0(n, r) denote the number of symmetric matrices
of size n × n over Fq with zeros on the diagonal and of rank r.

N0(n, 2s) =
s∏

i=1

q2i−2

q2i − 1
·
2s−1∏

i=1

(
qn−i − 1

)

N0(n, 2s + 1) = 0
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If n is even, the probability that P (a1) is invertible if q = 2 is about 0.419 (this
probability increases exponentially with q). The probability that either P (a1) or P (a2)
is invertible is then about 0.662 when q = 2.

Theorem 1 is then applicable in more than half of the cases when q = 2 (and we ex-
pect this proportion to grow very quickly with q). When it is applicable, what guarantee
does it exactly offer? We would need to know something about the similarity invariants
of C. An easy case would be when the minimal and characteristic polynomials are the
same (then there is only one invariant factor, and it is precisely the characteristic poly-
nomial). Then Theorem 1 tells us that the dimension of kerS is n. For random matrices,
the probability of this event is given by the following lemma.

Lemma 3 ([21], theorem 1). Let c(n, q) be the proportion of cyclic n × n matrices
(i.e., matrices for which the minimal polynomial is of degree n). We have:

1
q2(q + 1)

< 1 − c(n, q) <
1

(q2 − 1)(q − 1)

And asymptotically, we have:

lim
n→∞ c(n, q) =

q5 − 1
q2(q − 1)(q2 − 1)

·
∞∏

i=1

(
1 − 1

qi

)

For random matrices over F2, and for n big enough, the proportion of cyclic matrices
approaches 0.746. Unfortunately, C is hardly a random matrix. In odd characteristic it
is the product of two symmetric matrices, while in characteristic two it is the product
of two symmetric matrices with null diagonal (and these are in fact skew-symmetric
matrices). The product of two skew-symmetric matrices is very far from being random,
and it is in fact never cyclic, as the following result shows.

Theorem 2 ([6]). Let M be a non-singular matrix of even dimension. Then the two
following conditions are equivalent:

i) M can be written as the product of two skew-symmetric matrices .
ii) M has an even number of similarity invariants P1, . . . P2�, and P2i+1 = P2i+2.

Corollary 1. In characteristic two, if n is even and C is invertible, then kerS has di-
mension at least 2n.

Proof. By theorem 2, C has at least two invariants, both equal to the minimal polyno-
mial of C (which thus happens to be of degree n/2). Then theorem 1, point iii) shows
that kerS has dimension 2n. If C has more invariants, kerS can only be of higher di-
mension. ��
Corollary 1 shows that with a constant probability (when the two quadratic forms are
non-degenerate) dim kerS is greater than 2n, which sounds like bad news. When C is
not invertible, theorem 2 no longer holds (there are counter-examples), but what does
apparently still hold is the fact that the minimal polynomial of C has degree at most n/2,
and this would be sufficient to show that in all cases dim kerS ≥ 2n, in accordance
with Fig. 1.
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What we would in fact need to know is the probability that kerS is exactly of di-
mension 2n. Theorem 1 still connects this dimension to the similarity invariants of C,
even though C is not a uniformly random matrix. It seems plausible that C is unlikely to
have a very high number of similarity invariants, and that the most common situation is
that it has only two invariants (twice the minimal polynomial). We could not compute
explicitly this probability, and we could not find ways to obtain it in the available lit-
erature. We measured it experimentally and found 0.746 (after 105 trials) when q = 2.
This is strikingly close to the result brought by lemma 3 in the random case. Under the
conjecture that C has two invariant factors with this probability, then theorem 1 tells us
that in about 75% of the cases, dim kerS = 2n. The empirical probability seems to be
even higher, as shown by Fig. 1.

4.2 Solving Very Overdefined Quadratic Systems

The solution of the IP1S instance (1) is systematically the solution of a system Squad of
n2 quadratic equations. In the previous section, we argued that we can reduce this sys-
tem to n2 equations in 2n unknowns with high probability, and (much) more unknowns
with negligible probability. The system is so overdefined that it can almost be resolved
by linearization. Indeed, it has N2/4 equations in N unknowns. In practice, computing
a Gröbner basis of the ideal generated by Squad terminates very quickly, and allows to
recover the actual solutions of the problem.

This last fact can be theoretically justified. It is well-known that Gröbner basis al-
gorithms [15,16] are more efficient on overdefined systems. The complexity of most
algorithms strongly depend on a parameter of the ideal called the degree of regularity.
Indeed, the cost of computing a Gröbner basis is polynomial in the degree of regularity
Dreg of the system when the ideal has dimension zero, i.e., when the number of solu-
tions is finite. The computation of a Gröbner basis essentially amounts to solve a system
of M sparse linear equations in M variables, where M is the number of monomials of
degree Dreg in N variables. The complexity of this process is roughly O (Nω·Dreg

)
,

with 2 < ω ≤ 3 the linear algebra constant, and N the number of variables of ideal
considered (in our case, N = 2n).

The behavior of the degree of regularity is well understood for “random” systems of
equations [3,4,5] (i.e., regular or semi-regular systems). It is conjectured that the pro-
portion of semi-regular systems on N variables goes to 1 when N goes to +∞. There-
fore, we can assume that for large N a random system is almost surely semi-regular.
This is to some extent a worst-case assumption, as it usually means that our system is
not easier to solve than the others. The coefficients of the Hilbert series associated with
the ideal generated by a semi-regular sequence of m equations in N variables coincide
with those of the series expansion of the function f(z) =

(
1 − z2

)m
/(1 − z)N , up

to the degree of regularity. The degree of regularity is the smallest degree d such that
the coefficient of degree d in the series expansion of f(z) is not strictly positive. This
property enables an explicit computation of the degree of regularity for given values of
m and N .

Furthermore, the available literature readily provide asymptotic estimates of the de-
gree of regularity for semi-generic ideals of N + k or α · N equations in N variables,
but unfortunately not for the case of α · N2 in N variables, which is the situation we
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Table 3. Degree of regularity of random with the same parameters as those occuring in our attack

n 2 3 4 5 6 7 8 . . . 16 . . . 32
N 4 6 8 10 12 14 16 . . . 32 . . . 64
m 4 9 16 25 36 49 64 . . . 256 . . . 1024

Dreg 5 4 3 3 3 3 3 . . . 3 . . . 3

are facing here. We thus tabulated in table. 3 the degree of regularity for semi-regular
systems of equations having the same number of equations and unknowns as those oc-
curring in our attack. From this table, we conclude that for any reasonable value of the
parameters, the degree of regularity will be 3, and thus computing a Gröbner basis of
Squad should have complexity at most O (n9

)
. In practice, the maximal degree reached

by the F4 algorithm on our equations is two, which is even better.

4.3 Implementation

We demonstrated that the algorithm described in this section terminates in time O (n6
)

on a constant fraction of the instances. This reasoning is backed up by empirical evi-
dence: we implemented the algorithm using the computer algebra system MAGMA [9].
Solving the equations of Squad is achieved by first computing a Gröbner basis of these
equations for the Graded-Reverse Lexicographic order using the F4 algorithm [15], and
then converting it to the Lexicographic order using the FGLM algorithm [14]. This im-
plementation breaks the random instances of IP1S in very practical time. For instance,
Challenges A and C are solved in a few seconds. Random instances with n = 24, u = 2
require about a minute. Challenge E takes about 10 minutes, but the dominating part
in the execution of the algorithm is in fact the symbolic manipulation of polynomials
required to write down the equations of Squad. Actually solving the resulting quadratic
equations turns out to be easier than generating them. We never generated a random
instance that we could not solve with our technique, for any choice of the parameters.

There are only public parameter sets, and no public challenges to break, so we un-
fortunately cannot provide the solution of an open challenge to prove that our algorithm
works. However, the source code of our implementation is available on the webpage of
the first author.

5 Cryptanalysis of Cubic IP1S

In this section, we focus on the case where a and b are composed of a single cubic
polynomial. We assume that a and b are given explicitly, i.e.:

a =
n∑

i=1

n∑

j=i

n∑

k=j

Ai,j,k · xixjxk, b =
n∑

i=1

n∑

j=i

n∑

k=j

Bi,j,k · xixjxk.

As already explained, we can restrict our attention to the homogenous case. The tech-
niques developed previously for the quadratic case cannot directly applied in this
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setting. Indeed, the differential is no longer a bilinear mapping, and then there is no
obvious linear equations between the coefficients of a solution and those of its inverse.
However, we can combine the use of the differential together with the Gröbner basis
approach proposed in [17]. We denote by S0 = {s0

i,j}1≤i,j≤n a particular solution of
IP1S between a and b, i.e., it holds that b = a ◦ S0. For all vectors x,y ∈ (Fq)

n, we
have:

Da(S0 · x,y) = Db(x, S−1
0 · y).

a and b being of total degree 3, the coefficients of S0 and S−1
0 appear with degree two in

the expression of Da and Db above. Let R be the ring K[s1,1, . . . , sn,n, u1,1, . . . , un,n].
We consider the algebraAs of all n×n matrices over R. Let S = {si,j} and U = {ui,j}
inAs be symbolic matrices. We denote by Ia,b the ideal generated by all the coefficients
in R of the equations:

Da(S ·x,y)−Db(x, U ·y) = 0, U ·S−1n = 0n, S ·U −1n = 0n.

It is easy to see that U = S−1
0 and S = S0 is a particular solution of this system, and

also a solution of IP1S between b and a. Our goal is to provide an upper bound on the
maximum degree reached during a Gröbner basis computation of Ia,b.

We prove here that Dreg = 2 for Ia,b under the hypothesis that we know one row
of a particular solution S0, i.e., we assume then that we know the following ideal J =〈
s1,j − s

(0)
1,j | j = 1, . . . , n

〉
.

Theorem 3. The degree of regularity of Ia,b+J is 2. Therefore, computing a Gröbner
basis of this ideal takes time O (n6

)
.

Proof. We use the fact that the degree of regularity of an ideal is generically left in-
variant by any linear change of the variables or generators [29]. In particular, we con-
sider the ideal I ′

a,b generated by all the coefficients in K[x1, . . . , xn, y1, . . . , yn] of the
equations:

Da(S0(S+In)x,y)−Db(x, (U+In)S−1
0 y) = 0, U ·S = 0n, S·U = 0n.

It is clear that I ′
a,b is obtained from Ia,b by replacing S (resp. U ) by S0(In + S) (resp.

(U +In)S−1
0 ). Thus, the degree of regularity of I ′

a,b and Ia,b are equal. Using the same
transformation, the ideal J becomes

J ′ = 〈s1,j | j = 1, . . . , n〉 .

We now estimate the degree of regularity of the ideal I′
a,b + J ′. For a reason which

will become clear in the sequel, it is more convenient to work with I′
a,b + J ′. In what

follows, F will denote the generators of I′
a,b +J ′. We will show that many new linear

equations appear when considering equations of degree 2. To formalize this, we intro-
duce some definitions related to the F4 algorithm [16]. In particular, we will denote by
Id,k the linear space generated during the k-th step of F4 when considering polynomials
of degree d.
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Definition 1. We have the following recursive definition of Id,k:

Id,0(F ) = VectK (F )
Id,1(F ) = VectK (si,jf | 1 � i, j � n and f ∈ Id,0(F ))

+VectK (ui,jf | 1 � i, j � n and f ∈ Id,0(F ))
Id,k(F ) = VectK (si,jf | 1 � i, j � n and f ∈ Id,k−1(F ) and deg(f) ≤ d − 1)

+VectK (ui,jf | 1 � i, j � n and f ∈ Id,k−1(F ) and deg(f) ≤ d − 1) .

Roughly speaking, the index k is the number of steps in the F4/F5 [16] algorithm to
compute an element f ∈ Id,k(F ). We show that I2,1(F ) contains exactly n2+2n linear
equations. This means that we have already many linear equations generated during the
first step of a Gröbner basis computation of F .

Lemma 4. I2,1(F ) contains the following linear equations:

{u1,j | j = 1, . . . , n}. (4)

Proof. From the first row of the following zero matrix S · U we obtain the following
equations: ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

s1,1 u1,1 + s1,2 u2,1 + s1,3 u3,1 + · · · + s1,n un,1 = 0,

s1,1 u1,2 + s1,2 u2,2 + s1,3 u3,2 + · · · + s1,n un,2 = 0,

s1,1 u1,3 + s1,2 u2,3 + s1,3 u3,3 + · · · + s1,n un,3 = 0,

· · ·
s1,1 u1,n + s1,2 u2,n + s1,3 u3,n + · · · + s1,n un,n = 0

Using the equations s1,j = 0 from the ideal J ′, we obtain then u1,1 = 0, u1,2 =
0, . . . , u1,n = 0. ��
We can also predict the existence of other linear equations in I2,1(F ).

Lemma 5. For all (i, j) ∈ {1, . . . , n}2 the coefficient of y1yixj in Da(S0(S +
In)x,y) − Db(x, (U + In)S−1

0 y) is a non zero4 linear equation modulo the equa-
tions of the ideal J ′ and (4). Among these equations, there are n which depend only of
the variables {sk,� | 1 ≤ k, � ≤ n}.

Proof. We consider the coefficient of the monomial m = y1yixj in the expression

Δ = Δa − Δb = Da(S0(S + In)x,y) − Db(x, (U + In)S−1
0 y).

Since the monomial m is linear in xj it is clear that the corresponding coefficient in
Δa = Da(S0(S + In)x,y) is also linear in the variables si,j ; moreover this coefficient
is non zero. We have now to consider the coefficient of m in Δb. Since Db(x,y) is the
differential of an homogenous polynomial of degree 3 we can always write:

Db(x,y) =
n∑

i=1

n∑

j=i

�i,j(y1, . . . , yn)xixj +
n∑

i=1

qi(y1, . . . , yn)xi (5)

4 More precisely, generically non zero.
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where �i,j (resp. qi) is a polynomial of degree 1 (resp. 2). Consequently, the coefficient
of m in Db is also the coefficient of y1yi in qj((U + In)S−1

0 y). That is to say, in
qj(y) we have now to replace y = (y1, . . . , yn) by ((U + In)S−1

0 y). Thus, modulo the
equations of the ideal J ′ and (4), we can write the product ((U + In)S−1

0 y) as

=

⎛

⎜
⎜
⎜
⎜
⎝

y1

...

...
yn

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

1 0 0 0
u2,1 · · · · · · u2,n

... · · · · · · ...
un,1 · · · · · · un,n

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜⎜
⎜
⎝

y1

...

...
yn

⎞

⎟
⎟⎟
⎟
⎠

⎛

⎜⎜
⎜
⎝

∗ ∗ ∗ ∗
(∗u2,1 + · · · + ∗u2,n) · · · · · · (∗u2,1 + · · · + ∗u2,n)

... · · · · · · ...
(∗un,1 + · · · + ∗un,n) · · · · · · (∗u2,1 + · · · + ∗un,n)

⎞

⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜
⎝

∗y1 + (∗u2,1 + · · · + ∗u2,n)y2 + · · · + (∗un,1 + · · · + ∗un,n)yn

∗y1 + (∗u2,1 + · · · + ∗u2,n)y2 + · · · + (∗un,1 + · · · + ∗un,n)yn

...
∗y1 + (∗u2,1 + · · · + ∗u2,n)y2 + · · · + (∗un,1 + · · · + ∗un,n)yn

⎞

⎟⎟
⎟
⎠

Hence the coefficient of y1yi in qj((U + In)S−1
0 y) is linear in the variables uk,l when

i �= 1 and the coefficient of y2
1 is a constant. ��

To summarize:

Lemma 6. I2,1(F ) contains exactly n2 + 2n linear equations.

Proof. In I2,1(F ), we have n linear equations from lemma 5, n linear equations from
the very definition of J ′, and n2 linear equations from lemma 5 ��
As explained before, we obtain n2 +2n linear equations for I2,1(F ). However, we have
2n2 variables. So, we have to consider I2,2(F ), i.e., the equations generated at degree
2 during the second step. Thanks to lemma 6, we can reduce the original system to a
quadratic system in 2n2 − (2n + n2) = (n − 1)2 variables. W.l.o.g we can assume
that we keep only the variable ui,j where 2 ≤ i, j ≤ n. Let F ′ be the system obtained
from F after substituting the 2n + n2 linear equations of lemma 6. All the monomials
in K[x1, . . . , xn, y1, . . . , yn] of Da(S0(S + In)x,y)−Db(x, (U + In)S−1

0 y) have the
following shape:

xiyjyk or yixjxk with 1 ≤ i, j, k ≤ n.

Hence the number of such monomials is 2nn(n+1)
2 = n2(n + 1) ≈ n3, which implies

that the number of equations in F ′ is also n3.
Thanks to this remark, we will now prove that we can linearize F ′. Let T (F ′) be the

set of all monomials occurring in F ′. We can assume that T (G′) = [t1 < t2 < · · · <
tN ]. It is important to remark that t1 = u2,2 up to t(n−1)2 = un,n are in fact variables.
Now, let M be the matrix representation of G′ w.r.t. T (G′). Since we know precisely
the shape of the equations from the proof of lemma 5, it is possible to establish that:
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1. most of the equations are very sparse, namely each equation contains about n2

non-zero terms.
2. all the variables t1, . . . , t(n−1)2 occur in all the equations.

After a Gaussian elimination of the matrix M , we obtain the following shape:

M̃ =

⎡

⎢
⎢
⎢⎢
⎣

1(n−1)2 0 0 0
0 × · · · · · ·
0 × . . .

...

0 × · · · . . .

⎤

⎥
⎥
⎥⎥
⎦

Hence, we obtain after a second step of computation in degree 2 the equations u2,2 =
· · · = un,n = 0. This means that after 2 steps of computation at degree 2, we obtain
(n − 1)2 + 2n + n2 = 2n2 linear equations in 2n2 unknowns. This explains why
the maximum degree reached during the Gröbner basis computation of I′

a,b + J ′ is
bounded by 2, and concludes the proof of theorem 3. ��

5.1 Application to the Linear Inhomogeneous Case

If c = 0 in equation (1), and if a has a non-trivial homogeneous component of degree
one, then looking at the homogeneous component of degree one yields the image of S
on one point. We are then in a situation where theorem 3 is applicable, and S can be
determined though a Gröbner basis computation which terminates in time O (n6

)
.

5.2 Implementation and Application to the Other Cases

All the other cases reduce to the linear homogeneous case, as mentioned in section 2.
In this setting, the problem is that we do not have enough knowledge on S to make the
Gröbner basis computation efficient. A simple idea would be to guess a column of S
then compute the Gröbner basis. This approach has complexityO (n6 · qn

)
as explained

before. It is possible to reduce this complexity by a factor of q, by discarding guesses
for the column of S that yields different values of a and b on the corresponding points.

The biggest proposed cubic IP1S challenge (Challenge C in fig. 2) has u = 1, n = 16
and q = 2. Given one relation on S, the computation of the Gröbner basis takes 90
seconds on a 2.8Ghz Xeon computer using the publicly available implementation of
F4 in MAGMA. Since this has to be repeated 215 times, the whole process takes about
one CPU-month (and can be parallelized at will). For challenge D, the Gröbner basis is
computed in 0.1 second, and the whole process takes about 2 hours.

5.3 An Interesting Failure

We conclude this section with a simple idea that could have lead to an improvement,
by efficiently giving a relation on S, but which fails in an interesting manner. Let us
assume that a and b are homogeneous, and that c = 0 (in that setting, if c �= 0, then c
can be retrieved following the observation of [24]). Let us denote by Za (resp. Zb) the
set of zeroes of a (resp. b). Because of lemma 1, and since S is linear, we have:



490 C. Bouillaguet et al.

S

(
∑

x∈Za

x

)

=
∑

y∈Zb

y

This yields a relation on S, which is enough to use theorem 3. a and b may be assumed
to have about qn−1 zeroes. Finding them requires time O (qn). The complexity of the
attack could thus be improved to O (n6 + qn

)
. Surprisingly, this trick fails systemat-

ically, and this happen to be consequence of the Chevalley-Warning theorem [10,46].

Lemma 7. The sum of the zeroes of a cubic form on 5 variables or more over Fq is
always zero.

Proof. Let us consider the elements of Za having α as their first coordinate, and let us
denote by nα their number. These are in fact the common zeroes of (a, x1 −α). By the
Chevalley-Warning theorem [10,46], if a has at least 5 variables, then the characteristic
of the field divides nα. Therefore, their sum has zero on the first coordinate. Applying
this result for all values of α shows that the sum of zeroes of a has a null first coordinate.
We then just consider all coordinates successively. ��

6 Conclusion

In this paper, we present algorithms for the IP problem with one secret for two ran-
dom quadratic equations and one cubic equation. As already explained, there are the
most cryptographically relevant instances. Moreover, we explain the complexity, suc-
cess probability and give sufficient conditions so that the algorithms work. We combine
the use of the differential and the computation of Gröbner bases of very overdefined
systems. All the proposed IP1S challenges can be broken in practice by the technique
we describe, as the following table shows.

Challenge Attack time on one core

A 3 seconds
B 1 month
C 0 seconds
D 1 hours
E 3 minutes

In view of these results, we conclude that Patarin’s IP1S-Based identification scheme
is no longer competitive with respect to others combinatorial-based identification
schemes [42,43,44,45].
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