
A Family of Weak Keys in HFE
(and the Corresponding Practical Key-Recovery)

Charles Bouillaguet1,
Pierre-Alain Fouque1, Antoine Joux2,3, and Joana Treger2,4

1 Ecole Normale Supérieure
{charles.bouillaguet, pierre-alain.fouque}@ens.fr

2 Université de Versailles-Saint Quentin
3 DGA

antoine.joux@m4x.org
4 ANSSI

joana.treger@ssi.gouv.fr

Abstract. The HFE (Hidden Field Equations) cryptosystem is one of the most inter-
esting public-key multivariate scheme. It has been proposed more than 10 years ago by
Patarin and seems to withstand the attacks that break many other multivariate schemes,
since only subexponential ones have been proposed. The public key is a system of quadratic
equations in many variables. These equations are generated from the composition of the
secret elements: two linear mappings and a polynomial of small degree over an extension
field. In this paper we show that there exist weak keys in HFE when the coefficients of
the internal polynomial are defined in the ground field. In this case, we reduce the secret
key recovery problem to an instance of the Isomorphism of Polynomials (IP) problem
between the equations of the public key and themselves. Even though for schemes such as
SFLASH or C∗ the hardness of key-recovery relies on the hardness of the IP problem, this
is normally not the case for HFE, since the internal polynomial is kept secret. However,
when a weak key is used, we show how to recover all the components of the secret key in
practical time, given a solution to an instance of the IP problem. This breaks in particular
a variant of HFE proposed by Patarin to reduce the size of the public key and called the
“subfield variant”. Recovering the secret key takes a few minutes.
Key words: Cryptanalysis, multivariate cryptography, HFE, weak keys, Gröbner Bases.

1 Introduction

Multivariate cryptography is interesting from several points of view. First of all, it is based on a
hard problem, namely solving system of multivariate equations, for which there only exist generic
algorithms whose complexity is exponential in the worst case. Then, it has been proposed as
an alternative to the RSA cryptosystem since there is no quantum algorithms for this problem.
Finally, it is also appealing since the public operation does not require computations with large
integers, and no crypto-processor is needed.

The HFE cryptosystem has been proposed in 1996 by Patarin in [28] in order to avoid his
attack on the Matsumoto-Imai cryptosystem [23, 27]. This last scheme has also been called C∗

and basically hides the power function X 7→ X1+qθ

in an extension field of degree n over Fq,
using two secret linear bijections S and T . In order to invert it, it suffices to remark that this
power function, as the RSA power function, can be easily inverted provided 1 + qθ is invertible
modulo qn − 1. In [28], Patarin proposed to change the internal known monomial into a secret
polynomial f of small degree. The legitimate user can still easily invert the public key since she
knows S and T , and can invert the small degree polynomial using the Berlekamp algorithm for
instance.

1.1 Related Works

From the adversary point of view, the action of S and T transforms the secret internal polynomial
into a very sparse univariate polynomial of very high degree, as shown for instance by Kipnis
and Shamir in [22].

A possible decryption attack would consist in inverting or factorizing this polynomial. How-
ever, there are no efficient algorithms to perform these tasks (an attempt can be found in [35]),
and merely deciding the existence of roots is in fact NP-complete (cf. [22]).

HFE belongs to the category of public-key cryptosystems based on the hardness of com-
puting a functional decomposition: given the composition of two functions f and g, can one
identify the two components? Other examples include C∗, SFLASH [30], FAPKC [36], 2R [32]
and McEliece [24]. With the exception of the latter, the former have all been broken because
computing a functional decomposition was not as hard as expected. In the context of HFE,
computing such a decomposition is related to decomposing the univariate representation of the
public key, in order to recover the secret internal polynomial f as well as polynomial representa-
tions of S and T . Computing polynomial decompositions is a simple and natural mathematical
problem which has a long history, going back to the works of Ritt and Ore in 1922 and 1930
respectively [34, 26]. Today, polynomial decomposition algorithms exist for some classes of poly-
nomials over finite fields [37, 38], but no such algorithm is applicable to HFE. One step of the
attack presented in this article amounts to computing a polynomial decomposition, and makes
use of Gröbner bases.

The complexity of existing attacks, which all amount to solving systems of quadratic equa-
tions, depends on the degree d of the secret internal polynomial. When this degree is fixed, their
complexity is polynomial in the security parameter n, although the exponent can be ridiculously
large. In order for decryption to be polynomial, d must grow at most polynomially in n, and in
that case the attacks are no longer polynomial. We consider this setting to be the most natural
one to compare the asymptotic complexity of these attacks.

A simple decryption attack against HFE consists, given a ciphertext, in trying to solve the
equations given by the public key. In 2003, Faugère and Joux experimentally showed that the
HFE equations are not random systems of multivariate equations, because computing a Gröbner
basis for these equations is much easier than the corresponding problem with random quadratic
equations [16]. This allowed a custom implementation of the F5 algorithm [15] to break the first
HFE challenge, for which the public key has 80 quadratic equations in 80 unknowns over F2.
Later, Granboulan et al. [20] showed that specific algebraic properties of the HFE equations
make the complexity of inverting HFE subexponential, in O

(
exp

(
log2 n

))
.

In general, the hardness of recovering the secret key of HFE from the public key is unrelated
to the Isomorphism of Polynomials (IP) problem [28], unless the internal polynomial is made
public. A key recovery attack in the usual case where this polynomial is secret was presented
in [22] and turns the problem of recovering T into an instance of the MinRank problem, the
decisional version of which is NP-Complete [6]. Solving this instance of MinRank can be done by
solving an overdetermined system of about n2 quadratic equations in about n · log d variables.
The complexity of solving these equations is subexponential in O

(
exp

(
log3 n

))
. This is too high

to be practical, even for parameters corresponding to the HFE challenge that was broken.

These results show that HFE is not as robust as expected. However, can we consider HFE
really broken? Is it still a viable alternative to RSA?

The cryptographic community often perceives HFE as broken, because of the practical at-
tacks on some instances, and vastly lost both trust and interest in it. We would like to argue
that the situation of HFE is slightly more complex. The complexity of some Gröbner basis
algorithms, like F5 [15] is better understood [1] and allows to estimate the complexity of the
decryption attacks, which remains relatively high for general instances. Moreover, standard

2

modifications – such as removing some equations from the public key– destroy the algebraic
structure presented by public key and that was exploited by Gröbner basis algorithms. HFE
with Removed public equations is often called HFE−, and suitable for a signature scheme. No
attack faster than exhaustive search are known against HFE−. In particular, the second HFE
cryptanalytic challenge, with removed public equations, is currently far from being broken. Fur-
thermore, it is suggested in [11] (based on experimentations) that the subexponential behavior
of the Gröbner basis computation is mostly due to the fact that the computations are performed
over F2, and that over odd-characteristic fields, computing a Gröbner basis of the public-key
is no longer subexponential, but plainly exponential. This would mean that even when HFE is
used for encryption, there are non-broken parameters.

All in all, HFE is comparatively in better shape than the SFLASH signature scheme for
which polynomial time algorithms are known both to invert [13, 12] and to recover equivalent
secret keys [18]. These attacks against SFLASH exploit the fact that multiplication matrices
commute in some way with the internal monomial1. Then, it is possible to recover conjugates
of the multiplications by the secret matrix S using simple linear algebra on the differential of
the public key [18]. However, for general HFE, the multiplications no longer commute with the
secret polynomial. Another issue is that we also need to recover the internal secret polynomial.

1.2 Our Results

In this paper, we consider the key recovery problem on a class of weak keys for HFE. As opposed
to the decryption attack of Faugère and Joux [16], we recover an equivalent representation of
the secret key that subsequently allows to inverse the trapdoor with the same complexity as
the legitimate user. The weak instances we attack are defined by using an internal polynomial
with coefficients in the ground field and not in the extension field as it was originally specified,
or instances that are reducible to these specific ones (by considering equivalent transformations
S and T , see section 3.1). Some instances belonging to this category were proposed by Patarin
himself in [29] (an extended version of [28]) with the aim of reducing the size of the HFE public
key (the so-called “subfield” variant). However, notice that the family of weak keys described here
does not reduce to this subfield variant, and choosing the coefficients of the secret polynomial
in the base field can seem rather natural. While in general, the hardness of the key-recovery
does not depend on the hardness of the IP problem, we show that key recovery can be reduced
to an instance of the IP problem, and that the solutions of this problem allow us to efficiently
recover all the secret elements (or equivalent data). The latest IP algorithms allows to solve
the instances in practice for realistic parameters set. To mount our attack, as in the SFLASH
case [12], we try to find a commutation property to gain information about the secret key. In
our attack, since multiplications no longer commute, we instead use the Frobenius map.

Coming back to the subfield variant, other schemes, including UOV [21] for instance, also
have subfield variants, and the default in the design of an older version of SFLASH (v1) was to
choose the secrets in a subfield. These schemes, or their subfield variants have all been broken:
SFLASH v1 was attacked by Gilbert and Minier in [19], and subfield-UOV was shown to be
insecure as well [4]. Although SFLASH and HFE share a similar structure, the Gilbert-Minier
attack against SFLASH v1 cannot be applied to subfield-HFE, since it is based on Patarin’s
attack against C∗. Because this latter attack has no equivalent for HFE, there is no known
attack against the subfield variant of HFE.

As mentioned above, the complexity of nearly all existing attacks depends on the degree of
the internal secret polynomial. Even the most concrete and realistic threat, namely computing
a Gröbner basis of the public-key, will become irrealistic if this degree is chosen high enough (a

1 SFLASH is based on C∗ and has a single internal monomial.

3

drawback is that decryption then becomes slower). A nice feature of the attack presented in this
paper is that its asymptotic complexity is only marginally affected by the degree of the internal
polynomial. As such, it be applied in practice to HFE instances on which existing attacks would
be completely intractable. We also argue that under standard conjectures on the complexity
of Gröbner basis computation, it is possible to establish that the complexity of our remains
polynomial when the degree of the internal polynomial grows polynomially with n.

1.3 Organization of the Paper

Section 2 gathers some mathematical results, as well as basics on the HFE cryptosystem. In
subsection 2.3, we give known results on the problem of finding isomorphisms of polynomials,
that we need to mount our attack. Then, we describe our attack on the specific instances of
HFE mentioned before in section 4. Finally, in section 5, to illustrate the attack, we show that
we can break in practice a wide range of realistic parameters, including the ones proposed by
Patarin for the “subfield” variant.

2 About HFE

2.1 Mathematical Background

Extension Fields and Vector Spaces. Let K be the finite field with q elements and L an
extension of K of degree n > 1. L is isomorphic to K

n via an application ϕ. Hence, any application
A defined over L can be seen as an application over K

n and conversely (just consider ϕ−1◦A◦ϕ).
Recall that any application over L is a polynomial of L[X].

The Frobenius Map. The application F : X 7→ Xq over L is called the Frobenius map. It is
an automorphism of L that fixes any element of K. As a consequence, F can also be seen as a
matrix F ∈ GLn (K). A polynomial P ∈ L[X] commutes with F if and only if its coefficients are
in K.

Linear Polynomials. Let M be an endomorphism of K
n. It can be represented by a matrix

over K
n, but also as a polynomial over L. Such K-linear (or “additive”) polynomials only have

monomials of degree qi, for 0 ≤ i ≤ n− 1. In the sequel, we will always identify a n× n matrix
over K with its polynomial representation over L. The set of matrices commuting with F over
Mn(K) is the K-vector space of dimension n generated by

(
F0,F, . . . ,Fn−1

)
. We will also need

the following lemma:

Lemma 1. Let M ∈ GLn (K) be an invertible matrix. If its polynomial representation has
coefficients over K, then it is also the case for its inverse.

Proof. If the polynomial representation of M has coefficients in K, then M commutes with
F. This implies that M−1 also commutes with F, which in turn implies that the polynomial
representation of M−1 has coefficients in K. ⊓⊔

2.2 Hidden Field Equations

The HFE scheme was designed in [28] by Patarin. Notice that specific variations of HFE do
exist, but we will focus on the basic HFE scheme. Let us briefly recall its mechanism.

4

Let K = Fq be the field with q elements. The HFE secret key is made up of an extension L

of degree n over K, a low-degree polynomial f over L, and two invertible affine mappings S and
T over K

n. The secret polynomial f has the following particular shape:

f(X) =
∑

0≤i,j≤n

qi+qj≤d

ai,jX
qi+qj

+
∑

0≤k≤n

qk≤d

bkX
qk

+ c, (1)

with the ai,j , the bk and c lying in L. Polynomials with the same shape as f are called HFE
polynomials2. Because decryption requires to invert f , the maximum degree of f , denoted by
d, has to be chosen so that the factorization of f over L is efficient. All known algorithms for
factorizing over finite fields are at least quadratic in the degree of the polynomial, which restricts
d to values smaller than about 216. It also makes sense to consider degree bounds of the form
d = 2 · qD, because in equation (1), we may then consider the sum over values of i and j smaller
than D. Because the iterates of the Frobenius are K-linear, then f , seen as a transformation of
K

n, can be represented represented by a vector of n quadratic polynomials in n variables over
K. This property extends to the public key of the basic HFE scheme, defined by PK = T ◦ ◦S.

2.3 Known Algorithms for Finding Isomorphisms of Polynomials

In this section we briefly list the known techniques to solve the Isomorphism of Polynomials
(IP) problem. This problem was first introduced in [28], and its hardness underlies for instance
the hardness of the key-recovery of the C∗ scheme. As already mentionned, the security of HFE
does not rely in general on the hardness of this problem, but in the case of the attack on specific
instances presented in this paper, we reduce the recovery of the private key to solving an instance
of the IP problem, which happens to be tractable in some cases (e.g. the “subfield” case, see
section 5).

Recall that finding a polynomial isomorphism between two vectors of multivariate polyno-
mials a and b means finding two invertible matrices U and V in GLn(Fq), as well as two vectors
c and d in Fq

n such that:

b (x) = V (a (U · x+ c)) + d (2)

It has been proved that the IP problem is not NP-hard, unless the polynomial hierarchy
collapses [17]. On the other hand, IP has been shown to be as hard as Graph-Isomorphism [33],
for which no polynomial algorithms are known.

The first non-trivial algorithm for IP, known as the “To and Fro” technique, is due to Courtois
et al. [33]. In its primitive form, this algorithm assumes the ability to inverse the polynomial
systems, and has therefore an exponential complexity. A theoretical, birthday-based version of
this algorithm is claimed to solve the problem in time and space O

(
qn/2

)
if c = d = 0.

In [17], Faugère and Perret present a new technique for solving IP when c = d = 0. The idea
is to model the problem as an algebraic system of equations and solve it by means of Gröbner
bases [5, 8]. This technique has the advantage over the previous one that it is deterministic and
always succeeds. On the down side, its complexity is hard to predict. In practice, it turns out
to be efficient for instances of IP where the coefficients of all the monomials of all degree of a
and b are randomly chosen in Fq. For random instances of IP, the practical complexity of [17]
has empirically been observed to be O

(
n9
)
.

2 They were also studied much earlier in a completely different context by Dembowski and Ostrom [9],
so they are sometimes referred to as D–O polynomials in the literature.

5

More recently, a faster algorithm dealing with the same class of instances (c = d = 0)
provably achieves an expected complexity of O

(
n6
)

on random instances [3]. This means that
solving such random instances is feasible in practice for n = 128 or n = 256, which are the
highest values encountered in practical HFE settings.

No polynomial algorithm is known when c 6= 0 or d 6= 0, or when a and b are homogeneous,
and these are the most recurring settings in multivariate cryptography. However, it was also
shown in [3] that it is possible to solve these hard instances without first guessing c and d.
This enables a birthday-based algorithm to deal in practice with these hard instances in time
n3.5 · qn/2.

3 A Specific Family of HFE Secret Polynomials

3.1 A commutation property for some HFE Secret Polynomials

To begin with, let us consider the à la C∗ case, where the secret polynomial f over L is just
a monomial a · Xqi+qj

, a ∈ L. Then the public key PK = T ◦ f ◦ S can also be written as
T ′ ◦Xqi+qj

◦ S, by “absorbing” the multiplication by the constant a into T . As a consequence,
without loss of generality, we can suppose that a ∈ K (or even that a = 1, but a ∈ K suffices for
our purpose).

This secret monomial has some special commutation properties, which were used in [12,
13] to perform attacks on SFLASH. More precisely, composing it on the right hand size by
multiplications Mx by an element x is equivalent to composing it on the left hand size by
Mxqi+qj . Another property, not used in [12, 13], is that it also commutes with the Frobenius
map F and its iterates.

When we consider a more general HFE secret polynomial, the two commutation properties no
longer hold. However, if we restrict the HFE polynomials to have their coefficients in K, we lose
the first property but the commutation with the Frobenius map still remains. Such instances can
be represented by figure 1. Notice that if the coefficients of the HFE secret polynomial f can all
be written as the product of the same element u of L with an element of K, then by considering
an equivalent transformation T made up of the original T and the multiplication by this factor
u, we can suppose that f has coefficients in K too. This is the same as for the monomial case
explained above. The same goes if we can modify the transformation S by composing it with
a multiplication by an element m over L, in such a way that the remaining polynomial f has
coefficients in K. In fact, this is all about equivalent secret keys [39]. Finally, the commutation
property with the Frobenius can be exploited for instances of the type:

f(X) =
∑

0≤i,j≤n

qi+qj≤d

u · ai,j ·m
qi+qj

·Xqi+qj

+
∑

0≤k≤n

qk≤d

u · bk ·mqk

·Xqk

+ u · c, (3)

with ai,j , bk, c ∈ K, u ∈ L, and m ∈ L.

Fig. 1. PK = T ◦ f ◦ S. The broken arrow indicates that f has coefficients in K.

6

Our key-recovery attack described in Section 4 exploits this second commutation property
and could also apply to monomial instances of HFE, but this is not the point of this paper,
as it has already been efficiently done [12, 13, 18]. Notice that legitimate users could easily
check whether the internal polynomial of their secret keys belongs to the family verifying this
commutation property, but we do not detail this fact here. In the next subsection, we give
bounds on the number of HFE secret polynomials belonging to the family described.

3.2 An Estimation of the Cardinal of this Family

Let us study the cardinal of the family highlighted in section 3.1. Recall that we consider HFE
polynomials with coefficients in K, but also polynomials that can be written Mδ ◦ f ′ ◦Mλ, where
f ′ has coefficients in K, Mδ (respectively Mλ) is the multiplication by δ ∈ L \ K (respectively
λ ∈ L \ K).

Amongst this set of polynomials defined by Mδ ◦ f ′ ◦Mλ, there are some instances for which
f ′ commutes with multiplication applications. We already mentionned the case where f ′ is a
monomial, but actually, such a commutative property may arise when f ′ is made up of two
terms or sometimes more. Let us detail this point. We can write:

f ′ ◦Mλ(X) =
∑

i,j

ai,j · (λ ·X)qi+qj

+
∑

i

bi · (λ ·X)qi

+ c

=
∑

i,j

ai,j · λ
qi+qj

·Xqi+qj

+
∑

i

bi · λ
qi

·Xqi

+ c; (4)

Mδ ◦ f ′(X) =
∑

i,j

ai,j · δ ·X
qi+qj

+
∑

i

bi · δ ·X
qi

+ δ · c. (5)

When K = F2 and c = 0, or K 6= F2 and f ′ is homogeneous, we can sometimes have an equality
between the two right-hand sides of equations (4) and (5) above. Let us consider these instances
and suppose we have such an equality. As a result, we have some conditions on δ and λ. More
precisely, we see that for a commutation property with multiplications to exist, the conditions,
when consistents, often force λ and δ to live in a strict subfield of L, which turns out to be most
probably K as soon as f ′ has more than two terms. These are very specific instances, but have
to be considered if we want to evaluate the number of HFE secret keys which belong to the
family described in subsection 3.1. We have:

Proposition 2. The number of HFE secret polynomials belonging to the family considered in
this paper is lower-bounded by:

i) (q
(D+1)(D+2)

2 − 1) · qD+2 · (qn − q), when K 6= F2,

ii) (q
D(D+1)

2 − 1) · qD+3 · (qn − q), when K = F2,

corresponding to O
(
qD2+n

)
, and upper-bounded by:

i)
(
(q

(D+1)(D+2)
2 − 1) · qD+2 − (D+1)(D+2)

2 · (q − 1)
)
· (qn − q)2 + (D+1)(D+2)

2 · (q−1) · (qn − q),

when K 6= F2,

ii)
(
(q

D(D+1)
2 − 1) · qD+2 − (D+1)(D+2)

2 · (q − 1)
)
· (qn − q)2 + (D+1)(D+2)

2 · (q − 1) · (qn − q),

when K = F2,

which corresponds to O
(
qD2+2n

)
.

7

Proof. An HFE polynomial has (D+1)(D+2)
2 + (D + 1) + 1 = D(D+5)

2 + 3 terms when K 6= F2,
(D+1)(D+2)

2 − (D + 1) + (D + 2) + 1 = (D+1)(D+2)
2 + 2 when K = F2. We have:

1. K has q elements. The number of HFE polynomials with coefficients in K 6= F2 is q
D(D+5)

2 +3

(q
(D+1)(D+2)

2 +2 when K = F2). We however focus on polynomials over K, which are non-linear

over K. This gives (q
(D+1)(D+2)

2 − 1) · qD+2 polynomials when K 6= F2, (q
(D+1)(D+2)

2 −(D+1) −

1) · qD+3 = (q
D(D+1)

2 − 1) · qD+3 otherwise.
2. The number of elements belonging to L\K is qn−q. Hence, the number of HFE polynomials

that can be written as a polynomials with coefficients in K (a polynomial of point 1.),
composed on the left by a mulitplication Mλ, for λ ∈ L \ K, is:

(q
(D+1)(D+2)

2 − 1) · qD+2 · (qn − q), when K 6= F2,

(q
D(D+1)

2 − 1) · qD+3 · (qn − q), when K = F2.

This corresponds to the lower bound of the proposition.

Now, to evaluate the exact number of polynomials belonging to our family, we should evaluate
the number of polynomials that can be written as in point 2, composed on the right by a
multiplication by an element of L\K. However, we saw that some polynomials have the property
that composing them by a multiplication on the left is equivalent to composing them by another
multiplication on the right. We thus have to be carefull not to count such poynomial twice.
Amongst these polynomials, only monomials have this property for sure. The number of K-

quadratic monomials over L with coefficients in K is (D+1)(D+2)
2 · (q − 1) or (D(D+1)

2) · (q − 1),
whether K = F2 or not. This allows to establish the upper-bound of the proposition:

(
(q

(D+1)(D+2)
2 − 1) · qD+2 −

(D + 1)(D + 2)

2
· (q − 1)

)
· (qn − q)2

+
(D + 1)(D + 2)

2
· (q − 1) · (qn − q), when K 6= F2,

(
(q

D(D+1)
2 − 1) · qD+2 −

(D + 1)(D + 2)

2
· (q − 1)

)
· (qn − q)2

+
(D + 1)(D + 2)

2
· (q − 1) · (qn − q), when K = F2.

⊓⊔

We show in this paper that for all HFE secret polynomials with coefficients in K (or more
precisely, the family described by equation (3) and number in proposition 2), the security in
fact relies on the hardness of the IP problem. Moreover, in the cases where this IP problem can
be solved (see subsection 2.3), then we can also recover an efficient secret key (maybe different
from the original one) in practical time.

4 The Attack

The attack being quite complex, let us give an overview. A pseudo-code of the attack is given
in fig. 2. First, we show that the representation of L can be supposed public. Then, as already
mentioned in Section 3.1, we use the commutation of the Frobenius map with the secret poly-
nomials considered, which propagates to the public key PK. This key property allows us to
recover applications closely related to S and T . An interpolation of PK combined with these

8

applications then gives us a polynomial over K from which we recover f or an equivalent low-
degree polynomial by computing a functional decomposition. In any case, we obtain the original
secret key or a different one that allows us to decrypt as efficiently as the secret key owner. All
these assertions are detailed and justified in this section.

Fig. 2 Pseudo-code of the attack

Require: An HFE public key PK, generated by (T, f , S) such that f ∈ K[X].
Ensure: An equivalent secret key: (T ′, f ′, S′), with deg f ′ ≤ deg f .
1: // section 4.2
2: repeat

3: Let (U, V) be a (random) solution to the IP problem: U ◦ PK = PK ◦ V .
4: until U and F are similar
5: // section 4.3
6: for all i0 in [1; n − 1] prime with n do

7: Let k = i0
−1 mod n.

8: Compute eS, eT such that F = eS ◦ V k
◦ eS−1 = eT−1

◦ Uk
◦ eT .

9: // section 4.4

10: Interpolate g = eT−1
◦ PK ◦ eS−1.

11: if g has coefficients in K then

12: // section 4.5
13: Compute F1, F2 and f2, such that g ◦ F1 = F−1

2
◦ f2.

14: return
“

eT · F−1

2
, f2, F

−1

1
· eS

”

15: end if

16: end for

4.1 Equivalent Secret Keys : Irrelevance of Hiding the Extension

It is shown in [39] that there are many equivalent keys in HFE. As a consequence, one can
assume S and T to be linear bijections (as opposed to affine), and arbitrarily choose their value
on one point. Indeed, it is possible to compensate changes in S and T by changes in f . In the
restricted setting where f is assumed to have coefficients in the base field K (instead of the
extension field L), this is no longer possible, because there is not enough freedom if we want to
keep f ∈ K[X].

However, what holds in general and still holds for our family of secret keys is that the assump-
tion of keeping the representation ϕ of L secret is not necessary. This was already mentioned
in the original paper [28], and as a matter of fact, the specifications of both Quartz [31] and
SFLASH make the description of the extension public. In any case, it is possible to generate
the same public key from the same secret polynomial, while fixing an arbitrary correspondence
between L and K

n. It simply requires slight modifications on S and T :

Proposition 3. Let SK = (T, f , S, ϕ) be an HFE secret key. Then for any choice of an iso-
morphism ϕ′ between L and K

n, there exist two affine bijections S′ and T ′ such that SK′ =
(T ′, f , S′, ϕ′) is equivalent to SK (i.e., generates the same public key).

Proof. If ϕ′ denotes another isomorphism between L and K
n, then φ = ϕ′ ◦ ϕ−1 is a K-linear

invertible application such that ϕ′ = φ◦ϕ. Using the correspondence ϕ′, the composition T ′◦f◦S′

is also equal to PK, where T ′ = φ ◦ T and S′ = S ◦ φ−1. ⊓⊔

9

Thus, the assumption of keeping L secret does not have an influence on the security of HFE.
Would the extension be secret, one could just arbitrarily fix its own and be guaranteed that
an equivalent secret key exists. As a consequence, throughout the sequel, we assume that the
description of L is public.

4.2 A Useful Property of HFE Secret Polynomials Lying in K[X]

Recall from Section 2.1 that because f has coefficients in K, then it commutes with F:

f ◦ F(X) = F ◦ f(X) (6)

Patarin left as an open problem whether this property has security implications or not. We
shall demonstrate that it does indeed. Most importantly, this property is detectable on the
public-key.

Proposition 4. There exists non-trivial polynomial isomorphisms between the public key and
itself. More precisely, the invertible mapping ψ defined below transforms a matrix M that com-
mutes with f into a solution of the polynomial automorphism of the public-key:

ψ : M 7→
(
T ·M−1 · T−1, S−1 ·M · S

)

As a consequence, ψ(F), . . . , ψ
(
Fn−1

)
are non-trivial isomorphisms between PK and itself.

Proof. Let M be a matrix such that f ◦M = M ◦ f . Then we get:

PK ◦ (S−1 ◦M ◦ S) = T ◦ f ◦ S ◦ S−1 ◦M ◦ S
= T ◦M ◦ f ◦ S
= (T ◦M ◦ T−1) ◦ PK

⇔ PK = (T ◦M ◦ T−1)−1 ◦ PK ◦ (S−1 ◦M ◦ S)

Then, because of (6), ψ(F), . . . , ψ
(
Fn−1

)
are automorphisms of the public key. ⊓⊔

Remark 1. The existence of other solutions besides those mentioned in proposition 4 is extremely
unlikely. Indeed, this would imply the existence of other linear applications commuting with the
(non-linear) internal polynomial. However, besides the monomial instances, where multiplication
matrices commute in some sense with f , we are not aware of instances that would verify such a
property. Thus, if we consider a particular solution of the problem of retrieving an automorphism
of the public-key, we can assume that it is ψ

(
F i0
)
, for some unknown power i0.

Hardness of the IP Problem. We discussed algorithms for solving the IP problem in sub-
section 2.3. In our setting, the conditions for which the polynomial-time IP algorithms are
applicable are:

i) The secret transformations S and T are linear (as opposed to affine).
ii) The bk coefficients of (1) are not all zero.
iii) The c coefficient of (1) is non-zero.

The first condition can only be satisfied if choosing linear S and T was a deliberate decision
(otherwise it will only happen with negligible probability). There are good reasons of doing so:
first it reduces a bit the size of the private key. Second, in general, because of the existence of
equivalent keys, it can be assumed that S and T are linear. However, we emphasize that this last
fact is no longer true if the internal polynomial f is chosen in K[X] instead of L[X] (section 4.1).

10

A sequence of bad design decisions could still lead to the combination of a restricted f and linear
S and T .

The second condition will always be satisfied with high probability, and the third will be
satisfied with probability 1/q. It must be noted that if c = 0 in (1), then the public-key sends
zero to zero, which might not be desirable.

In the case where S and T are affine, the situation is much more painful, and breaking the
IP instance in practice requires a workload of q′n/2 if the coefficients of S live in Fq′ . In the case
of the “subfield variant” though, since q′ = 2 and n is small enough, breaking the IP instances
is still tractable (see section 5).

4.3 Retrieving “nearly S” and “nearly T ” Applications

Let us assume that we have found an automorphism (U, V) = ψ
(
Fi0
)

of the public-key, for
some unknown integer i0 in the interval [1;n− 1]. The whole point of the attack is to “extract”
enough information about S and T from this automorphism. For this purpose, the value of i0
has to be known, and it is required that i0 and n be relatively prime. This latter condition can
be easily checked for: Fi and Fj are similar if and only if gcd(i, n) = gcd(j, n). Therefore, i0 is
relatively prime with n if U and F are similar. If it turns out not to be the case, we take an
other automorphism of PK, until it passes the test. Since there are φ(n) values of i0 that are
prime with n, we expect to check n/φ(n) = O (log log n) candidates.

To find out the actual value of i0, we simply guess its value, and check whether the remaining
steps of the attack are carried out successfully. Fortunately, there is a way to discard bad guesses
systematically before the most computationally expensive step of the attack, as we will explain
in section 4.4.

With the preceding notations, we have the following result:

Proposition 5. Let (U, V) = ψ
(
Fi0
)
, with gcd(i0, n) = 1. Let k be such that k · i0 = 1 mod n.

i) There exist S̃, T̃ in GLn (K) such that F = S̃ ◦ V k ◦ S̃−1 and F = T̃−1 ◦ Uk ◦ T̃ .

ii) Both S̃ · S−1 and T̃ · T−1 commute with F.

Proof. i) We know that U and V are both similar to Fi0 . Thus Uk and V k are both similar
to Fi0·k = F1 mod n = F.

ii) Let us consider the case of S̃ (something similar holds for T̃). We have:

F = S̃ ◦ V k ◦ S̃−1

= S̃ ◦ S−1 ◦ Fi0·k ◦ S ◦ S̃−1

= S̃ ◦ S−1 ◦ F ◦ S ◦ S̃−1

And thus F ◦ S̃ ◦ S−1 = S̃ ◦ S−1 ◦ F. ⊓⊔

In practice, S̃ and T̃ can be found very efficiently through linear algebra, given that i0 is known.
Note that for now, this proposition cannot be used to test whether our current guess for i0 is
correct, since we do not know S.

4.4 Building an Equivalent Secret Key

The information about S (resp. T) contained in S̃ (resp. T̃) can be used to cancel the action of

S and T on the public key. It follows from proposition 5 (see also section 2) that F1 = S̃ · S−1

and F2 = T−1 · T̃ are linear combinations over K of powers of F. We immediately obtain that:

T̃−1 ◦ PK ◦ S̃−1 = F−1
2 ◦ T−1 ◦ T ◦ f ◦ S ◦ S−1 ◦ F−1

1

= F−1
2 ◦ f ◦ F−1

1 . (7)

11

We therefore define:

g = T̃−1 ◦ PK ◦ S̃−1 mod
(
Xqn

−X
)

Because the HFE polynomials are stable by left and right composition by additive polynomi-
als and by reduction modulo Xqn

−X, the “peeled off” polynomial g is still an HFE polynomial.
Thus g has O

(
n2
)

coefficients, and that they can be uniquely determined in polynomial time
by interpolation (this was noted in [22]. Note that there would not be a unique solution if we
did not perform the modular reduction of g). By doing so, we obtain an equivalent secret key,

namely
(
T̃ ,g, S̃

)
.

By itself, this equivalent key is not particularly useful, since the degree of g is typically qn,
and we are therefore still facing our initial task of factorizing a sparse polynomial of very high
degree. However, g has a very important property which brings us one step closer to the original
secret-key:

Proposition 6. The coefficients of g are in K (and not in L).

Proof. By hypothesis, the coefficients of f are in K. From proposition 5, we have that the
coefficients of the polynomial representation of F1 and F2 are in K, then, so are those of the
polynomial representations of F1

−1 and F2
−1 (by lemma 1). ⊓⊔

The result of proposition 6 is illustrated in figure 3. This figure also helps remembering how
the applications introduced so far intervene.

Fig. 3: PK = T ◦ f ◦ S = T̃ ◦ g ◦ S̃. Broken arrows stand for applications with coefficients in K.

This proposition can be used to verify if our guess for i0 was right. Indeed, if g is found
not to be in K[X], then the guess was wrong. We are aware that the fact that g ∈ K[X] does
not rigorously prove that we have found the right value of i0. However, it does not matter, as
g ∈ K[X] is sufficient for the subsequent step to work.

4.5 Recovering a Low-Degree Equivalent Secret Key

To be useful, an equivalent secret key must have an internal polynomial of low degree. We now
show how to obtain one, by actually computing the decomposition given by equation (7) of
Section 4.4. This is in fact a much easier problem than computing the equivalent decomposition
on the original public key, because we deal with applications whose coefficients belong to K.
They are then left invariant by the Frobenius (hence by F1 and F2), which implies that the
problem of finding the decomposition reduces to finding a solution of an overdefined system of

12

quadratic equations. This system can be solved in practical time by computing a Gröbner basis,
as we now show. To this end, we introduce the following notations:

F1(X) =

n−1∑

k=0

xkX
qk

F−1
1 (X) =

n−1∑

k=0

ykX
qk

F2(X) =
n−1∑

k=0

zkX
qk

F−1
2 (X) =

n−1∑

k=0

tkX
qk

g(X) =
∑

qi+qj<qn

aijX
qi+qj

+

n−1∑

i=0

biX
qi

+ c

f2(X) =
∑

qi+qj≤d

eijX
qi+qj

+
∑

qi≤d

fiX
qi

+ g

Then, we consider the following polynomial equation, also represented by figue 4.5, obtained
by composing both sides of equation (7) of Section 4.4 with F1:

g ◦ F1 = F−1
2 ◦ f2. (8)

Fig. 4: g = F−1
2 ◦ f ◦ F−1

1 . Broken arrows stand for applications with unknown coefficients.

The left-hand side becomes:

g ◦ F1 =
∑

aij

(
n−1∑

k=0

xkX
qk

)qi+qj

+
∑

bi

(
n−1∑

k=0

xkX
qk

)qi

+ c

=
∑

i,j,k,l

aij · xk · xl ·X
qi+k+ql+j

+
∑

i,k

bi · xk ·Xqi+k

+ c

We obtain a polynomial whose coefficients are quadratic in the coefficients of F1. Now, let
us compute the right-hand side:

F−1
2 ◦ f2 =

n−1∑

k=0

tk

∑

qi+qj≤d

eijX
qi+qj

+
∑

qi≤d

fiX
qi

+ g

qk

=
∑

i,j,k

tk · eij ·X
qi+k+qj+k

+
∑

i,k

tk · fi ·X
qi+k

+ g ·
∑

k

tk

We again obtain a polynomial whose coefficients are quadratic in the coefficients of both
f2 and F−1

2 . Reducing both sides modulo Xqn

− X and identifying coefficient-wise the two

13

sides of equation (8) yields a system of O
(
n2
)

quadratic equations in O
(
n+D2

)
unknowns.

However, these equations admit many parasitic solutions (for example, F1 = f2 = 0). To avoid
these, we also encode the fact that F1 and F2 are invertible. We describe how we encode the
invertibility of F1, as this is similar for F2. We start from the equation: F1 ◦ F−1

1 (X) = X:
because the coefficients of the left-hand side are quadratic in the xk’s and yk’s, we obtain n
quadratic equations by reducing the LHS modulo Xqn

− X and equating the coefficients on
both sides of the equation. Note that this also introduce in all 2n additional unknowns (n for
the coefficients of F−1

1 and n for the coefficients of F2).
All in all, assuming that the degree of f is d = 2qD, this yields n(n+ 3)/2 + 1 equations in

4n + D(D + 5)/2 + 4 variables, not counting eventual field equations (one per variable). The
existence of at least one solution is guaranteed, because of equation (7) of Section 4.4, as long
as we picked the right power of the Frobenius matrix in section 4.2. In fact, even though we
just need one, we know that many solutions exist: for instance because the Frobenius commutes
with everything in equation (8), we can take a particular solution, compose both F−1

2 and F1

with the Frobenius, and obtain a new solution.
It turns out that these equations can be solved efficiently, even though the number of variables

is higher than what is usually tractable, because it is very overdetermined: we have O
(
n2
)

equations in O
(
n+D2

)
variables, and D has to be small for decryption to be efficient (i.e.,

D = O (log n)). In this setting, computing a Gröbner basis turns out to be feasible in practice.

Conjecture 1. The Gröbner basis of a system of random quadratic equations with the same
number of variable and polynomials as our equations can be computed by manipulating poly-
nomials of degree at most 8. Thus, it can be computed in time at most O

(
n24
)

by the F4 or F5

algorithms [14, 15]. This is true if D is fixed, or even if grows polynomially with log n.

Justification of the Conjecture. We argue that the complexity of computing a Gröbner
basis of our equations is fact polynomial under realistic assumptions, although in the general
case the algorithms involved in the computation are simply or doubly exponential.

The usual strategy to solve such an overdefined system of equations is to compute a Gröbner
basis for the graded reverse lexicographic order, since it is easier, and then to convert it to a
Gröbner basis for the lexicographic order. Let us recall that the complexity of all known Gröbner
bases algorithms depends on the degree of regularity of the system [7, 1]. This corresponds to the
maximal degree of polynomials manipulated during a Gröbner basis computation. If dreg is the
degree of regularity of an ideal I ⊂ k[x1, . . . , xm], then the complexity of computing a Gröbner
basis of I using the F5 algorithm [15] is upper-bounded by:

O

((
n+ dreg

dreg

)ω)
= O

(
nω·dreg

)

where ω is the linear algebra constant (between 2 and 3). In general, it is a difficult problem to
know a priori the degree of regularity, although lower-bounds were shown in the context of the
analysis of the XL algorithm [10].

To upper-bound the complexity of our Gröbner-basis computation, we use an existing approx-
imation of the degree of regularity that applies to regular and semi-regular system of equations
(i.e., in which the equations are “as independent as possible”. For a formal definition, see [1]).
It is conjectured that the proportion of semi-regular systems goes to 1 when n goes to +∞.
Therefore, we will assume that for large n a random system is almost surely semi-regular (which
is to some extent a worst-case assumption, as it usually means that our system is not easier
to solve than the others). The coefficients of the Hilbert series associated with the ideal gen-
erated by a semi-regular sequence coincide with those of the series expansion of the function

14

f(z) =
(
1 − z2

)m
/(1− z)n, up to the degree of regularity. The degree of regularity is the small-

est degree d such that the coefficient of degree d in the series expansion of f(z) is not strictly
positive. This property enables an explicit computation of the degree of regularity for given
values of m and n.

Furthermore, Bardet et al. [1] give asymptotic developments of the expression of the degree
of regularity in the case of α · n equations in n variables, where α is a constant greater than 1.
While this result is not directly applicable to our case (because we have about αn2 equations),
we use it to derive a heuristic expression of the degree of regularity for systems of α · n2.

When there are α · n semi-regular quadratic equations in n variables, [1] gives:

dreg = n

(
α−

1

2
−
√
α(α− 1)

)
−

a1

2(α(α− 1))
1
6

n
1
3 −

(
2 −

2α− 1

4
√
α(α− 1)

)
+ O

(
1/n1/3

)
,

with a1 ≈ −2.33811. (9)

While we are well-aware that it is not theoretically justified (because equation (9) is es-
tablished for a constant α), we now set α = βn, and express dreg as a function of β. This
yields

dreg =
1

8β
−

a1

2β1/3
−

3

2
+ O (1/n) . (10)

This heuristic result can be empirically checked to be rather precise, for various values of β
and n, as shown in fig. 5(a). When n grows to infinity, it seems that the degree of regularity
converges to a constant, an approximation of which is given by (10). We now apply this result
to our setting:

1. Consider that D is fixed. Then when n becomes big, we have β = 1/32. Equation (10) then
yields dreg = 7 for large n (actually computing it using the Hilbert series gives a value of 8
for big n). Computing the Gröbner basis can thus be achieved with complexity O

(
n8ω
)
.

2. Consider that the degree of f grows polynomially with n, which means that D = O (log n).

In that case we have β = 1/32 + O
(

log n
n

)
, and equation (10) still yields dreg ≈ 7 for large

n.

This shows that even in the more general setting the computation of the Gröbner basis
should be polynomial, and the degree of the polynomials should not increase beyond a given
threshold. Fig. 5(b) shows the degree of regularity of systems having the same parameters as
those considered in the attack.

Comments and Practical Results. While the result conjectured above means that com-
puting the polynomial decomposition we are dealing with should be polynomial, some remarks
are in order. First, our equations are not random, not to mention semi-regular. This follows
from the fact that they admit many solution, while a random overdetermined system has no
solutions with overwhelming probability. Next, our experiments (for various values of n and D)
indicate that a Gröbner basis can be computed by manipulating polynomials of degree at most
3, leading to an empirical complexity of O

(
n9
)
. Our equations are thus easier to solve than

random systems with the same parameters.

Once the equations are solved, we recover an equivalent secret-key
(
T̃ · F−1

2 , f2, F
−1
1 · S̃

)
,

which allows us to decrypt with the same time complexity as the legitimate user, since f2 has
essentially the same degree as f .

15

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500

D
eg

re
e

of
 R

eg
ul

ar
ity

n

Degree of Regularity of Semi-Generic Systems With β n2 Equations in n Unknowns

β=2-8

β=2-7

β=2-6

β=2-5

β=2-4

heuristic estimate
exact value

(a) Comparison between the heuristic estimate and the actual values of the degree of regularity for
α · n2 quadratic equations in n unknowns.

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500

D
eg

re
e

of
 R

eg
ul

ar
ity

n

Degree of Regularity of Semi-Regular Systems Corresponding to the Attack

D=log(n)
D=5*log(n)

D=10
D=20

(b) Degree of regularity of semi-generic systems of n(n + 3)/2 + 1 quadratic equations in 4n + D(D +
5)/2 + 4 variables.

16

5 Applications and Experiments

We programmed the HFE key-generation and encryption, as well as the attack, in the MAGMA [2]
computer-algebra system. We do not claim that our implementation is efficient, nor reflects what
kind of performances can be obtained in encryption. All the experiments were run on one core
of an Intel 2.3Ghz Xeon “Nehalem” computer with 74 Gbyte of RAM. We tested our attack on
several sets of parameters described below. We forged the solution of the IP instance from the
knowledge of the secret S and T . The actual timings are given in figure 5.

Weak Keys. We first tested the attack on realistically-sized weak keys, corresponding to
parameters set A,B and C. The chosen parameters allows the encryption or signature of 256, 134
and 97 bits respectively. We choose the degree of the internal polynomial very conservatively
(i.e., much higher than what was proposed for the HFE challenges, and high enough to make
decryption painfully slow). To make the IP part of the attack feasible, we choose the secret
bijections S and T to be linear (as opposed to affine). Then solving the IP instance is a matter
of seconds with the techniques presented in [3]. We emphasize that none of the existing attack
can be close to practical on parameter sets A and B.

Patarin’s “Subfield” Variant of HFE. In order to reduce the size of the public key, Patarin
suggested in [29] a “subfield” variant of HFE, in which the coefficients of the quadratic equations
of PK live in a subfield k of K. If K = F256 and k = F2, this reduces the size of the public
key by a factor of 8. To achieve this, the coefficients of S and T , the coefficients of the defining
polynomial of the extension field L, and the coefficients of the internal polynomial f have to be
chosen in k (instead of K or L for the latter). S and T will be affine, so the polynomial-time IP
algorithms do not apply in this case.

In order for the reduction of the public key size to be effective, K has to be relatively big
and k relatively small. The former implies that D cannot be very huge, otherwise decryption
is impractical, while the latter means little entropy in the internal polynomial. This opens a
possible way of attack, consisting in guessing f and then solving the IP problem to recover S
and T . We shall compare the attack presented in this paper with this simple one.

Patarin’s “concrete proposal” is parameter set D in fig. 5. For practical decryption, we have
to choose D = 2 (yielding an internal polynomial of degree at most 131072), and decryption
can take at most 4 minutes on our machine. The internal polynomial has at most 10 terms with
coefficients in F2. The simple “guess-f -then-IP” key recovery attack therefore needs to solve 210

affine IP instances for which q = 2 and n = 29. Such instances are in fact tractable even with
older techniques (though no one ever noticed it), for instance using the “to-and-fro” algorithm
of [33]. In that case, the “guess-then-IP” attack has a workload of 268. With the new attack
presented in this paper, and the more advanced IP techniques described in [3], solving the IP
instance takes about one second, and our attack takes less than one minute.

To show that the “subfield” variant is broken beyond repair, we show that it is possible to
attack in practice parameters twice as big as the concrete proposal. This is parameter set E.
The internal polynomial now has 21 terms, so the simple attack requires breaking 221 affine
instances of the IP problem with q = 2 and n = 59. According to [3], breaking one of these
instance should take about one month using inexpensive hardware, with a workload of about
259. The “guess-then-IP” attack is here clearly impractical with a complexity of 280. Our attack
requires one month to break the IP instance, plus about 4 hours for the remaining steps.

17

Parameter set A B C D E

block size (bits) 256 134 97 232 236

q 256 4 2 256 16

N 32 67 97 29 59

deg f 131072 131072 128 131072 131072

coefficients of f in F256 F4 F2 F2 F2

S and T linear linear linear affine affine

coefficients of S, T in F256 F4 F2 F2 F2

Terms in f 10 54 29 10 21

size of PK (bits) 143’616 314’364 461’138 13’485 107’970

IP polynomial ≈ 1s ≈ 5 weeks

Interpolation of g (once) 79s 30 min 140 min 51s 23min

Gröbner 7h 1 day 1 week 45s 3h

Variables / Equations 136 / 593 322/4947 423/10028 124 / 494 253 / 1889

Memory required 2.1Gbyte 45Gbyte 180Gbyte 350Mbyte 13.9Gbyte

Order Change 15s 30 min 4h 0s 30s

Fig. 5: Timings for the Attack

6 Conclusion

In this paper, we considered a special family of HFE instances, where the internal secret poly-
nomial is defined over the base field K instead of the extension field L. We show that, in that
case, there are non-trivial isomorphisms of polynomials between the corresponding public key
and itself. Interestingly, finding such an isomorphism suffices to completely recover (in practical
time) a secret-key that allows fast decryption.

References

1. Bardet, M., Faugère, J.C., Salvy, B., Yang, B.Y.: Asymptotic Behaviour of the Degree of Regularity
of Semi-Regular Polynomial Systems. In: MEGA’05. (2005) Eighth International Symposium on
Effective Methods in Algebraic Geometry, Porto Conte, Alghero, Sardinia (Italy), May 27th – June
1st.

2. Bosma, W., Cannon, J.J., Playoust, C.: The Magma Algebra System I: The User Language. J.
Symb. Comput. 24(3/4) (1997) 235–265

3. Bouillaguet, C., Faugère, J.C., Fouque, P.A., Pérret, L.: Isomorphism of Polynomials : New Results
(October 2010) unpublished manuscript. Available at: http://www.di.ens.fr/~bouillaguet/pub/
ip.pdf.

4. Braeken, A., Wolf, C., Preneel, B.: A Study of the Security of Unbalanced Oil and Vinegar Signature
Schemes. In Menezes, A., ed.: CT-RSA. Volume 3376 of Lecture Notes in Computer Science.,
Springer (2005) 29–43

5. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach
einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck (1965)

6. Buss, J.F., Frandsen, G.S., Shallit, J.: The Computational Complexity of Some Problems of Linear
Algebra. J. Comput. Syst. Sci. 58(3) (1999) 572–596

7. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computa-
tional Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA (2007)

8. Cox, D.A., Little, J.B., O’Shea, D.: Ideals, Varieties and Algorithms. Springer (2005)
9. Dembowski, P., Ostrom, T.G.: Planes of Order n with Collineation Groups of Order n2. Mathe-

matische Zeitschrift 103(3) (1968) 239–258

18

10. Diem, C.: The xl-algorithm and a conjecture from commutative algebra. In Lee, P.J., ed.: ASI-
ACRYPT. Volume 3329 of Lecture Notes in Computer Science., Springer (2004) 323–337

11. Ding, J., Schmidt, D., Werner, F.: Algebraic Attack on HFE Revisited. In Wu, T.C., Lei, C.L.,
Rijmen, V., Lee, D.T., eds.: ISC. Volume 5222 of Lecture Notes in Computer Science., Springer
(2008) 215–227

12. Dubois, V., Fouque, P.A., Shamir, A., Stern, J.: Practical Cryptanalysis of SFLASH. In: CRYPTO.
Volume 4622., Springer (2007) 1–12

13. Dubois, V., Fouque, P.A., Stern, J.: Cryptanalysis of SFLASH with Slightly Modified Parameters.
In: EUROCRYPT. Volume 4515., Springer (2007) 264–275

14. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and
Applied Algebra 139(1-3) (June 1999) 61–88

15. Faugère, J.C.: A New Efficient Algorithm for Computing Gröbner Bases Without Reduction to Zero
(F5). In: ISSAC ’02: Proceedings of the 2002 International Symposium on Symbolic and Algebraic
Computation, New York, NY, USA, ACM (2002) 75–83

16. Faugère, J.C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems
Using Gröbner Bases. In Boneh, D., ed.: CRYPTO. Volume 2729 of Lecture Notes in Computer
Science., Springer (2003) 44–60

17. Faugère, J.C., Perret, L.: Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects.
In Vaudenay, S., ed.: EUROCRYPT. Volume 4004 of Lecture Notes in Computer Science., Springer
(2006) 30–47

18. Fouque, P.A., Macario-Rat, G., Stern, J.: Key Recovery on Hidden Monomial Multivariate Schemes.
In Smart, N.P., ed.: EUROCRYPT. Volume 4965 of Lecture Notes in Computer Science., Springer
(2008) 19–30

19. Gilbert, H., Minier, M.: Cryptanalysis of SFLASH. In Knudsen, L.R., ed.: EUROCRYPT. Volume
2332 of Lecture Notes in Computer Science., Springer (2002) 288–298

20. Granboulan, L., Joux, A., Stern, J.: Inverting HFE Is Quasipolynomial. In Dwork, C., ed.:
CRYPTO. Volume 4117 of Lecture Notes in Computer Science., Springer (2006) 345–356

21. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature Schemes. In: EURO-
CRYPT. (1999) 206–222

22. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization. In
Wiener, M.J., ed.: CRYPTO. Volume 1666 of Lecture Notes in Computer Science., Springer (1999)
19–30

23. Matsumoto, T., Imai, H.: Public Quadratic Polynominal-Tuples for Efficient Signature-Verification
and Message-Encryption. In: EUROCRYPT. (1988) 419–453

24. McEliece, R.: A Public-Key Cryptosystem Based on Algebraic Coding Theory (1978) DSN Progress
Report 42-44.

25. Naccache, D., ed.: Topics in Cryptology - CT-RSA 2001, The Cryptographer’s Track at RSA
Conference 2001, San Francisco, CA, USA, April 8-12, 2001, Proceedings. In Naccache, D., ed.:
CT-RSA. Volume 2020 of Lecture Notes in Computer Science., Springer (2001)

26. Ore, O.: Contributions to The Theory of Finite Fields. Transactions A. M. S. 36 (1934) 243–274
27. Patarin, J.: Cryptoanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt’88. In

Coppersmith, D., ed.: CRYPTO. Volume 963 of Lecture Notes in Computer Science., Springer
(1995) 248–261

28. Patarin, J.: Hidden fields equations (hfe) and isomorphisms of polynomials (ip): Two new families
of asymmetric algorithms. In: EUROCRYPT. (1996) 33–48

29. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New
Families of Asymmetric Algorithms. In: EUROCRYPT. (1996) 33–48 Etended version available on
http://www.minrank.org/hfe.pdf.

30. Patarin, J., Courtois, N., Goubin, L.: Flash, a fast multivariate signature algorithm. [25] 298–307
31. Patarin, J., Courtois, N., Goubin, L.: QUARTZ, 128-Bit Long Digital Signatures. [25] 282–297
32. Patarin, J., Goubin, L.: Asymmetric cryptography with s-boxes. In Han, Y., Okamoto, T., Qing,

S., eds.: ICICS. Volume 1334 of Lecture Notes in Computer Science., Springer (1997) 369–380
33. Patarin, J., Goubin, L., Courtois, N.: Improved Algorithms for Isomorphisms of Polynomials. In:

EUROCRYPT. (1998) 184–200
34. Ritt, J.F.: Prime and Composite Polynomials. American M. S. Trans. 23 (1922) 51–66

19

35. Sidorenko, A.V., Gabidulin, E.M.: The Weak Keys For HFE. In: 7th International Symposium on
Communication Theory and Applications. (2003) 239–244

36. Tao, R.J., Chen, S.H.: Two varieties of finite automaton public key cryptosystem and digital
signatures. Journal of computer science and technology 1(1) (1986) 9–18

37. von zur Gathen, J.: Functional Decomposition of Polynomials: The Tame Case. J. Symb. Comput.
9(3) (1990) 281–299

38. von zur Gathen, J.: Functional Decomposition of Polynomials: The Wild Case. J. Symb. Comput.
10(5) (1990) 437–452

39. Wolf, C., Preneel, B.: Large Superfluous Keys in Multivariate Quadratic Asymmetric Systems. In
Vaudenay, S., ed.: Public Key Cryptography. Volume 3386 of Lecture Notes in Computer Science.,
Springer (2005) 275–287

20

