
Full Key-Recovery Attacks on

HMAC/NMAC-MD4 and NMAC-MD5

Pierre-Alain Fouque, Gaëtan Leurent, Phong Q. Nguyen

École Normale Supérieure – Département d’Informatique,
45 rue d’Ulm, 75230 Paris Cedex 05, France

{Pierre-Alain.Fouque,Gaetan.Leurent,Phong.Nguyen}@ens.fr

Abstract. At Crypto ’06, Bellare presented new security proofs for
HMAC and NMAC, under the assumption that the underlying compres-
sion function is a pseudo-random function family. Conversely, at Asi-
acrypt ’06, Contini and Yin used collision techniques to obtain forgery
and partial key-recovery attacks on HMAC and NMAC instantiated with
MD4, MD5, SHA-0 and reduced SHA-1. In this paper, we present the
first full key-recovery attacks on NMAC and HMAC instantiated with
a real-life hash function, namely MD4. Our main result is an attack
on HMAC/NMAC-MD4 which recovers the full MAC secret key after
roughly 288 MAC queries and 295 MD4 computations. We also extend the
partial key-recovery Contini-Yin attack on NMAC-MD5 (in the related-
key setting) to a full key-recovery attack. The attacks are based on gener-
alizations of collision attacks to recover a secret IV, using new differential
paths for MD4.
Key words: NMAC, HMAC, key-recovery, MD4, MD5, collisions, dif-
ferential path.

1 Introduction

Hash functions are fundamental primitives used in many cryptographic schemes
and protocols. In a breakthrough work, Wang et al. discovered devastating col-
lision attacks [20,22,23,21] on the main hash functions from the MD4 family,
namely MD4 [20], RIPE-MD [20], MD5 [22], SHA-0 [23] and SHA-1 [21]. Such
attacks can find collisions in much less time than the birthday paradox. However,
their impact on the security of existing hash-based cryptographic schemes is un-
clear, for at least two reasons: the applications of hash functions rely on various
security properties which may be much weaker than collision resistance (such
as pseudorandomness); Wang et al.’s attacks are arguably still not completely
understood.

This paper deals with key-recovery attacks on HMAC and NMAC using col-
lision attacks. HMAC and NMAC are hash-based message authentication codes
proposed by Bellare, Canetti and Krawczyk [3], which are very interesting to
study for at least three reasons: HMAC is standardized (by ANSI, IETF, ISO
and NIST) and widely deployed (e.g. SSL, TLS, SSH, Ipsec); both HMAC and

1

NMAC have security proofs [2,3]; and both are rather simple constructions. Let
H be an iterated Merkle-Damgård hash function. Its HMAC is defined by

HMACk(M) = H(k̄ ⊕ opad ||H(k̄ ⊕ ipad ||M)),

where M is the message, k is the secret key, k̄ its completion to a single block of
the hash function, opad and ipad are two fixed one-block values. The security of
HMAC is based on that of NMAC. Since H is assumed to be based on the Merkle-
Damgård paradigm, denote by Hk the modification of H where the public IV is
replaced by the secret key k. Then NMAC with secret key (k1, k2) is defined by:

NMACk1,k2
(M) = Hk1

(Hk2
(M)).

Thus, HMACk is essentially equivalent to NMACH(k⊕opad),H(k⊕ipad)
1. Attacks

on NMAC can usually be adapted to HMAC (pending few modifications), except
in the related-key setting2.

HMAC/NMAC Security. The security of a MAC algorithm is usually mea-
sured by the difficulty for an attacker having access to a MAC oracle to forge
new valid MAC-message pairs. More precisely, we will consider two types of at-
tack: the existential forgery where the adversary must produce a valid MAC for
a message of its choice, and the universal forgery where the attacker must be
able to compute the MAC of any message.

The security of HMAC and NMAC was carefully analyzed by its designers.
It was first shown in [3] that NMAC is a pseudorandom function family (PRF)
under the two assumptions that (A1) the keyed compression function fk of the
hash function is a PRF, and (A2) the keyed hash function Hk is weakly collision

resistant. The proof for NMAC was then lifted to HMAC by further assuming
that (A3) the key derivation function in HMAC is a PRF. However, it was
noticed that recent collision attacks [20,22,23,21] invalidate (A2) in the case of
usual hash function like MD4 or MD5, because one can produce collisions for
any public IV. This led Bellare [2] to present new security proofs for NMAC
under (A1) only. As a result, the security of HMAC solely depends on (A1) and
(A3). The security of NMAC as a PRF holds only if the adversary makes less
than 2n/2 NMAC queries (where n is the MAC size), since there is a generic
forgery attack using the birthday paradox with 2n/2 queries.

Since recent collision attacks cast a doubt on the validity of (A1), one may
wonder if it is possible to exploit collision search breakthroughs to attack HMAC
and NMAC instantiated with real-life hash functions. In particular, MD4 is
a very tempting target since it is by far the weakest real-life hash function
with respect to collision resistance. It is not too difficult to apply collision at-
tacks on MD4 [20,24], to obtain distinguishing and existential forgery attacks

1 There is small difference in the padding: when we use H(k||·) instead of Hk, the
length of the input of the hash function (which is included in the padding) is different.

2 If we need an oracle NMACk1,k2+∆, we can not emulate it with an related-key HMAC
oracle.

2

on HMAC/NMAC-MD4: for instance, this was done independently by Kim et

al. [10] and Contini and Yin [5]. The situation is more complex with MD5, be-
cause the differential path found in the celebrated MD5 collision attack [22] is
not well-suited to HMAC/NMAC since it uses two blocks: Contini and Yin [5]
turned instead to the much older MD5 pseudo-collisions of de Boer and Bosse-
laers [8] to obtain distinguishing and existential forgery attacks on NMAC-MD5
in the related-key setting. It is the use of pseudo-collisions (rather than full
collisions) which weakens the attacks to the related-key setting.

Interestingly, universal forgery attacks on HMAC and NMAC seem much
more difficult to find. So far, there are only two works in that direction. In [5],
Contini and Yin extended the previous attacks to partial key-recovery attacks on
HMAC/NMAC instantiated with MD4, SHA-0, and a step-reduced SHA-1, and
related-key partial key-recovery attacks on NMAC-MD5. In [16], Rechberger and
Rijmen improved the data complexity of Kim et al. [10] attacks, and extended
them to a partial key recovery against NMAC-SHA-1. These attacks are only
partial in the sense that the NMAC attacks only recover the second key k2,
which is not sufficient to compute new MACs of arbitrary messages; and the
HMAC attacks only recover H(k⊕ ipad) where k is the HMAC secret key, which
again is not sufficient to compute new MACs of arbitrary messages, since it does
not give the value of k nor H(k ⊕ opad). Note that recovering a single key of
NMAC does not significantly improve the generic full key-recovery attack which
recovers the keys one by one.

Very recently, Rechberger and Rijmen have proposed full key-recovery attacks
against NMAC in the related-key setting in [17]. They extended the attack of [5]
to a full key-recovery attack against NMAC-MD5, and introduced a full key-
recovery attack against NMAC when used with SHA-1 reduced to 34 rounds.

Our Results. We present what seems to be the first universal forgery at-
tack, without related keys, on HMAC and NMAC instantiated with a real-life
hash function, namely MD4. Our main result is an attack on HMAC/NMAC-
MD4 which recovers the full NMAC-MD4 secret key after 288 MAC queries; for
HMAC, we do not recover the HMAC-MD4 secret key k, instead we recover
both H(k ⊕ ipad) and H(k ⊕ opad), which is sufficient to compute any MAC.
We also obtain a full key-recovery attack on NMAC-MD5 in the related-key
setting, by extending the attack of Contini and Yin [5]. This improvement was
independently proposed in [16].

Our attacks have a complexity greater than the birthday paradox, so they
are not covered by Bellare’s proofs. Some MAC constructions have security proof
against PRF-attacks, but are vulnerable to key-recovery attacks. For instance,
the envelope method with a single key was proved to be secure, but a key-
recovery attack using 267 known text-MAC pairs, and 213 chosen texts was found
by Preneel and van Oorschot [14]. However, in the case of NMAC, we can prove
that the security against universal forgery cannot be less than the security of the
compression function against a PRF distinguisher (see Appendix A). This shows
that NMAC offers good resistance beyond the birthday paradox: a universal

3

forgery attack will have a time complexity of 2n if there is no weakness in the
compression function. Conversely, there is a generic attack against any iterated
stateless MAC using a collision in the inner hash function to guess the two
subkeys k1 and k2 independently, in the case of NMAC it requires 2n/2 queries
and 2n+1 hash computations [13,15].

Our attacks on MD4 and MD5 are rather different from each other, although
both are based on IV-recovery attacks, which allow to recover the IV when one
is given access to a hash function whose IV remains secret. Such IV-recovery
attacks can be exploited to attack HMAC and NMAC because the oracle can in
fact be very weak: we do not need the full output of the hash function; essentially,
we only need to detect if two related messages collide under the hash function.
The MD5 related-key attack closely follows the Contini-Yin attack [5]: the IV-
recovery attack is more or less based on message modification techniques. The
MD4 IV-recovery attack is based on a new technique: we use differential paths
which depend on a condition in the IV. The advantage of this technique is that
it can be used to recover the outer key quite efficiently, since we only need to
control the difference of the inputs and not the values themselves. This part of
the attack shares some similar ideas with [17]. To make this possible without

related keys, we need a differential path with a message difference only active in
the first input words. We found such IV-dependant paths using an automated
tool described in [9]. To make this attack more efficient, we also introduce a
method to construct cheaply lots of message pairs with a specific hash difference.

Our results are summarized in the following table, together with previous
attacks where “Data” means online queries and “Time” is offline computations:

Attacks Data Time Mem Remark

Generic
E-Forgery 2n/2 - - [15] Collision based

U-Forgery
2n/2 2n+1 - [15] Collision based

1 22n/3 22n/3 [1] TM tradeoff, 2n precomputation

NMAC-MD4
HMAC-MD4

E-Forgery 258 - - [5] Complexity is actually lower [9]

Partial-KR 263 240 - [5] Only for NMAC

U-Forgery 288 295 - New result

NMAC-MD5
Related keys

E-Forgery 247 - - [5]

Partial-KR 247 245 - [5]

U-Forgery 251 2100 - New result – Same as [17]

Like [5], we stress that our results on HMAC and NMAC do not contradict
any security proof; on the contrary they show that when the hypotheses over
the hash function are not met, an attack can be built.

Road Map. This paper is divided in five sections. In Section 2, we give back-
ground and notations on MD4, MD5 and collision attacks based on differential
cryptanalysis. In Section 3, we explain the framework of our key-recovery at-
tacks on HMAC and NMAC, by introducing IV-recovery attacks. In Section 4,
we present key-recovery attacks on HMAC/NMAC-MD4. Finally, in Section 5,
we present related-key key-recovery attacks on NMAC-MD5.

4

2 Background and notation

Unfortunately, there does not seem to be any standard notation in the hash
function literature. Here, we will use a notation similar to that of Daum [7].

2.1 MD4 and MD5

MD4 and MD5 follow the Merkle-Damgård construction. Their compression
function are designed to be very efficient using 32-bit words and operations
implemented in hardware in most processors:

– rotation ≪;
– addition mod 232 ⊞;
– bitwise boolean operations Φi. For MD4 and MD5, they are:
• IF(x, y, z) = (x ∧ y) ∨ (¬x ∧ z)
• MAJ(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)
• XOR(x, y, z) = x⊕ y ⊕ z
• ONX(x, y, z) = (x ∨ ¬y)⊕ z.

MD4 uses IF(x, y, z), MAJ(x, y, z) and XOR(x, y, z), while MD5 uses IF(x, y, z),
IF(z, x, y), XOR(x, y, z) and ONX(x, y, z).

The compression function cMD4 (resp. cMD5) of MD4 (resp. MD5) uses an
internal state of four words, and updates them one by one in 48 (resp. 64) steps.
Their input is 128 bits × 512 bits, and their output is 128 bits. Here, we will
assign a name to every different value of these registers, following [7]: the value
changed on step i is called Qi. Then the cMD4 compression function is defined
by:

Step update: Qi = (Qi−4 ⊞ Φi(Qi−1, Qi−2, Qi−3) ⊞ mi ⊞ ki) ≪ si

Input: Q−4||Q−1||Q−2||Q−3

Output: Q−4 ⊞ Q44||Q−1 ⊞ Q47||Q−2 ⊞ Q46||Q−3 ⊞ Q45

And the cMD5 compression function is given by:

Step update: Qi = Qi−1 ⊞ (Qi−4 ⊞ Φi(Qi−1, Qi−2, Qi−3) ⊞ mi ⊞ ki) ≪ si

Input: Q−4||Q−1||Q−2||Q−3

Output: Q−4 ⊞ Q60||Q−1 ⊞ Q63||Q−2 ⊞ Q62||Q−3 ⊞ Q61

The security of the compression function was based on the fact that such
operations are not “compatible” and mix the properties of the input.

We will also use x[k] to represent the k + 1-th bit of x, that is x[k] = (x ≫

k) mod 2 (note that we count bits and steps starting from 0).

2.2 Collision attacks based on differential cryptanalysis

It is natural to apply differential cryptanalysis to find collisions on hash functions
based on block ciphers, like MD4 and MD5 (which both follow the Davies-Meyer

5

construction). The main idea is to follow the differences in the internal state Qi

of the compression function, when the inputs (the IVs or the messages) have a
special difference.

Our attacks on NMAC-MD5 are based on the MD5 pseudo-collision of de
Boer and Bosselaers [8], like [5] (this is the only known attack against MD5
compression function’s pseudo-randomness). Let IV be a 128-bit value satisfying
the so-called dBB condition: the most significant bit of the last three 32-bit words
of IV are all equal. Clearly, a randomly chosen IV satisfies the dBB condition
with probability 1/4. It is shown in [8] that in such a case, a randomly chosen
512-bit message M satisfies with heuristic probability 2−46:

cMD5(IV, M) = cMD5(IV ′, M),

where IV ′ is the 128-bit value derived from IV by flipping the most significant
bit of each of the four 32-bit words of IV . The probability 2−46 is obtained
by studying the most likely differences for the internal state Qi, as is usual in
differential cryptanalysis.

Our attacks on HMAC/NMAC-MD4 are based on recent collision search
techniques for MD4 [20,24], which are organized as follows:

1. A precomputation phase:
– choose a message difference ∆
– find a differential path
– compute a set of sufficient conditions

2. Search for a message M satisfying all the conditions for a given IV; then
cMD4(IV, M) = cMD4(IV, M ⊞ ∆).

The differential path specifies how the computations of cMD4(IV, M ⊞ ∆) and
cMD4(IV, M) are related: it describes how the differences introduced in the
message will evolve in the internal state Qi. By choosing a special ∆ with a low
Hamming weight and extra properties, we can find differences in the Qi which
are very likely. Then we look at each step of the compression function, and we can
express a set of sufficient conditions that will make the Qi’s follow the path. The
conditions are on the Qi’s, and their values depends of the IV and the message
M . For a given message M , we will have cMD4(IV, M) = cMD4(IV, M ⊞ ∆) if
the conditions are satisfied; we expect this to happen with probability 2−c for a
random message if there are c conditions. Wang introduced some further ideas
to make the search for such message more efficient, but they can’t be used in
the context of NMAC because the IV is unknown.

3 Key-Recovery Attacks on HMAC and NMAC

In this section, we give a high-level overview of our key-recovery attacks on
HMAC and NMAC instantiated with MD4 and MD5. Detailed attacks will be
given in the next two sections: Section 4 for MD4 and Section 5 for MD5. We
will assume that the attacker can request the MAC of messages of its choice, for

6

a fixed secret key, and the goal is to recover that secret key. In the related-key
setting, we will assume like in [5] that the attacker can request the MAC of
messages of its choice, for the fixed secret key as well as for other related secret
keys (with a chosen relation). In fact, we will not even need the full output of
MAC requests: we will only need to know if the two MACs of messages of our
choice collide or not.

To simplify our exposition, we will concentrate on the NMAC case:

NMACk1,k2
(M) = Hk1

(Hk2
(M)).

The NMAC-MD4 attack can easily be extended to HMAC-MD4, pending minor
modifications. Our NMAC attack will first recover k2, then k1. We will collect
NMAC collisions of a special shape, in order to disclose hash collisions with first
k2 then k1.

3.1 Extracting hash collisions from NMAC collisions

We will extract hash collisions from NMAC collisions, that is, pairs (M1, M2) of
messages such that:

(C) M1 6= M2 and NMACk1,k2
(M1) = NMACk1,k2

(M2).

Our attacks are based on the elementary observation that H-collisions can leak
through NMAC. More precisely, two messages M1 and M2 satisfy (C) if and only
if they satisfy either (C1) or (C2):

(C2) M1 6= M2 and Hk2
(M1) = Hk2

(M2): we have a collision in the inner
hash function;

(C1) Hk2
(M1) = N1 6= N2 = Hk2

(M2) and Hk1
(N1) = Hk1

(N2): we have a
collision in the outer hash function .

If we select M1 and M2 uniformly at random, then (C) holds with probability
2−128 if NMAC is a random function. However, if we select many pairs (M1, M2)
in such a way that (C2) holds with a probability significantly higher than 2−128,
then whenever NMACk1,k2

(M1) = NMACk1,k2
(M2), it will be likely that we also

have (C2). More precisely, we have (since Ci ∩ C = Ci):

Pr(C2|C)

Pr(C1|C)
=

Pr(C2)

Pr(C1)

and we expect that Pr(C2)≫ Pr(C1) ≈ 2−128.
Note that the Merkle-Damgård construction used in H leads to a simple

heuristic way to distinguish both cases (without knowing the secret keys k1

and k2) if M1 and M2 have the same length, and therefore the same padding
block P : if Hk2

(M1) = Hk2
(M2), then for any M , we have Hk2

(M1||P ||M) =
Hk2

(M2||P ||M). In other words, the condition (C2) is preserved if we append
P ||M to both M1 and M2 for a randomly chosen M , but that is unlikely for the
condition (C1).

7

To illustrate our point, assume that we know a non-zero ∆ such that for
all keys k2, a randomly chosen one-block message M1 satisfies with probability
2−64 the condition Hk2

(M1) = Hk2
(M2) where M2 = M1 ⊞ ∆. If we select 264

one-block messages M1 uniformly at random and call the NMAC oracle on each
M1 and M1 ⊞ ∆, we are likely to find a pair (M1, M2 = M1 ⊞ ∆) satisfying (C).
By the previous reasoning, we expect that such a pair actually satisfies (C2).

Thus, the NMAC oracle allows us to detect collisions on Hk2
, if we are able

to select messages which have a non-negligible probability of satisfying (C2). To
detect collisions in Hk1

, we will use the values of k2 (recovered using collisions in
Hk2

): then, we can compute Hk2
and directly check whether the NMAC collision

come from (C1). We now explain how to use such collision detections to recover
the secret keys k2 and k1.

3.2 IV-recovery attacks

The previous subsection suggests the following scenario. Assume that a fixed key
k is secret, but that one is given access to an oracle which on input M1 and M2,
answers whether Hk(M1) = Hk(M2) holds or not. Can one use such an oracle
to recover the secret key k? If so, we have what we call an IV-recovery attack.

An IV-recovery attack would clearly reveal the second key k2 of NMAC,
because of (C2). But it is not clear why this would be relevant to recover the
outer key k1. To recover k1 thanks to (C1), we would need the following variant of
the problem. Namely, one would like to retrieve a secret key k1 when given access
to an oracle which on input M1 and M2, answers whether Hk1

(Hk2
(M1)) =

Hk1
(Hk2

(M2)) holds or not, where k2 is known. Since the messages are first
processed through a hash function, the attacker no longer chooses the input
messages of the keyed hash function, and this oracle is much harder to exploit
than the previous one. We call such attacks composite IV-recovery attacks. In the
attack on HMAC/NMAC-MD4, we will exploit the Merkle-Damgård structure
of Hk2

to efficiently extend the basic IV-recovery attacks into composite IV-
recovery attacks.

We will present two types of IV-recovery attacks. The first type is due to
Contini and Yin [5] and uses related messages, while the second type is novel,
based on IV-dependent differential paths.

Using related messages. We present the first type of IV-recovery attacks.
Assume that we know a specific differential path corresponding to a message
difference ∆ and with total probability p much larger than 2−128. In other words,
a randomly chosen message M will satisfy with probability p:

Hk(M) = Hk(M ⊞ ∆).

By making approximately 2/p queries to the Hk-oracle, we will obtain a message
M such that Hk(M) = Hk(M ⊞∆). Contini and Yin [5] then make the heuristic
assumption that the pair (M, M ⊞ ∆) must follow the whole differential path,
and not just the first and last steps. Since they do not justify that assumption,

8

let us say a few words about it. The assumption requires a strong property
on our specific differential path: that there are no other differential paths with
better (or comparable) probability. In some sense, differential cryptanalysis on
block ciphers use similar assumptions, and to see how realistic that is, one makes
experiments on reduced-round versions of the block cipher. However, one might
argue that there are intuitively more paths in hash functions than in block
ciphers because of the following facts:

– the message length of a compression function is much bigger than the length
of the round key in a block cipher.

– a step of the compression function is usually much simpler than a block-
cipher step.

Also, because the paths for hash functions have a different shape from those of
block ciphers, experiments on reduced-round versions may not be as conclusive.

The paper [5] shows that for usual differential paths (like those of MD4), if
(M, M ⊞ ∆) satisfies the whole path, then one can build plenty of messages M∗

closely related to M such that:

– If a specific internal register Qi (during the computation of Hk(M)) satisfies
certain conditions, then the pair (M∗, M∗ ⊞ ∆) follows the whole path with
probability p or larger, in which case Hk(M∗) = Hk(M∗ ⊞ ∆).

– Otherwise, the pair (M∗, M∗ ⊞ ∆) will drift away from the path at some
position, and the probability of Hk(M∗) = Hk(M∗ ⊞ ∆) is heuristically
2−128.

Thus, by sending to the oracle many well-chosen pairs (M ′, M ′ ⊞ ∆), one can
learn many bits of several internal register Qi’s during the computation of
Hk(M). Applying exhaustive search on the remaining bits of such Qi’s, one can
guess the whole contents of four consecutive Qi’s. By definition of cMD4 and
cMD5, it is then possible to reverse the computation of Hk(M), which discloses
k = (Q−4, Q−3, Q−2, Q−1).

Using IV-dependent differential paths. We now present a new type of IV-
recovery attacks, that we will apply against MD4. Assume again that we know a
specific differential path corresponding to a message difference ∆ and with total
probability p much larger than 2−128, but assume this time that the path is
IV-dependent: it holds only if the IV satisfies a specific condition (SC). In other
words, if k satisfies (SC), then a randomly chosen message M will satisfy with
probability p:

Hk(M) = Hk(M ⊞ ∆).

But if k does not satisfy (SC), the pair (M, M ⊞ ∆) will drift away from the
differential path from the first step, leading us to assume that Hk(M) = Hk(M ⊞

∆) will hold with probability only 2−128.
This would lead to the following attack: we would submit approximately 2/p

pairs (M, M ⊞ ∆) to the Hk-oracle, and conclude that k satisfies (SC) if and

9

only if Hk(M) = Hk(M ⊞ ∆) for at least one M . When sufficient information
on k has been gathered, the rest of k can be guessed by exhaustive search if we
have at least one collision of the form Hk(M) = Hk(M ⊞ ∆).

Notice that in some sense the differential path of the MD5 pseudo-collision [8]
is an example of IV-dependent path where (SC) is the dBB condition, but it does
not disclose much information about the IV. We would need to find many IV-
dependent paths. Our attack on HMAC/NMAC-MD4 will use 22 such paths,
which were found by an automated search.

We note that such attacks require an assumption similar to the previous IV-
recovery attack. Namely, we assume that for the same message difference ∆, there
is no differential paths with better (or comparable) probability, with or without
conditions on the IV. To justify this assumption for our HMAC/NMAC-MD4
attack, we have performed experiments which will be explained in Section 4.

3.3 Subtleties between the inner and outer keys

Although the recovery of the inner key k2 and the outer key k1 both require
IV-recovery attacks, we would like to point out subtle differences between the
two cases. As mentioned previously, the recovery of k2 only requires a basic IV-
recovery attack, while the recovery of k1 requires a composite IV-recovery attack.
The composite IV-recovery attacks will be explained in Section 4 for MD4, and
Section 5 for MD5.

When turning a basic IV-recovery attack into a composite IV-recovery, there
are two important restrictions to consider:

– We have no direct control over the input of the outer hash function, it is
the result of the inner hash function. So IV-recovery attacks using message
modifications will become much less efficient when turned into composite
IV-recovery. We will see this in Section 5 when extending the partial key-
recovery from [5] into a full key-recovery.

– Since the input of Hk1
is a hash, its length is only 128 bits. Any differential

path using a message difference ∆ with non-zero bits outside these 128 first
bits will be useless. This means that the partial key-recovery attacks from [5]
against MD4, SHA-0 and reduced SHA-1 can’t be extended into a full key-
recovery.
Using related keys one can use a differential path with a difference in the IV
and no message difference – such as the one from [8] – and try a given message
with both keys. However, if we want to get rid of related keys, we need a
differential path with no IV difference and a difference in the beginning of
the message.

3.4 Summary

To summarize, our attacks will have essentially the following structure (the MD5
attack will be slightly different because of the related-key setting):

1. Apply an IV-recovery attack to retrieve k2, repeating sufficiently many times:

10

(a) Select many one-block messages M uniformly at random.
(b) Observe if NMACk1,k2

(M) = NMACk1,k2
(M ⊞ ∆1) for some M and a

well-chosen ∆1.
(c) Deduce information on k2.

2. Apply a composite IV-recovery attack to retrieve k1, repeating sufficiently
many times:
(a) Construct carefully many pairs (M1, M2).
(b) Observe if NMACk1,k2

(M1) = NMACk1,k2
(M2) for some pair (M1, M2).

(c) Deduce information on k1.

4 Attacking HMAC/NMAC-MD4

4.1 Our IV-recovery Attack against MD4

In order to find differential paths which leak information about the key, we con-
sider differential paths with a message difference in the first word (eg. δm0 = 1).
Then in the first steps of the compression function, we have:

Q0 = (Q−4 ⊞ IF(Q−1, Q−2, Q−3) ⊞ m0) ≪ 3

Q′
0 = (Q−4 ⊞ IF(Q−1, Q−2, Q−3) ⊞ m0 ⊞ 1) ≪ 3

So Q
[3]
0 6= Q

′[3]
0 . Then

Q1 = (Q−3 ⊞ IF(Q0, Q−1, Q−2) ⊞ m1) ≪ 7

Q′
1 = (Q−3 ⊞ IF(Q′

0, Q−1, Q−2) ⊞ m1) ≪ 7

Thus, if Q
[3]
−1 6= Q

[3]
−2, we will have IF(Q0, Q−1, Q−2) 6= IF(Q′

0, Q−1, Q−2) and

Q1 6= Q′
1. On the other hand, if Q

[3]
−1 = Q

[3]
−2 and there is no carry when going

from Q0 to Q′
0, then Q1 = Q′

1. Therefore, collision paths where Q
[3]
−1 = Q

[3]
−2 will

be significantly different from collision paths where Q
[3]
−1 6= Q

[3]
−2. This suggests

that the collision probability will be correlated with the condition (SC) : Q
[3]
−1 =

Q
[3]
−2, and we expect to be able to detect the bias. More precisely we believe that

the case Q
[3]
−1 6= Q

[3]
−2 will give a much smaller collision probability, since it means

that an extra difference is introduced in step 1.
To check this intuition experimentally, we ran one cMD4 round (16 steps)

with a random IV on message pairs (M, M ⊞ 1) where M was also picked at
random, and we looked for pseudo-collisions in Q12...Q15 with the following
properties:

– The weight of the non-adjacent form of the difference is lower or equal to 4.

– There is no difference on Q
[12]
12 .

The second condition is required to eliminate the paths which simply keep the

difference introduced in Q
[3]
0 without modifying it. We ran this with 5 · 1011 ran-

dom messages and IVs and found 45624 collisions out of which 45515 respected

11

the condition: this gives a ratio of about 420. This does not prove that we will
have such a bias for collisions in the full MD4, but it is a strong evidence.

The same arguments apply when we introduce the message difference in

another bit k (ie. δm0 = 2k): we expect to find more collisions if Q
[k⊞s0]
−1 =

Q
[k⊞s0]
−2 .

We ran a differential path search algorithm to find such paths, and we did

find 22 paths for different values of k with Q
[k⊞s0]
−1 = Q

[k⊞s0]
−2 . The path for k = 0

is given in Appendix D, and the other paths are just a rotation of this one. The
corresponding set of sufficient conditions contains 79 conditions on the internal
variables Qi, so we expect that for a random message M :

Pr [MD4(M) = MD4(M + ∆)] = p ≥ 2−79 if Q
[k⊞s0]
−1 = Q

[k⊞s0]
−2

≪ p if Q
[k⊞s0]
−1 6= Q

[k⊞s0]
−2

If we try 282 message pairs per path, we will find a collision for every path
whose condition is fulfilled with a probability3 of more than 99%. Then we know

22 bits of the IV (Q
[k⊞s0]
−1 = Q

[k⊞s0]
−2 or Q

[k⊞s0]
−1 6= Q

[k⊞s0]
−2), which leaves only 2106

IV candidates. To check if a given IV is the correct one, we just check whether
it gives a collision on the pairs colliding with the real IV, so we expect to find
the IV after computing 2105 pairs of hashes in an offline phase.

We show in Appendix B.2 how to reduce the search space to 294 keys by
extracting more than one bit of information when a collision is found. This gives
an IV-recovery attack against MD4 with a data complexity of 288 MD4 oracle
queries, and a time complexity of 294 MD4 evaluations.

4.2 Deriving a Composite IV-recovery Attack against MD4

To turn this into a composite IV-recovery attack, we need to efficiently compute
message pairs M , M ′ such that Hk2

(M) = Hk2
(M ′) ⊞ ∆ (we will need 282 such

pairs). As we know k2 (in the HMAC attack, we first recover it using the basic
IV-recovery attack), we can compute Hk2

(M) and find such pairs offline. If we
do this naively using the birthday paradox, we need to hash about 2106 random
messages to have all the pairs we need4. Then we can use the IV-recovery attack
to get k1.

Actually, we can do much better: we use the birthday paradox to find one
pair of one-block messages (R, R′) such that Hk2

(R′) = Hk2
(R) ⊞ ∆, and then

we extend it to a family of two-block message pairs such that Hk2
(R′||Q′) =

Hk2
(R||Q)⊞∆ with very little extra computation. In the end, the cost to generate

the messages with Hk2
(M) = Hk2

(M ′)⊞∆ will be negligible and the composite
IV-recovery attack is as efficient as the basic one. This is the most important
part of our work: thanks to our new path, we only need a low level of control on
the input of the hash function to extract the IV.

3 We have
“

1−
`

1− 2−79
´282

”22

> 0.992
4 This gives 2210 pairs of messages, and each pair has a probability of 2−128 to have

the correct difference.

12

Extending a Pair of Good Messages into a Family of Pairs. Figure 1
shows how we will create many message pairs with Hk2

(M) = Hk2
(M ′)⊞∆. We

use a pair of one-block message (R, R′) such that Hk2
(R′) = Hk2

(R)⊞∆. Then we
will generate a second block pair (Q, Q′) such that Hk2

(R′||Q′)⊟Hk2
(R||Q) = ∆.

Thanks to the Davies-Meyer construction of the compression function, all that
we need is a difference path which starts with a ∆ difference and ends with a zero
difference in the internal state; then the feed-forward of H will keep δH = ∆.
This path can be found by a differential path search algorithm, or created by
hand by slightly modifying a collision path.

δQ = ∆

δQ = ∆

δQ = 0

IV

R M

δH = ∆ δH = ∆

Fig. 1: Generating many pairs of message with a fixed hash difference

In this step, we also have to take care of the padding in MD4. Usually we
ignore it because a collision at the end of a block is still a collision after an extra
block of padding, but here we want a specific non-zero difference, and this will be
broken by an extra block. So we have to adapt our collision finding algorithm to
produce a block with a 55-byte message M and the last 9 bytes fixed by the MD4
padding. This can be done with nearly the same complexity as unconstrained
MD4 collisions (about 4 MD4 computations per collision) using the technique
of Leurent [12]. Thus, the cost of the message generation in the composite IV-
recovery attack drops from 2106 using the birthday paradox to 290 and becomes
negligible in the full attack.

4.3 MD4 Attack Summary

This attack uses the same IV-recovery attack for the inner key and the outer key,
with a complexity of 288 online queries and 294 offline computations. We manage
to keep the complexity of the composite IV-recovery as low as the basic IV-
recovery because we only need to control the hash differences, and we introduce
a trick to generate many messages with a fixed hash difference.

In Appendix B.1 we show how to reduce a little bit the query complexity
of the attack, and in the end the NMAC full key-recovery attack requires 288

requests to the oracle, and 2× 294 offline computations.

13

5 Attacking NMAC-MD5

In this section, we will describe the attack of Contini and Yin [5], and we ex-
tend it to a full key recovery. This improved attack was independently found by
Rechberger and Rijmen in [17].

As for MD4, the IV-recovery attack is based on a specific differential path,
and assumes that when a collision is found with the given message difference,
the Qi’s follow the path. This gives some bits of the internal state already, and a
kind of message modification technique to disclose more bits is proposed in [5].

If the path depends on the value of a bit Q
[k]
t in the step t, then we can ex-

tract some extra bits from the register Qt: set ∆ = 2k−1 and modify the message
M into a message M∗:

m∗
j =











mj if j < t

mj + ∆ if j = t

random if j > t

Then, using MD4 or MD5 step update without the rotation, we have:

Q∗
j =











Qj if j < t

Qj + ∆ if j = t

random if j > t

We call the oracle with enough such messages (with a different random part) to

distinguish if Q∗
t still follows the path. If it does, this means that Q∗

t
[k] = Q

[k]
t :

there was no carry in Qt +∆, therefore Q
[k−1]
t = 0. On the other hand, if it does

not follow the path anymore, then Q
[k−1]
t = 1.

We can find Q
[k−2]
t if we set ∆ so that there is a carry up to the bit k if and

only if Q
[k−2]
t = 1:

∆ =

{

2k−2 if Q
[k−1]
j = 1

2k−2 + 2k−1 if Q
[k−1]
j = 0

and we can repeat this to get the bits Q
[k−1]
t ...Q

[0]
t .

The rotation will have little effect over this simplified explanation, it will
mainly limit the number of bits we can recover (see [5] for details).

5.1 The IV-recovery Attack against MD5

The IV-recovery attack on MD5 is the same as the one presented in [5]. It uses
the related-message technique with the pseudo-collision path of de Boer and
Bosselaers [8]. Since the differences are in the IV and not in the message, the
IV-recovery needs an oracle that answers whether MD5IV(M) = MD5IV′(M),
instead of the standard oracle that answers whether MD5IV(M) = MD5IV(M ′).

14

To apply this to an HMAC key-recovery, we will have to use the related-key
model: we need an oracle for NMACk1,k2

, NMACk′

1
,k2

and NMACk1,k′

2
.

The IV-recovery attack in the related-key setting requires 247 queries and
245 hash computations, and this translates into a partial key-recovery (we will
recover k2) against NMAC-MD5 in the related-key model with the same com-
plexity.

5.2 Deriving a Composite IV-recovery against MD5

To extend this to a composite IV-recovery attack, we run into the problem
previously mentioned; to use this attack we need to create many inputs N∗ of
the hash function related to one input N , but these inputs are the outputs of a
first hash function, and we cannot choose them freely: N = MD5k2

(M). However,
we know k2, so we can compute many NR = Hk2

(R) for random messages R and
select those that are related to a particular N ; if we want to recover bits of Qt we
will have to choose 32(t + 1) bits of NR. We also run into the problem that any
NR is only 128 bits long; the last 384 bits will be fixed by the padding and there
are the same for all messages. Therefore, we can only use the related-message
technique to recover bits of the internal state of in the very first steps, whereas
in the simple IV-recovery it is more efficient to recover the internal state of later
steps (Contini and Yin used step 11 to 14). If we want to recover bits of Q0 (due
to the rotation we can only recover 25 bits of them), we need to produce 24×245

messages N∗ with the first 32 bits chosen; this will cost 24 × 245 × 232 ≈ 282

hash computations. Then, we know 25 bits of Q0, plus the most significant bit
of Q1, Q2, and Q3; we still have 100 bits to guess. Thus, we have a related-key
composite IV-recovery attack against MD5 with 2×24×245 ≈ 251 oracle queries
and 2100 MD5 evaluations.

If we try to guess bits in Q1, we have to select at least 244 hashes with 64
chosen bits; this costs about 2108 MD5, so it does not improve the attack.

5.3 MD5 Attack Summary

Thus, the Contini-Yin NMAC-MD5 attack can be extended into a full key-
recovery attack in the related-key setting, with a query complexity of 251, a
time complexity of 2100 MD5 operations, and success rate of 2−4 (due to the
dBB condition for k1 and k2).

It is a very simple extension of the attack from Contini and Yin: we apply
their technique to recover the outer key, but since we cannot choose the value of
Hk2

(M), we compute it for many random messages until we find a good one. This
requires to change the step in which we extract internal bits, and the complexity
become much higher.

15

Acknowledgement

Part of this work is supported by the Commission of the European Communities
through the IST program under contract IST-2002-507932 ECRYPT, and by the
French government through the Saphir RNRT project.

References

1. Amirazizi, H.R., Hellman, M.E.: Time-memory-processor trade-offs. IEEE Trans-
actions on Information Theory 34(3) (1988) 505–512

2. Bellare, M.: New Proofs for NMAC and HMAC: Security Without Collision Resis-
tance. In Dwork, C., ed.: CRYPTO. Volume 4117 of Lecture Notes in Computer
Science., Springer (2006) 602–619

3. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In Koblitz, N., ed.: CRYPTO. Volume 1109 of Lecture Notes in
Computer Science., Springer (1996) 1–15

4. Cannière, C.D., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications . [11]

5. Contini, S., Yin, Y.L.: Forgery and Partial Key-Recovery Attacks on HMAC and
NMAC Using Hash Collisions. [11]

6. Cramer, R., ed.: Advances in Cryptology - EUROCRYPT 2005, 24th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22-26, 2005, Proceedings. In Cramer, R., ed.: EURO-
CRYPT. Volume 3494 of Lecture Notes in Computer Science., Springer (2005)

7. Daum, M.: Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis,
Ruhr-University of Bochum (2005)

8. den Boer, B., Bosselaers, A.: Collisions for the Compression Function of MD5. In:
Proc. EUROCRYPT ’93. (1993) 293–304

9. Fouque, P.A., Leurent, G., Nguyen, P.: Automatic Search of Differential Path in
MD4. ECRYPT Hash Worshop – Cryptology ePrint Archive, Report 2007/206
(2007) http://eprint.iacr.org/.

10. Kim, J., Biryukov, A., Preneel, B., Hong, S.: On the Security of HMAC and NMAC
Based on HAVAL, MD4, MD5, SHA-0 and SHA-1. In Prisco, R.D., Yung, M., eds.:
SCN. Volume 4116 of Lecture Notes in Computer Science., Springer (2006) 242–256

11. Lai, X., Chen, K., eds.: 12th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Shanghai, China, December 3-7,
2006. . In Lai, X., Chen, K., eds.: ASIACRYPT. Volume 4284 of Lecture Notes in
Computer Science., Springer (2006)

12. Leurent, G.: Message Freedom in MD4 and MD5: Application to APOP Security.
In Biryukov, A., ed.: FSE. To appear in LNCS, Springer (2007)

13. Preneel, B., van Oorschot, P.C.: MDx-MAC and Building Fast MACs from Hash
Functions. In Coppersmith, D., ed.: CRYPTO. Volume 963 of Lecture Notes in
Computer Science., Springer (1995) 1–14

14. Preneel, B., van Oorschot, P.C.: On the Security of Two MAC Algorithms. In:
EUROCRYPT. (1996) 19–32

15. Preneel, B., van Oorschot, P.C.: On the Security of Iterated Message Authentica-
tion Codes. IEEE Transactions on Information Theory 45(1) (1999) 188–199

16. Rechberger, C., Rijmen, V.: Note on Distinguishing, Forgery, and Second Preimage
Attacks on HMAC-SHA-1 and a Method to Reduce the Key Entropy of NMAC.
Cryptology ePrint Archive, Report 2006/290 (2006) http://eprint.iacr.org/.

16

http://eprint.iacr.org/
http://eprint.iacr.org/

17. Rechberger, C., Rijmen, V.: On Authentication with HMAC and Non-Random
Properties. In Dietrich, S., ed.: Financial Cryptography. To appear in LNCS,
Springer (2007)

18. Schläffer, M., Oswald, E.: Searching for Differential Paths in MD4. In Robshaw,
M., ed.: FSE. Volume 4047 of Lecture Notes in Computer Science., Springer (2006)
242–261

19. Shoup, V., ed.: Advances in Cryptology - CRYPTO 2005: 25th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 14-18,
2005, Proceedings. In Shoup, V., ed.: CRYPTO. Volume 3621 of Lecture Notes in
Computer Science., Springer (2005)

20. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. [6] 1–18

21. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. [19] 17–36
22. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. [6] 19–35
23. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. [19]

1–16
24. Yu, H., Wang, G., Zhang, G., Wang, X.: The Second-Preimage Attack on MD4.

In Desmedt, Y., Wang, H., Mu, Y., Li, Y., eds.: CANS. Volume 3810 of Lecture
Notes in Computer Science., Springer (2005) 1–12

A NMAC Security beyond the Birthday Paradox

In this section we study the security of NMAC when the attacker can make
enough queries to use the birthday paradox. There is a generic existential forgery
attack, but we will show that universal forgery against NMAC requires more
resources. Actually, we will prove a much stronger statement: NMAC is secure
against short forgery (less than one block) if the underlying compression function
is a PRF.

We define the 1-block MAC advantage of a MAC-adversary as (using the
same notations as [2], B is the set of 1-block messages):

Adv1-MAC

f (A) = Pr
[

pad(M) ∈ B, (M, x) is a forgery : (M, x)← Af(K,·),V Ff (K,·,·); K
$
← Keys

]

Note that the attacker is allowed to make any query of any length to the MAC
oracle, we only limit the length of the forgery. We require that the padded
message fit in one block, so the actual message has to be somewhat smaller; for
instance, in the case of MD4/MD5, the forged message has to be 447 bits or less.

The only generic short forgery attack we are aware of is the key-recovery
attack using the birthday paradox which require 2n/2 queries and a time of
2n+1 (the generic forgery attack against iterated MAC produces at least a two-
block forgery). On the other hand, short message forgeries are possible if the
compression function is weak: using the partial key-recoveries attacks of Contini
and Yin to find k2, one can compute a pair of short messages (M1, M2) such that
Hk2

(M1) = Hk2
(M2) and forge a MAC for one of them. This pair can be found

using the birthday paradox in time 2n/2, or in the case of MD4, in time about
29 using the results of [12] to include the padding in the one-block message.

17

Obviously, this kind of attack is stronger than a PRF-attack against HMAC,
and weaker than a universal forgery or a key-recovery. The following theorem
proves that such short forgeries are as hard as a PRF attack against the com-
pression function, ie. it requires a time of the order of 2n if there is no weakness
in the compression function.

Theorem 1. Let ANMAC be a 1-block MAC-adversary against NMAC instanti-

ated with the compression function h. Then, there exist PRF-adversaries A1 and

A2 against h such that:

Adv1-MAC

NMAC (ANMAC) ≤ Advprf
h (A1) + Advprf

h (A2) + 2−n+1

Furthermore, A1 and A2 have the same time complexity as ANMAC, and just

make one extra oracle query.

Proof. We will build the adversary A1 from ANMAC by simulating the NMAC
oracle. We are given a function g, and we try to guess if g is a random function
or h(K, ·) for some K. First we choose a random k2, and we will then answer
NMAC queries with g(Hk2

(·)). ANMAC will output some message M and a tag
x, and we guess that g is a f(K, ·) iff x = g(Hk2

(M)). Thus, we have:

– If g was a random function, x = g(Hk2
(M)) holds with a very low probability:

• If we did not query the oracle g with the input Hk2
(M) yet, then

g(Hk2
(M)) is random and it will be equal to x with probability 2−n.

• If M collides under Hk2
with one of the q NMAC queries made by

ANMAC, this means we can build a PRF-attacker A2 against h from
ANMAC: we answer NMAC queries using a random oracle for Hk1

and
the given g′ to compute the inner hash function (it will require one
call to the oracle g′ and some computations of f), then we output 1
iff Hk2

(M) ∈ Q, where Q denotes the set of Hk2
outputs computed by

A2. If g was a random function, there is a negligible probability that we
answer 1, and if g if some h(K, ·) we will recognize it whenever ANMAC

succeeds to forge. Hence:

Pr
[

A$
2 ⇒ 1

]

≤ 2−n

Pr
[

A
f(K,·)
2 ⇒ 1

]

≥ Pr
[

A$
1 ⇒ 1, f(K, M) ∈ Q

]

Pr
[

A$
1 ⇒ 1, f(K, M) ∈ Q

]

≤ Advprf
h (A2) + 2−n

By combining these two cases, we have:

Pr
[

A$
1 ⇒ 1

]

= Pr
[

A$
1 ⇒ 1, f(K, M) ∈ Q

]

+ Pr
[

A$
1 ⇒ 1, f(K, M) /∈ Q

]

≤ Advprf
h (A2) + 2−n + 2−n

– If g is h(K, ·), we will correctly output 1 if ANMAC makes a correct forgery,
and we finish the proof by combining the two cases:

Pr
[

A
f(K,·)
1 ⇒ 1

]

≥ Adv1−MAC

NMAC (ANMAC)

Adv1−MAC

NMAC (ANMAC) ≤ Advprf
h (A1) + Advprf

h (A2) + 2−n+1

18

B Improving the MD4 IV-recovery

B.1 Reducing the Online Cost

First, we can easily lower the number of calls to the NMAC-oracle in the first
phase of the IV-recovery. Instead of trying 22 × 282 random message pairs, we
will choose the messages more cleverly so that each message belongs to 22 pairs:
we first choose 490 bits of the message at random and then use every possibility
for the 22 remaining bits. Thus, we only need 283 calls to the oracle instead of
22× 283.

Note that we cannot use this trick in the composite IV-recovery attack, so
the number of queries for the full key-recovery will only be halved (the queries
for the basic IV-recovery for k2 become negligible compared to the queries for
the composite IV-recovery that will reveal k2).

B.2 Reducing the Offline Cost

We may also lower the computational cost of the attack, by getting more than
one bit of the IV once a collision has been found. This will require the extra as-
sumption the colliding messages follow the differential path in step 1 (previously
we only needed step 0), but this seems quite reasonable, for the same reasons.
Out of the 22 paths used to learn IV bits, let p be the number of paths for which
the condition holds, and a collision is actually found. From each message that
collides following the differential path, we can also extract some conditions on
the internal states Q0 and Q1. These states are not part of the IV, but since we
know the message used, we can use these conditions to learn something on the
IV. If we have a message pair that collides with M ′ ⊟M = 2k, we will call them

M (k) and M ′(k) and the condition gives us Q
[k⊞s0]
0 (M (k)) and Q

[k⊞s0]
1 (M (k)).

The idea is the following (the symbol ‘➤’ summarizes the number of bits to
guess at each step):

1. We guess Q−1. Let n = 32− |Q−1| be the number of 0 bits in Q−1 (we use
|x| to denote the Hamming weight of x).

2. We compute 22 bits of Q−2 using the conditions on the IV, and we guess
the others ➤ 10 bits.

3. We guess the bits of Q−3 used to compute Q0. Since we have Q0 = (Q−4 ⊞

IF(Q−1, Q−2, Q−3) ⊞ k0 ⊞ m0)≪ s0, we only need Q
[i]
−3 when Q

[i]
−1 = 0

➤ n bits.
4. We have Q−4 = (Q0 ≫ s0) ⊟ IF(Q−1, Q−2, Q−3) ⊟ m0 ⊟ k0. If we use it

with the message M (0) and take the equation modulo 2, it becomes: Q
[0]
−4 =

Q
[s0]
0 (M (0)) ⊟ (IF(Q−1, Q−2, Q−3) ⊟ m

(0)
0 ⊟ k0) mod 2, and it gives us Q

[0]
−4.

Then, if we write the equation with M (1) and take it modulo 2, we will

learn Q
[s0]
0 (M (1)) from Q

[0]
−4. Since we know (Q0(M

(1)) ≪ s0) mod 4 from

Q
[s0]
0 (M (1)) and Q

[1⊞s0]
0 (M (1)), we can take the equation modulo 4 to learn

Q
[1]
−4.

19

By repeating this process, we learn the full Q−4, but we need to guess the
bit i when we don’t have a message pair M (i), M ′(i) ➤ 32− p bits.

5. We apply the same process to compute the remaining bits of Q−3. We already
know n bits and we expect to be able to compute a ratio of p/32 of the missing

ones. ➤
(32−n)(32−p)

32 bits.

So, for each choice of Q−1 in step 1, we have to try a number of choices for
the other bits that depends on the Hamming weight 32− n of Q−1. In the end,
the number of keys to try is:

∑

Q−1

210+n+32−p+(32−n)(32−p)/32 = 274−2p
(

1 + 2p/32
)32

With p = 11, this becomes a little less than 290, but the complexity depends on
the number of conditions fulfilled by the key. If we assume that every condition
has a probability of one half to hold, we can compute the average number of
trials depending on the keys, and we will have to try half of them:

1

#k

∑

k

274−2p
(

1 + 2p/32
)32

< 293.8

Hence, we have an IV-recovery attack requiring less than 288 queries to the
NMAC oracle, and less than 294 offline hash computations. See the full version
of this paper for a detailed complexity analysis.

B.3 Complexity Details

First, we will have to compute sums of Hamming weight power:

Sn(α) =
∑

x∈Z2n

α|x|

S1(α) = α0 + α1 = 1 + α

Sn+1(α) = Sn(α) + αSn(α) = (1 + α)Sn(α)

Sn(α) = (1 + α)n

This allows us to compute the total complexity for every Q−1:

∑

Q−1

210+n+32−p+(32−n)(32−p)/32 = 274−2p
∑

Q−1

2np/32

= 274−2pS32

(

2p/32
)

= 274−2p
(

1 + 2p/32
)32

At the end, we need to compute the average complexity over the keys: we will
reduce it to a sum only over the 22 bits of k related to the conditions counted

20

in p.

1

#k

∑

k

274−2p
(

1 + 2p/32
)32

=
274

222

∑

k′∈Z
222

2−2|k′|
(

1 + 2|k
′|/32

)32

= 252
∑

k′∈Z
222

2−2|k′|
32
∑

i=0

(

32

i

)

2|k
′|i/32

= 252
32
∑

i=0

(

32

i

)

S22

(

2i/32−2
)

= 252
32
∑

i=0

(

32

i

)

(

1 + 2i/32−2
)22

< 293.8

C The Differential Path Search Algorithm

In this section we give a quick description of our differential path search algo-
rithm. This section is only intended for the interested reader, it is absolutely not
required to read it in order to understand our attack against HMAC/NMAC.
This algorithm was only used to find the path given in Appendix D.

Automated search techniques for differential paths have appeared before: see
Schläffer and Oswald [18] for MD4, and De Cannière and Rechberger [4] for
SHA-1. However, such techniques were targetting improved collision search. Our
work confirm the claim of [5] that automated search methods can lead to better
attacks on HMAC and NMAC.

C.1 Notations and basic idea of the algorithm

Here, we use δ(x, y) = y ⊟ x to denote the modular difference and ∂(x, y) =
〈

y[31]−x[31], y[30]−x[30], ...y[1]−x[1], y[0]−x[0]
〉

to denote Wang’s difference. We
will use N and H to represent +1 and −1, and we will give a compact represen-
tation by omitting the zeroes, and grouping the bits, eg.

〈

N[0],HN[3,4],NN[30,31]
〉

.
We will consider two messages M and M ′, and we use a prime to represent

any variable related to the message M ′ (eg. Q′
i, m′

i). As a shortcut, we will
sometimes use δX (resp. ∂X) to represent δ(X, X ′) (resp. ∂(X, X ′)), and Φi for
Φi(Qi−1, Qi−2, Qi−3).

When we are given a differential path, we will call it ∂i, and a message follows
the path if ∂Qi = ∂i holds for every step i. We will also use δi as the desired
value of δQi.

Our algorithm is based on the sufficient conditions (SC) algorithm. The basic
idea is to run the SC computation, but since we do not know δi nor δΦi, we will
assume that δΦi = 0, which gives δi = δ≫

i+4 ⊟ ∆i+4: the differences will only
appear every 4 turns, and will not propagate in between. This is possible in the

21

first two rounds, because the boolean functions IF and MAJ can absorb one
input difference. Using this basic idea, we find a path with a non-zero difference
in Q−4...Q−1, that is, a path leading to pseudo-collisions (this initial path is
called ǫ in the algorithm).

Then we will run another pass of the algorithm, but we will try to modify
the path so as to lower the number of differences in the IV. In fact, we will have
a set of paths P , and every run will select a path, try to improve it, and insert
new paths in this set. This basic structure is described in Algorithm 1: we will
make an extensive use of recursivity to explore the path space. This algorithm
will be referred to as the DP algorithm.

Algorithm 1 Overview of the differential path search algorithm

1: function Pathfind

2: P ← {ǫ} ⊲ ǫ is the path with δΦi = 0
3: loop

4: extract P from P
5: Pathstep(P ,ǫ,48) ⊲ start search from last step

6: function Pathstep(P0,P ,i) ⊲ Extend path P to step i, following P0

7: if i < 0 then

8: add P to P
9: else

10: for all possible choice P ′ do

11: PatchTarget(P0,P ′,i)

12: function PatchTarget(P0,P ,i) ⊲ Modify P to fix IV differences in the end
13: for all possible choice P ′ do

14: PatchCarries(P0,P ′,i)

15: function PatchCarries(P0,P ,i) ⊲ Extend some carries to help the next steps
16: for all possible choice P ′ do

17: Pathstep(P0,P ′,i− 1)

C.2 Path representation.

During the computation of a path, we represent the path as 〈∂Qi〉
48
i=0, where

each ∂Qi is given as 32 values in {−1, 0, +1}. However, between two passes, this
representation is almost useless: when we apply a local modification to a ∂Qi,
the ∂Qj’s for the rest of the path will become quite different.

Therefore we propose a new representation of the path: we will store 〈δΦi〉
48
i=0.

The ∂Qi’s can be efficiently computed from the δΦi’s, even if there is a little loss
of information: a given 〈δΦi〉

48
i=0 can correspond to many 〈∂i〉

48
i=0 (for instance

using different carry extensions), but the algorithm quickly find a good one. The
main advantage of this representation is that a local modification of δΦi will not
modify the other δΦj , and we recompute the full path 〈∂Qi〉

48
i=0. In fact, since

∂Φi = 0 most of the time, this is a much better description of the path: it tells
us where we have to do something unusual.

22

C.3 Overview of the algorithm.

The function Pathstep will extend the path one step further, using the same
ideas as the SC algorithm at step i+4. It assumes the ∂Qj’s and δΦj ’s are chosen
for j > i. Then, for every possible choice of δ≪

i+4, it will compute δQi from ∂Qi+4

and ∂Φi+4 and add the ≪-conditions and Φ-conditions. It will have to choose a
∂Φi+4 matching δΦi+4 that is feasible given ∂Qi+1, ∂Qi+2, and ∂Qi+3; if none
is available, this branch of the search is aborted. Here we will also set δΦi to the
value it had in the path P0, so that the new path is similar the old one.

The function PatchTarget will then modify ∂Φi so as to remove some
unwanted differences in the IV (trying to turn a pseudo-collision path into a
collision path).

To finish the step i, the function PatchCarries will select a ∂Qi corre-
sponding to δQi, and will extend some carries according to the values δΦi+1,
δΦi+2 and δΦi+3. This step is important because we need a non-zero bit in a
∂Qj−1, ∂Qj−2 or ∂Qj−3 for every non-zero bit in ∂Φj . Then it will add the
∂-conditions.

C.4 Correcting Differences.

The critical part of the algorithm is the computation of the bits to modify in

step i so as to correct a difference in the IV. To change directly a bit Q
[k]
i0

, we

will set a non-zero difference in Φ
[k⊟si0

]
i0

. However, we detect the differences in
the IV, and we can’t fix them here; we will have to act on a different step and see
how the difference evolves. The simplest way to do so is to keep δΦi unmodified
in the rest of the path, which is possible if the difference is absorbed by the Φi’s.

So we will try to use bit Q
[k⊞si0

]
i0+4 to modify bit Q

[k]
i0

, and so on until we find a
bit of Qi0+4k which can be changed using Φ.

When such a modification succeeds, it will remove one difference in the IV.
This simple correction method is already useful: it finds the path from [24], but
not the one from [20].

C.5 Indirect Correction.

While searching for more complex paths, we will have some differences in the IV
which cannot be dealt this way. So we will introduce a difference which will not
directly cancel the difference in the IV, but which will allow us to remove the

target difference using the previous method. More precisely, to fix Q
[k]
i0

, we want
a difference in some Qi0+4k, but we need a difference in the inputs of Φi0+4k; so
we will try to introduce a difference in Qi0+4k+a, where a ∈ {1, 2, 3}, and this
will use Φi0+4k+a+4k′ . See Algorithm 2 for a pseudo-code description.

When this succeeds, it removes the target difference, but it introduces a
new unwanted difference. Hopefully, we may remove this new difference without
indirect modifications... This method works rather well, and finds many paths
using the message difference from [20].

23

Algorithm 2 Details on the bit correcting part of the algorithm

1: function PatchTarget(P0,P ,i)
2: for all Q

[k]
i0

bit to fix in P0 do ⊲ we try every difference, one by one
3: PatchTargetBit(P0,P ,i,i0,k,η0)

4: function PatchTargetBit(P0,P ,i,i0,k,η) ⊲ η indirect modifications allowed
5: if i < i0 then return

6: else if i = i0 then

7: modify P on bit k of step i

8: PatchCarries(P0, P, i) ⊲ next step of the algorithm
9: else

10: PatchTargetBit(P0, P, i, i0 + 4, k + si0 mod 32, η) ⊲ Direct correction

11: if η > 0 then

12: modify P0 on bit k of step i0 ⊲ Indirect correction
13: for a ∈ {1, 2, 3} do PatchTargetBit(P0,P ,i,i0 + a,k,η − 1)

C.6 Impossible paths.

As we compute the differential path and the sufficient conditions at the same
time, we do not have to deal with impossible path, during the execution of the
algorithm: if a modification of the paths leads to an impossibility, we abort the
search and look for other modifications. However, if the path with δΦi = 0 is
impossible – and this is the case if there are some differences in the third round5

– the first pass of the algorithm will abort with an incomplete path. Therefore
we also add incomplete paths to the set P , and we correct their errors in the
same ways we correct differences in the IV.

D IV-dependent Differential Path

Here is one of the 22 IV-dependent paths we found in MD4. The 22 paths can
be deduced from this one by rotating all the bit differences and bit conditions:
it works on bit positions 0, 1, 3, 4, 6-8, 12-17, 19-24, 26, 27, and 29, and fails on
other positions due to carry expansions.

This path was found using an automated differential paths search algorithm
described in [9].

5 for Wang’s EUROCRYPT path, the differences in the third round form a local
collisions, so we can as well run the algorithm only for the first two rounds.

24

step si δmi ∂Φi ∂Qi Φ-conditions and ≪-conditions

0 3
˙

N
[0]

¸ ˙

N
[3]

¸

1 7 Q
[3]
−1 = Q

[3]
−2

2 11 Q
[3]
1 = 0

3 19 Q
[3]
2 = 1

4 3
˙

HN
[6,7]

¸

5 7 Q
[6]
3 = Q

[6]
2 , Q

[7]
3 = Q

[7]
2

6 11 Q
[6]
5 = 0, Q

[7]
5 = 0

7 19
˙

N
[7]

¸ ˙

N
[26]

¸

Q
[6]
6 = 1, Q

[7]
6 = 0

8 3
˙

H
[26]

¸ ˙

N
[9],H[29]

¸

Q
[26]
5 = 1, Q

[26]
6 = 0

9 7 Q
[9]
7 = Q

[9]
6 , Q

[26]
8 = 0, Q

[29]
7 = Q

[29]
6

10 11 Q
[9]
9 = 0, Q

[26]
9 = 1, Q

[29]
9 = 0

11 19
˙

N
[13]

¸

Q
[9]
10 = 1, Q

[29]
10 = 1

12 3
˙

H
[0],N[12]

¸

Q
[13]
10 = Q

[13]
9

13 7 Q
[0]
11 = Q

[0]
10 , Q

[12]
11 = Q

[12]
10 , Q

[13]
12 = 0

14 11
˙

H
[0]

¸ ˙

NNH
[11...13]

¸

Q
[0]
13 = 1, Q

[12]
13 = 0, Q

[13]
13 = 1

15 19
˙

H
[13]

¸

Q
[0]
14 = 1, Q

[11]
13 = Q

[11]
12 , Q

[12]
13 = 0, Q

[13]
13 = 1, Q

[13]
12 = 0

16 3
˙

N
[0]

¸ ˙

NH
[12,13]

¸

Q
[11]
15 = Q

[11]
13 , Q

[12]
15 6= Q

[12]
13 , Q

[13]
15 6= Q

[13]
13

17 5 Q
[11]
16 = Q

[11]
15 , Q

[12]
16 = Q

[12]
15 , Q

[13]
16 = Q

[13]
15

18 9
˙

NNNH
[20...23]

¸

19 13 Q
[20]
17 = Q

[20]
16 , Q

[21]
17 = Q

[21]
16 , Q

[22]
17 = Q

[22]
16 , Q

[23]
17 = Q

[23]
16

20 3
˙

H
[23]

¸ ˙

H
[26]

¸

Q
[20]
19 = Q

[20]
17 , Q

[21]
19 = Q

[21]
17 , Q

[22]
19 = Q

[22]
17 , Q

[23]
19 6= Q

[23]
17

21 5 Q
[20]
20 = Q

[20]
19 , Q

[21]
20 = Q

[21]
19 , Q

[22]
20 = Q

[22]
19 , Q

[23]
20 = Q

[23]
19 , Q

[26]
19 = Q

[26]
18

22 9
˙

H
[29]

¸

Q
[26]
21 = Q

[26]
19

23 13 Q
[26]
22 = Q

[26]
21 , Q

[29]
21 = Q

[29]
20

24 3
˙

NH
[29,30]

¸

Q
[29]
23 = Q

[29]
21

25 5 Q
[30]
23 = Q

[30]
22

26 9
˙

N
[29]

¸

Q
[29]
25 6= Q

[29]
23 , Q

[30]
25 = Q

[30]
23

27 13 Q
[29]
26 = Q

[29]
25 , Q

[30]
26 = Q

[30]
25

28 3
˙

H
[0]

¸

29 5 Q
[0]
27 = Q

[0]
26

30 9 Q
[0]
29 = Q

[0]
27

31 13 Q
[0]
30 = Q

[0]
29

32 3
˙

N
[0]

¸

Path 1: A path with the message difference on the first word.

25

	Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5
	Pierre-Alain Fouque, Gaëtan Leurent, Phong Q. Nguyen

