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Abstract—In this paper, we propose a formal analysis
of domain extenders for hash functions in the indiffer-
entiability framework. We define a general model for
domain extenders and provide a unified proof of their
security in the form of a generic reduction theorem.
Our general model for domain exenders captures many
iterated constructions such as domain extenders, modes
of operation of symmetric cryptography such as CBC-
MAC or blockciphers based on Feistel networks. Its proof
has been carried out using the Computational Indistin-
guishability Logic of Barthe et al.. The theorem can help
designers of hash functions justifying the security of their
constructions: they only need to bound the probability of
well-defined events. Our model allows to consider many
SHA-3 finalists and is instantiated on two well-known
constructions, namely Chop-MD and Sponge. Finally, the
indifferentiability bounds which we prove are convincing
since they match previous proofs.

I. INTRODUCTION

Motivation. Hash functions are the swiss army knife
of cryptographers. They are used to generate unique
identifiers in hash-and-sign signatures, as one-way func-
tions for one-time-password, to break the structure
of the input in key derivation functions and also for
authentications...

Recently, cryptographers have looked carefully at
the security of these functions after the breakthrough
discovery of differential attacks by Wang et al. on
the MD4 family. Moreover, weaknesses in the Merkle-
Damgard (MD) mode of operation [Mer89], [Dam89],
standardly used to design hash functions, have been
exposed (see [Jou04], [KS05], [KK06]). In response
to all these attacks, the NIST decided to launch a
competition in order to select the new standard SHA-3.

Hash functions are public functions that map arbitrar-
ily long bitstrings to fixed-length bitstring. To construct
a hash function, cryptographers first build a fixed input-
length function f : {0, 1}m → {0, 1}n, where n < m,
called a compression function. They then increase the
input domain to {0, 1}∗ using a domain extender, a.k.a.
a mode of operation. This latter defines the way the

compression function f is iterated to obtain a hash
construction Hf .

Some security goals have been defined for Hf such
as collision, second-preimage or preimage resistance,
but they are not sufficient to cover the needs of all
applications of hash functions. Indeed, in security proofs
of some cryptographic constructions using hash func-
tions, cryptographers would like to model these latter
as public random functions: this is the random oracle
model (ROM) of [BR93]. Controversial [CGH04], the
ROM is now superseded by the standard model. How-
ever, many practical schemes are only proved in the
ROM. To increase confidence in these proofs, Coron
et al. [CDMP05] propose to take into account the
structure of the domain extender by showing a novel
security criterion for them: indifferentiability from a
random oracle. This notion is strongly inspired from
the indifferentiability framework proposed by Maurer
et al. [Mau02], [MRH04].

Indifferentiability captures the absence of generic
adversaries against the domain extender. Informally, it
means that there exists a convincing way to mimic the
pair hash construction and compression function using
a random oracle and a simulator. A nice composition
property ensues: if the compression function behaves
as a small random oracle, then the hash construction
as a whole is safely modeled by a monolithic ran-
dom oracle within a bigger cryptographic construction.
Therefore, the domain extender does not introduce
any structural weakness in the whole cryptographic
construction. Consequently, and though it needs to be
used with caution [RSS11], indifferentiability from a
random oracle proves to be a relevant security criterion.
It is worth noticing that it does capture the aforemen-
tioned weaknesses in the MD design, which is shown
differentiable from a random oracle. Investigating the
indifferentiability of new modes of operations proposed
during the SHA-3 competition is an important issue.

To prove indifferentiability results, cryptographers
need to show that two idealized systems are indistin-



guishable. The first system captures the real setting:
it is built from a random function in place of the
compression function and a domain-extender which can
query the former to compute its result. The second
system is an idealized version of the first one, where
the construction is replaced by a big random oracle
RO and the compression function by a simulator S.
To simulate the random function it replaces, S has
access to RO. The main difficulty of the proof is that S
should answer queries consistently while it cannot see
the queries/answers of the adversary to RO.

Formal Model. As security proofs in general, indif-
ferentiability proofs present a lot of technicalities and
are hard to verify. Moreover, the quantifier order in the
definition of security yields subtleties [RSS11] that re-
call those raised in universal composability frameworks
as [Can01], [BPW03]. Yet, as cornerstones of many
other cryptographic designs, hash constructions need
strong and trusted security foundations. To achieve this,
we believe that confidence in indifferentiability proofs
can strongly benefit from a formal treatment.

Our Contribution. We propose to profit from the
computational indistinguishability logic CIL proposed
in [BDKL10], whose rules are formalized in Coq. We
prove a reduction theorem dedicated to indifferentia-
bility of hash constructions in this framework. Our
formalization of proofs thus contributes to bridging
the gap towards their automated verification. We ex-
tend the semantics of [BDKL10] with the notion of
overlayers, that captures many iterated constructions:
domain extenders, modes of operation of symmetric
cryptography such as CBC-MAC or blockciphers based
on Feistel networks. Our definition allows us to take
into account many domain extenders used in the SHA-
3 competition such as JH [Wu11], Keccak [BDPA11],
Skein [FLS+10] and BLAKE [AHMP10], the EMD
transform [BR06], HMAC and NMAC modes [BCK96].
It generalizes the generic domain extenders proposed
by Bhattacharyya et al. in [BMN09] since it allows
post-processing and multiple inner-primitives. Then, we
describe a generic simulator and prove directly in CIL a
meta-theorem allowing to bound the indifferentiability
of constructions from random oracles. To instantiate this
theorem, users have to bound some inconsistency events
that can happen in the simulator.

We show on two examples that the bounds provided
by our theorem are convincing: for the ChopMD solu-
tion, we achieve the same result as Maurer and Tessaro
in [MT07] in case of prefix-free padding and a better
bound than that of Chang and Nandi in [CN08] in
the general case. Finally, the application of our result

on the sponge construction (underlying the Keccak
design) highlights the lack of an additional term in
the bound provided by Bertoni et al. in [BDPA08],
as was anticipated but not justified by Bresson et al.
in [BCCM+08].

Outline. The next section briefly provides background
on CIL, while the generic definition to capture hash
designs and a formal definition of their indifferentiabil-
ity from a random oracle appear in section III. In sec-
tion IV, we detail the construction of a generic simulator
involved in our result. In V, we define characteristic
graphs to capture events of bad simulation and state
the reduction theorem. Finally, examples of application
appear in section VI.

Notations. LISTS. Given a set A, we denote by A∗

(resp. A+) the set of finite lists with elements in A (resp.
non-empty finite lists). The empty list is denoted by [ ].
[L]ni=m denotes the sublist of L containing elements of
L from the m-th to the n-th position. The append to the
right of an element a ∈ A to a list L ∈ A∗ is denoted
by L : a. The selective append of a to L, denoted by
L.a, is defined by L.a = L, if a ∈ L and L.a = L :
a, otherwise. Given an indexed set A = (ai)i∈N, and
an index set I, [ai]i∈I denotes the list of elements ai
for i ∈ I . Moreover, dom(L) denotes the set of first
components of elements of L, while L(a) is the set of
elements of L with first component a.

STRINGS. Given a bitstring w, |w| denotes the length
of w. For s ≤ |w|, Lasts(w) and Firsts(w) denote the
suffix of w, respectively its prefix, of length s. For
1 ≤ m ≤ n ≤ |w|, w[m,n] denotes the substring of
w starting with its m-th bit and ending its n-th bit. The
concatenation of two bitstrings x and y is denoted by
x||y. A string of length 0 is denoted by λ.

MISCELLANEOUS. dxe denotes the ceiling of x. We
use 1 to denote the unit type. Given a finite set A,
distributions on A are denoted D(A); given a ∈ A and
d ∈ D(A), the probability of sampling a according to d
is denoted by Pr[d = a]. The uniform distribution over
A is denoted by U(A). We write to stand for elements
we do not need to name.

II. ORACLE SYSTEMS AND ADVERSARIES

A. Formalization of Oracles and Adversaries

Following [BDKL10], we use oracle systems to
describe cryptographic schemes. Informally, an oracle
system is composed of a finite list of stateful oracles
that can be queried by an adversary. Each oracle has an
implementation which is a probabilistic algorithm that
may have access to other oracles. A query call to an
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oracle yields an output, called answer, and may modify
the memory as a side effect.

Let n be a positive natural number, for each i =
1, · · ·n, Mi be a countable set of memories (states) and
MO = M1 × · · · × Mn. Furthermore, let o1, . . . , on
be disjoint names of oracles that operate on MO.
An implementation of oi is a probabilistic algorithm
Imp(oi)oj1 ,··· ,oji which:
• has oracle access to the implementations of
oj1 , · · · , oji ;

• takes as input a query in a finite query
domain In(oi) and a tuple of memories in∏
k∈[1..n]−{j1,...,ji}Mk;

• yields an answer in a finite answer domain Out(oi)
and updates the memories in Mk, for k ∈ [1..n]−
{j1, . . . , ji}. We stress that oracle oi thus shares
memories with oracle ok for such indices k.

An oracle implementation Imp(oi)oj1 ,··· ,oji is called
(α, t)-bounded, where α : {oj1 , · · · , oji} → N and
t ∈ N, if every execution of Imp(oi)oj1 ,··· ,oji makes
at most α(ojm) calls to ojm , for jm ∈ {j1, . . . , ji}, and
takes at most time t.

Definition II.1. An oracle system O is given by:
• a finite set NO = {o1, · · · , on} of oracles that op-

erate on MO equipped with their implementations
Imp(oi)oj1 ,··· ,oji ;

• distinguished oracles oI ∈ NO, the initialization
oracle, and oF ∈ NO, the finalization oracle, with
In(oF) = {true, false} and Out(oF)=1;

• an initial memory m̄O∈MO.

EXAMPLE II.1. As an example of oracle system, we
provide the system O, consisting of two oracles named
F and K. Informally, F is a random function on
bitstrings of length n and oracle K is F ◦F . A rigorous
description of the implementations of F and K is given
in Figure 1, where LF and LK are finite mappings that
build the memory. The initial state is composed of the
empty mappings. Initialization oracle and finalization
oracle are idle.

Oracle systems O and O′ are called compatible, if
they have the same set of oracle names, with same query
and answer domains. Compatible systems can however
differ in the oracle implementations and memories. We
therefore use the notation ImpO(oi) (resp. ImpO′(oi)) to
refer to the implementation of oi in O (resp. O′).

With an oracle system O, adversaries interact by
making queries and receiving answers. An interaction
step produces an exchange (for an oracle system O),
which is a triple (o, q, a) where o ∈ NO, q ∈ In(o) and
a ∈ Out(o). Let Xch denote the set of exchanges. Final

Oracle F
ImpO(F)(q, LF ) =
if q ∈ dom(LF ) then

return LF (q)
else

let a← U({0, 1}n) in
LF := LF .(q, a);
return a

endif

Oracle K
ImpO(K)F (q, LK) =
if q ∈ dom(LK) then

return LK(q)
else

let a← F(q) in
let b← F(a) in
LK := LK.(q, b);
return b

endif

Figure 1. Implementations of oracles F and K

exchanges are of the form (oF,−,−), i.e. queries to the
finalization oracle. The set of final exchanges is denoted
by XchF. The sets Que of queries and Ans of answers
are, respectively, defined by Que = {(o, q) | (o, q, a) ∈
Xch} and Ans = {(o, a) | (o, q, a) ∈ Xch}, while for
a particular oracle oi, Que(oi) (resp. Ans(oi),Xch(oi))
only contains elements of Que (resp. Ans,Xch) starting
with oi.

Definition II.2. An O-adversary A = (A,A↓) is given
by a countable set MA of adversary memories, an initial
memory m̄A ∈ MA and functions for querying and
updating:

A : MA −→ D(Que×MA)
A↓ : Xch×MA → D(MA)

Informally, the interaction between an oracle sys-
tem and an adversary starts from the initial memory
(m̄A, m̄O). Using A, A computes a query to O and
updates its memory. Upon receiving a query, O updates
its memory and replies to A, which in turn updates
its memory. This goes on until A calls the finalization
oracle. We formalize this interaction as the execution of
a transition system, defined below.

Definition II.3. A transition system S consists of:
• a (countable non-empty) set M of memories

(states), with a distinguished initial memory m̄;
• a set Σ of actions, with a distinguished subset ΣF

of finalization actions;
• a (partial probabilistic) transition function st :

M −→ D(Σ×M).

A partial execution sequence of S is a sequence
η of the form m0

act1−→ m1
act2−→ . . .

actk−→ mk such
that m0 = m̄, acti ∈ Σ, mi−1,mi ∈ M, and
Pr[st(mi−1) = (acti,mi)] > 0, for i = 1, . . . , k. If
k = 1, then η is a step. If actk ∈ ΣF or mk 6∈
dom(st), then η is an execution sequence of length
k. A probabilistic transition system S induces a sub-
distribution on executions, denoted S, such that the
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probability Pr[S = η] of a finite execution sequence
η is

∏k
i=1 Pr[st(mi−1) = (acti,mi)].

A transition system is of height k ∈ N if all its
executions have length at most k; in this case, S is
a distribution.

Definition II.4. Let O be an oracle system and A be
an O-adversary . The composition A | O is a transition
system such that M = MA ×MO, the initial memory is
(m̄A, m̄O), the set of actions is Σ = Xch, and ΣF =
XchF, and

stA|O(mA,mO)
def
= let ((o, q),m′A)← A(mA) in

let (a,m′O)← ImpO(o)(q,mO) in
let m′′A ← A↓((o, q, a),m′A) in
return ((o, q, a), (m′′A,m

′
O))

Let k : NO → N. An adversary is called k-bounded,
if for every o ∈ NO, the number of queries to o in
every execution of A | O is not greater than k(o). An
adversary is called bounded, if it is k-bounded for some
k. Thus, k bounds the number of oracle calls that can
be performed by an adversary. To meaningfully state
security properties of oracle systems, we also bound the
adversary’s global running time. Therefore, we consider
bounds of the form (k, t) ∈ (NO → N) × N and talk
about (k, t)-bounded adversaries, whose set we denote
Adv(k, t).

Security properties abstract away from the state of
adversaries, and are modeled using traces. Informally,
a trace τ is an execution sequence η from which the
adversary memories have been erased.

Definition II.5. Let O be an oracle system.
• A partial trace is a sequence τ of the form
m0

act1−→ m1
act2−→ . . .

actk−→ mk, where
m0, . . . ,mk ∈ MO and act1, . . . , actk ∈ Xch
such that for i = 1, . . . , k and acti = (oi, qi, ai),
Pr[ImpO(oi)(qi,mi−1) = (ai,mi)] > 0. A trace
is a partial trace τ such that m0 = m̄O and
actk = (oF, , ).

• An O-event E is a predicate over O-traces.

The probability of an event is derived directly from
the definition of A | O. Indeed, each execution sequence
η induces a trace T (η) simply by erasing the adversary
memory at each step. Consequently, for each trace τ ,
we define the set T −1(τ) of execution sequences that
are erased to τ , and for every event E the probability
Pr(A|O : E) = Pr(A|O : T −1(E)).

B. The Logic

The logic CIL features around twenty sound rules to
reason on oracle systems. It is built to establish two

kinds of judgments classically used to express concrete
security notions and carry out their proofs. Namely,
judgments capture that a function of the adversarial
resources bounds the indistinguishability between two
oracle systems or the probability that an event happens
in an oracle system.

Rules of the logic formalize reasoning patterns that
generally appear in cryptographic proofs. Rather than
simply mimic frequent steps of proofs carried out in the
game-based methodology [Sho04], CIL rules stem from
classic programming language and concurrent systems
proof techniques, such as bisimulation relations, em-
bedding in a context or determinization. Furthermore,
the proof system comprises interface rules allowing for
input of results obtained by external reasoning. We
elaborate a little on bisimulations and determinization
concepts, since they are used in the proof of the result
presented in this paper.

Bisimulation relations appear as a key notion to
formally link two oracle systems. They are indeed
equivalence relations on the memories of the systems
and provide an explicit relation between probabilities
of classes of partial executions in both systems. There-
fore, events compatible with the partition yielded by
the equivalence relation happen with equal probability
in two bisimilar systems. In practise, unconditional
bisimulation may be insufficient. Therefor, CIL uses the
notion of bisimulation up to a condition.

Oracle system determinization allows to group states
and thus partial executions that correspond to the same
exchange sequence. As a result, where bisimulation
relations fail to formalize anticipation or delay of sam-
pling of some values from one oracle call to another one,
determinization successfully capture that such modifica-
tions yield behaviors indistinguishable by an adversary.

III. OVERLAYERS AND SECURITY CRITERION

A. Overlayers

Many cryptographic functions are built by iterating
a set of inner primitives: hash functions, CBC-MAC,
blockciphers... Inner-primitives take as input bitstrings
of fixed length. As hash functions take as input longer
bitstrings, they are based on so-called domain exten-
ders [Mer89], [Dam90]. These specify how the input
message is split into blocks that can be treated by the
inner-primitives.

In [BMN09], a formal definition for domain extenders
is presented. Though applicable to several known con-
structions, this definition does not capture constructions
that include a post-processing function. Post-processing
is used to compute the global hash result out of the mul-
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tiple inner-primitive outputs. We emphasize that post-
processing does not perform calls to inner-primitives
and that these take place before post-processing. For
example, the ChopMD [CDMP05] and the sponge con-
struction [BDPA07] include a post-processing function.

EXAMPLE III.1. The sponge construction relies on an
inner primitive F , which is a random function from
{0, 1}r+c into {0, 1}r+c, where r is the length of
blocks parsed during preprocessing. For an input x,
the sponge construction needs l = m + k iterations,
where m is the number r-blocks of the input and k
is the number of r-blocks desired in the output. The
inner primitive F is called at each iteration. The output
size is parameterized by K ∈ N. While the general
design deals with any possible K, in the sequel we
assume for sake of simplicity that K = kr, and refer the
readers to [BDPA07] for more details. The construction
comprises two phases. During the absorbing phase, the
input is padded using an injective, easily computable
and invertible function Padsp that yields a bitstring
x1|| . . . ||xm of length m ∗ r. Then, a bitwise xor
operation is applied to xj and the first r-block of the
previous answer of F to compute the next query to F .
During the squeezing phase, F is queried k more times
to get a collection of answers (am+1, . . . , al). The final
output is then obtained by concatenation of the first
r bits of each aj: Firstr(am+1)|| . . . ||Firstr(al). The
implementation is provided in Figure 2.

Besides the limitation mentioned previously, we no-
tice that the case of multiple inner-primitives is not dealt
with in [BMN09]. For instance, the Grøstl [GKM+11]
construction is out of scope of this definition. Hence,
we introduce a new definition based on the notion of
overlayer that allows to capture all hash functions based
on domain extenders we are aware of. A hash design can
then be described as an overlayer applied to an oracle
system, where this latter defines the inner-primitives.
Informally, an overlayer consists in:

1) a function Θ that describes how an input
x is padded and cut into init(x) blocks
θ1(x), . . . , θinit(x)(x), with init(x) ∈ [0,L];

2) a finite sequence [o1, . . . , oL] of inner-primitives
such that the sequence of calls to inner-primitives
generated during the computation of the hash of
any input x is a prefix of a [o1, . . . , oL]. All
known hash designs are based on a fixed sequence
[o1, . . . , oL];

3) a function piv with piv(x) ∈ [1, init(x)] and such
that the output of the post-processing does not
depend on calls performed to the inner-primitives

In(Sponge) = {0, 1}≤264
, Out(Sponge) = {0, 1}K

Imp(Sponge)F (x, Lsp) =
if x ∈ dom(Lsp) then
return Lsp(x)

else
l := initsp(x);
w := Padsp(x);

m := |w|
r

;
(x1, . . . , xp) := (w[1, r], . . . , ;

w[r(m− 1) + 1, rm]);
a0 := 0r+c;
for j = 1 to m do

qj := (xj ||0c)⊕ aj−1;
let aj ← F(qj) in
Q := Q : (qj , aj);

endfor
for j = m + 1 to l do

qj := aj−1;
let aj ← F(qj) in
Q := Q : (qj , aj);

endfor
af := Firstr(a

m+1)|| . . . ||Firstr(a
l);

Lsp := Lsp.(x, af , Q);
return af

endif
where initsp(x) = m+ k, with m = |w|/r and m ∗ r
the length of the output of the sponge construction.

Figure 2. Sponge Implementation

before piv(x). We call piv(x) the pivot index.
4) functions H1, . . . ,HL that compute the input

queries to the inner-primitives;
5) a post-processing function Hpost.

EXAMPLE III.2. Let us consider the sponge construc-
tion to comment some of the choices in the notion of
overlayer. Assume that the padding yields a message
of p blocks of length r and that the hash is of length
kr. The sponge has a two-phase structure, and the
post-processing function depends on all calls in the
squeezing phase. The absorbing phase consists of p calls
to the inner-primitive F , while there are k calls per-
formed during the squeezing case. For this construction,
[o1, . . . , oL] is then a list where F is repeated L times.
Any index in the absorbing phase and the first index
of the squeezing phase is a valid pivot. In practice,
it is better to choose the latest possible index for the
pivot since it yields a better simulator, and hence, a
tighter indifferentiability bound. For sponge, this is the
first index of the squeezing phase.

Henceforth, we consider hash constructions that take
as input bitstrings in a finite set InH and produce hash
values in a finite set OutH, where InH and OutH are
arbitrary finite sets. We also consider fixed an arbitrary
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oracle system O with oracles in NO.

Definition III.1. An O-overlayer h is a tuple
([o1, . . . , oL],Θ, (Hj)j∈{1..L}, piv,Hpost), where:
• [o1, . . . , oL] is a sequence of oracles in NO.
• Θ : InH → ({0, 1}≤r)+ with Θ(x) =

(θ1(x), . . . , θinit(x)(x)) the input transformation
and r > 0 the block length.

• piv : InH → [1,L] outputs a pivot index such that
piv(x) ≤ init(x). For simplicity, we require that
there is an oracle opiv, that we call the pivot oracle,
such that for any x, opiv(x) = opiv.

• functions H1 : {0, 1}≤r → In(o1) and Hj :
{0, 1}≤r × Xch→ In(oj) for j = 2, . . . ,L.

• Hpost : InH ×Outopiv ×Xch∗ → OutH is the post-
processing function.

Thus, Hpost(x, y,Q) is the hash of x, when Q =
(ok, qk, ak)k∈[1,init(x)] is the list of exchanges generated
by the Hj functions for x and y = apiv(x).

EXAMPLE III.3. Consider again the sponge
construction. Then, the pivot is pivsp(x) = m + 1,
Hj(xj , (F , qj−1, aj−1)) = (xj ||0c)⊕aj−1 for j = 1..p,
and Hpost(x, apivsp(x), [(F , qj , aj)]j>pivsp(x)) =
Firstr(apivsp(x))|| . . . ||Firstr(ainitsp(x)). Moreover,
θj(x) = xj for j ∈ [1..m], and θj(x) = 0r for
j ∈ [m+ 1, init(x)sp].

We require overlayers to satisfy the following condi-
tions that are met by all hash designs we know about:

1) the function Θ is injective;
2) Hpost only depends on pivot and post-pivot

queries. Formally, for all lists Q and Q′ and
all x, y, if [Q]k>piv(x) = [Q′]k>piv(x) then
Hpost(x, y,Q) = Hpost(x, y,Q′). Therefore, we
sometimes write Hpost(x, apiv(x), [Q]k>piv(x)) in-
stead of Hpost(x, apiv(x), Q).

Definition III.2. The composition of an O-overlayer
h with O defines an oracle system which contains the
oracles of O augmented with the overlayer oracle H
given by:
• the memory LH of oracle H is a mapping from

InH to OutH×Xch∗; its initial value is the empty
mapping.

• The implementation of oracle H is given in fig-
ure 3.

B. Security Definition of Hash Constructions

A widely accepted approach for proving properties
of hash constructions consists in assuming idealized
inner-primitives (e.g. random functions) and proving

Imp(H)o
1,...,oL

(x, LH) = if x ∈ dom(LH) then
return LH(x)

else
l := init(x);
(x1, . . . , xl) := Θ(x);
q1 := H1(x1);
let a1 ← o1(q1) in
Q := [(o1, q1, a1)];
for j = 2 to l do
qj := Hj(xj , (oj−1, qj−1, aj−1));
let aj ← ImpO(oj)(qj) in
Q := Q : (oj , qj , aj);

endfor
af := Hpost(x, apiv(x), [Q]k>piv(x));
LH := LH.(x, af , Q);
return af

endif

Figure 3. Implementation of the H Oracle

that hash constructions are indistinguishable from a
random function (see [CDMP05]), which is commonly
named indifferentiability from a random oracle. In our
framework, this notion is formalized as a comparison
between two oracle systems: one where the real hash
mode is used as an overlayer of an idealized (inner)
oracle system, and another where the hash construction
is idealized as a random oracle and a simulator makes
up for the inner system. We thus introduce a notation
for idealization by uniform functions before writing our
formalization for indifferentiability.

We denote by RO(H) the oracle implemented as a
random function on OutH using a list (mapping) LH as
follows:

if x ∈ dom(LH) then return LH(x)
else let y ← U(OutH) in LH := LH.(x, y);

return y endif

We naturally lift this definition to an oracle system, by
writing RO(O).

Definition III.3. Consider an oracle O and an
O-overlayer h. The system (HO,O) defined by
the composition of h with O is said to be ε-
indifferentiable from its idealization RO(H) with a
(ks, ts)-simulator , if there is an oracle set SRO(H) that
is (ks, ts)-bounded and such that the oracle systems
(HO,O) and (RO(H),SRO(H)) are compatible and ε-
indistinguishable, for any adversary A ∈ Adv(k, t).

In this case, Indiff(H,RO(O),RO(H),S) ≤
ε(k, t), where the left term stands for
|Pr[A|(HRO(O),RO(O)) : true]−

Pr[A|(RO(H),SRO(H)) : true]|
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The oracle set S in this definition is usually refered
to as the simulator. It is not a stand-alone oracle system,
since it requires access to RO(H) to compute its
outputs.

IV. GENERIC SIMULATOR

Indifferentiability proofs are difficult because one has
to come up with a simulator which mimics the inner-
primitives consistently despite the fact that it cannot
access the list of the adversary calls to the hash oracle.

Consider for example the oracle system in Exam-
ple II.1. To replace K by a random oracle and simulate
F , we have to take into account that F(F(x)) = K(x)
is true for any x ∈ {0, 1}n in the real setting. Hence,
if an adversary queries F(x), gets y and then queries
F(y), a simulator of F has to output an answer match-
ing K(x). Otherwise, a distinguisher can perform this
query and in case K(x) 6= F(y), claim to interact with
the simulated world. Thus, the simulator should query
K on x, and forward what it gets as a reply to the query
F(y).

We can now extrapolate a simulation strategy. The
key idea is to detect when an adversary has enough
information to compute a hash value for some input
x. In other words, when queried on a value q, the
simulator has to determine whether and to which x the
adversary can associate a hash value, given an answer
for q. In case such an x is determined, the simulator
queries the hash of x to get a result t. Then, it uses t to
enforce that the remaining calls to the inner-primitives
needed for computing the hash of x are consistent with
t. Thus, the idea is to identify chains of queries that
can correspond to a hash execution. Our simulator uses
an algorithm which, given a list of oracle queries and
a query to the pivot oracle, decides whether and for
which hash input the latter is a pivot query. In case it
is, this algorithm outputs a matching hash input and a
list of pre-pivot queries, among the given list of queries.
Such an algorithm is called a path-finder1. Intuitively, it
should have a non-trivial output as soon as there exists
a satisfactory one, and any non-trivial output should
correspond to a satisfying answer. This is captured
by the following definition, where LS denotes a list
variable containing all exchanges performed with the
simulator so far.

Definition IV.1. A path-finder algorithm PathFinder
takes as input a query q ∈ Inopiv and list LS of queries

1The algorithm is named after one of its plausible implementations,
which involves building a particular graph. As we introduce a different
graph construction for our theorem, we choose to introduce only this
latter, which is the most relevant to the presentation of our result.

and answers performed to oracles in O. Its output is
either the triple (false, λ, [ ]), or a triple of the form
(true, x, List), with (x, List) ∈ InH × Xch∗ such that:

1) for any answer y to q, if there exists x ∈ InH
such that H(x) yields a list of queries Q satisfying
[Q]i<piv(x) ⊆ LS and [Q]i=piv(x) = (opiv, q, y),
then PathFinder outputs (true, , )

2) if PathFinder(q, LS) =
(true, x, [(o1, q1, y1), . . . , (op−1, qp−1, yp−1)])
then [(o1, q1, y1), . . . , (op−1, qp−1, yp−1)] ⊆ LS ,
and this list corresponds to the beginning
of a hash execution on x, namely:

piv(x) = p, q1 = H1(θ1(x)),
∀j ∈ [2..p− 1],

qj = Hj(θj(x), (oj−1, qj−1, yj−1))
q = Hp(θp−1(x), (op−1, qp−1, ap−1))

We assume that the execution time of the
path-finder algorithm is bounded by a function
tPathFinder(Card(LS)).

When the simulator detects a pivot query that allows
to say H(x) = t, it has to impose answers to pivot
and post-pivot queries consistent with t. More precisely,
consistency is achieved when applying Hpost to pivot
answer and post-pivot exchanges yields t. To perform
this task, we introduce another algorithm: the forward
sampler.

Given x and t, there is a set of lists of ex-
changes [vj ]

init(x)
j=piv(x)+1 and values for y such that

Hpost(x, y, [vj ]
init(x)
j=piv(x)+1) = t. We denote this set by

PreIm(t). Informally, a forward sampler is an algorithm
that samples an element in PreIm(t) while preserving
the original distribution of ((y, [vj ]

init(x)
j=piv(x)+1), t). Ob-

viously, a necessary condition for the existence of a
forward sampler is that PreIm(t) is not empty.

Definition IV.2. A forward sampler FwdSplr
is an algorithm that takes as input a pair
(x0, t0) and outputs a distribution such that:
Pr[U(OutH) = t0]Pr[FwdSplr(x0, t0) = (y0, L0)] =

Pr

[
U(Outopiv) = y0 ∧

∧init(x)
j=piv(x)+1 U(Outoj ) = yj∧

L0 = [vj ]
init(x)
j=piv(x)+1 ∧ (y0, L0) ∈ PreIm(t0)

]
where vj = (oj ,Hj(θj(x), vj−1), yj), for
j = piv(x) + 1, . . . , init(x). We require that the
execution time of FwdSplr is bounded by constant
tFwdSplr.

EXAMPLE IV.1. To get some intuition about this defini-
tion let us consider a degenerated case, where OutH =
U(Outopiv), the pivot is the last step of iteration and
Hpost forwards the answer of the last query performed
by the hash algorithm. Thus, intuitively, we expect that
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for each pair (x0, t0), PreIm(t0) is the singleton (t0, [ ])
and a forward sampler should output this pair with
probability 1. We check that this is what our definition
imposes:
Pr[U(Outopiv) = t0 ∧

∧init(x)
j=piv(x)+1 U(Outoj ) = yj ∧

[ ] = [vj ]
init(x)
j=piv(x)+1 ∧ (t0, [ ]) ∈ PreIm(t0)] =

Pr[U(Outopiv) = t0 ∧ (t0, [ ]) ∈ PreIm(t0)] =
Pr[U(Outopiv) = t0] = Pr[U(OutH) = t0].
Therefore, Pr[FwdSplr(x0, t0) = (t0, [ ])] = 1.

We can now provide implementations of oracles in
the generic simulator. We recall that LS(oi) denotes the
list of all tuples starting with oi appearing in LS and
that if (oi, q, y) is one of these tuples, LS(oi, q) denotes
the value y, which is unique by construction.

Definition IV.3. The generic simulator S is the follow-
ing set of oracles compatible with O. They have a shared
memory of the form LS ∈ Xch∗, and the initial memory
m̄ of a system containing the simulator is chosen so that
m̄.LS = [ ]. Moreover, opiv is implemented as follows:

ImpS(opiv)H(q, LS) = if q ∈ dom(LS(opiv)) then
return LS(opiv, q)

elsif PathFinder(q, LS) = (true, x, List) then
let t← H(x) in
(y, L) := FwdSplr(x, t);
LS := LS .((opiv, q, y) : L);

else let y ← U(Outopiv) in
LS := LS .(opiv, q, y);

endif
return y

For any o 6= opiv in NO:

ImpS(o)H(q, LS) = if q ∈ dom(LS(o)) then
return LS(o, q)

else let y ← U(Outo) in
endif
LS := LS .(o, q, y);
return y

If we let c be a constant bounding the time nec-
essary to search in LS , the implementation of opiv is
(ks, ts)-bounded, where ks(H) = 0, and tFwdSplr +
tPathFinder(Card(LS)) + c. The implementation of the
other oracles is (0, c)-bounded.

This simulator works completely independently of the
fact that multiple outputs may exist from which the
path-finder has to choose. However, we notice that if it
is possible that the path-finder can answer two distinct
hash inputs x, x′ for a pivot query, the simulator can
only anticipate the adversary queries for one of these
inputs to H. If the adversary can easily uncover such

values, our simulation strategy is flawed and should
yield a large indifferentiability bound, which can reflect
a misconception in the hash construction or a bad choice
of the pivot index.

V. THE THEOREM

Even though path-finder and forward sampler al-
gorithms may prevent some obvious inconsistencies
introduced in the idealized system, there are still cases
in which they are not sufficient. Namely, when a pivot
query is made to the simulator, consistency can only be
enforced if, on the one hand, the path-finder can detect
that it is a pivot query, and on the other hand, the pivot
and post-pivot queries are still fresh, i.e., answers to
these queries have not been yet generated.

A. Capturing Dependencies: Anticipating System and
Characteristic Graph

We want to capture dependencies enforced in the
real setting by intermediate queries (performed by H
to oracles in O) in addition to direct and anticipated
queries. To this end, we start by defining an intermediate
system, the anticipating system Oant, which is the real
system augmented with the anticipation of the post-
pivot queries by oracle opiv, and visibility labels that
we introduce later on. The implementations of oracles
in this system can be found in figure 4. This hybrid
system, by enforcing the computation of all exchanges
ever playing a role in the answer to the adversary,
highlights problematic configurations.

Then, we introduce the characteristic graph, a data
structure dedicated to the representation of dependen-
cies between exchanges. Vertices of the graph are ex-
changes (o, q, a) computed either via a direct query or
and indirect one. If an edge links two vertices, it means
that they can be successive exchanges in a hash compu-
tation. To formalize that an adversary does not acquire
the same knowledge of direct queries and intermediate
queries necessary to the computation of a hash value,
the visibility map associates vertices to visibility labels
in {Inv, PV is, V is} (standing for invisible, partially
visible and visible and are ordered this way).. Intu-
itively, for an interaction with the anticipating system,
pre-pivot intermediate exchanges are labelled invisible,
while pivot and post-pivot are deemed partially visible.
Moreover, direct exchanges are considered visible, as
are exchanges anticipated by the simulator.

Formally, characteristic graphs are defined as follows.

Definition V.1. A characteristic graph CG is defined by
a tuple (vroot, V, E,V) where:
• a root vroot,
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ImpOant (H)(x, LH, LS ) =
if x ∈ dom(LH) then

(af , Q) := LH(x);
LH := LH.(x, af , Q);
return af

else
l := init(x);
p := piv(x);
(x1, . . . , xl) := Θ(x);
(o1, q1) := H1(x1);
if q1 ∈ dom(LS(o1)) then

(a1, lbl) := LS(o1, q1);
Q := [(o1, q1, a1, lbl)];

else let a1 ← U(Outo1 ) in
LS := LS .(o1, q1, a1, Inv);
Q := [(o1, q1, a1, Inv)];

endif
for j = 2 to p− 1 do

(oj , qj) := Hj(xj , (oj−1, qj−1, aj−1));
if qj ∈ dom(LS(oj)) then

(aj , lbl) := LS(oj , qj);
Q := Q : (oj , qj , aj , lbl);

else let aj ← U(Outoj ) in
LS := LS .(oj , qj , aj , Inv);
Q := Q : (oj , qj , aj , Inv);

endif
endfor
for j = p to l do

(oj , qj) := Hj(xj , (oj−1, qj−1, aj−1));
if qj ∈ dom(LS(oj)) then

(aj , lbl) := LS(oj , qj);
LS := LS .(oj , qj , aj , max(PV is, lbl));
Q := Q : (oj , qj , aj , max(PV is, lbl));

else let aj ← U(Outoj ) in
LS := LS .(oj , qj , aj , PV is);
Q := Q : (oj , qj , aj , PV is);

endif
endfor
af := Hpost(x, ap, [Q]j>p);
LH := LH.(x, af , Q);
return af

endif

If oi 6= opiv:
ImpOant (oi)(q, LS) =
if q ∈ dom(LS(oi)) then

(y, ) := LS(oi, q);
else let y ← U(Outoi ) in
endif
LS := LS .(oi, q, y, V is);
return y

ImpOant (opiv)(q, LS , LH) =
if q ∈ dom(LS(opiv)|V is) then

(y, V is) := LS(opiv, q);
elsif PathFinder(q, LS) = (true, x, List) then
let t←H(x) in
(opiv, q, y) : L := Π3(LH(x))j≥piv(x);
LS := LS .((opiv, q, y, V is) : (L, V is));

elsif q ∈ dom(LS(opiv)|PV is, Inv) then
(y, ) := LS(opiv, q);
LS := LS .(opiv, q, y, V is);

else let y ← U(Outopiv ) in
LS := LS .(opiv, q, y, V is);

endif
return y

For tuple (oi, q, y, lbl) ∈ LS , LS(oi, q) denotes the pair (y, lbl) (which is unique by construction). We denote
(L, lbl) a list of exchanges consisting in L except that all visibility labels are replaced by lbl, and (L|lbl) is the
restriction of list L to elements of label lbl.

Figure 4. Implementations of the oracles in the anticipating system Oant

• a finite set of vertices V ⊆ Xch,
• a set E ⊆ (V ∪ vroot) × {0, 1}≤r × V of labeled

edges such that:
1) (o1, q, a) ∈ V , (vroot, x1, (o1, q, a)) ∈ E im-

plies q = H1(x1);
2) for j ≥ 2, ((oj−1, q, a), xj , (oj , q′, a′)) ∈ E

implies q′ = Hj(xj , (oj−1, q, a)).
• V is a visibility map, which associates to every

vertex in V a value in {Inv, PV is, V is},
• E contains all possible edges linking visible ver-

tices:
1) for all visible vertex (o1, q, a), q = H1(x1)

implies (vroot, x1, (o1, q, a)) ∈ E ;
2) for j ≥ 2, for all visible vertices ((oj−1, q, a)

and (oj , q′, a′)), if q′ = Hj(xj , (oj−1, q, a)) then
((oj−1, q, a), xj , (oj , q′, a′)) ∈ E.

The set of characteristic graphs is denoted by

CG. We distinguish a particular graph CGinit =
(vroot, [ ], ∅,Vinit) with dom(Vinit) = ∅ which we call
the initial characteristic graph. We use the term non-
visible to refer to vertices which are either partially
visible or invisible. Moreover, we talk about visibility
of queries: the visibility of a query (o, q) is the same
as that of the (unique) vertex v in a characteristic graph
such that v = (o, q, ). Intuitively, we are interested
in chains of exchanges exhibited by the characteristic
graph. We thus introduce the following terminology.

Definition V.2. • Given a graph, a path is a chain
v0

l1→ v1
l2→ · · · ln→ vn of vertices vi such that for

all i, edge (vi, li, vi+1) belongs to the graph.
• A rooted path is a path starting with vertex vroot.

A vertex is rooted whenever it belongs to a rooted
path.

• A meaningful path is a rooted path such that if
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[x1, . . . , xL] is the list of labels on the sequence
of edges, then there exists x such that ∀j = 1..L,
θj(x) = xj .

• A meaningful path is said to be complete when L =
init(x). In such cases, bitstring x is then said to
label the meaningful path to which it corresponds.

B. Inconsistency Events
As foreseen previously, we face two main causes of

inconsistencies. On the one hand, we can only expect
that the path-finder detects pivot queries in case all
pre-pivot queries have been performed before by the
adversary, i.e. , in case they form up a rooted path of
visible queries in the characteristic graph. On the other
hand, a pivot or post-pivot query corresponding to a
hash input x can be already bound to an answer at
the moment when the simulator detects that it is asked
a pivot query. In such a case, this latter carries on
running the forward sampler, but when updating the list
of queries, it stumbles upon a preexisting vertex.

As far as the characteristic graph is concerned, it
means that we have to ensure three invariants:

1) no two meaningful rooted paths have a common
vertex,

2) along meaningfully rooted paths, visibility labels
increase,

3) no vertex creation results in linking a meaningfully
rooted path with a preexisting vertex.

Each time one of these invariants is broken, it cor-
responds to an inconsistency event, i.e. a case of bad
simulation, acknowledged on the characteristic graph.
However, probabilities are only defined over traces
previously. As a result, we need to define a way to map
traces to sequences of graphs. Intuitively, this can be
done putting to use a function Γ mapping a state to a
characteristic graph. Then, calls to oracles oi yield a
sequence of length 1 and calls to the hash oracle are
mapped to the sequence of graphs yield by applying
function Γ to each intermediate state created during the
iteration.

Definition V.3. Given a characteristic graph CG, v
is a collision vertex, denoted v ∈ CollVertex(CG), if
there exist at least two distinct edges having v as a
target (i.e. there exists (v′, l′) 6= (v′′, l′′) such that edges
(v′, l′, v) and (v′′, l′′, v) appear in the graph), and both
of them belongs to a meaningfully rooted path going
through v.

We now introduce inconsistency predicates (cf fig-
ure 5 - a), mapping a graph stage to a boolean value,
and formalize inconsistency events using the temporal
operator “eventually”.

Definition V.4. Let CG
(o,q,y)−→ CG′ be a graph stage.

The inconsistency predicates are:
• Collide evaluates to true iff a collision vertex

is created at this step, i.e. CollVertex(CG′) −
CollVertex(CG) 6= ∅.

• Reveal evaluates to true if CG′ contains a vertex
which is the first visible vertex of a meaningful
non-visibly rooted path: there exists v, v′ ∈ V ′ s.t.
firstly, V ′(v) = V is and V ′(v′) 6= V is, secondly, a
meaningful path goes through v′ in CG′ and lastly
edge (v′, , v) is in E′.

• Link evaluates to true if (o, q, y) is a visible vertex
of CG′ not belonging to CG and there exists a
visible vertex (o′, q′, y′) in V such that a visibly
meaningfully rooted path of CG′ goes through
(o, q, y) and (o′, q′, y′).

C. The Theorem

We can now state our theorem, according to which the
indifferentiability between real and simulated systems is
bounded by the probability of inconsistency events.

THEOREM V.1. Let h be an O-overlayer. The com-
position of h and RO(O) yields an oracle system
(HRO(O),RO(O)). We denote by S the generic simu-
lator and Oant the anticipating system, which we have
defined above. Then, for all adversaries A ∈ Adv(k, t),
• S is (ks, ts)-bounded with ks(H) = 1, and ts =
tFwdSplr + tPathFinder(k′ + 1) + c, where k′ =∑
o∈O k(o).

• the indifferentiability advantage is bounded by the
probability of inconsistency events:
Indiff(H,RO(O),S,≤)

Pr[A|Oant : FCollide∨Reveal∨Link]
where tFwdSplr and tPathFinder respectively bound the
execution time of forward sampler FwdSplr and path-
finder PathFinder used in the simulator.

Sketch of Proof. We present a proof sketch of this
theorem in CIL developed in [Dau11], [BDK+10]. An
extended version of the proof can be found in appendix.
To relate real and simulated oracle systems, we use
Oant and another intermediate system FwdSpl, show
indistinguishability relations between them and then use
transitivity. Proof steps are outlined in figure 6.

We have built the anticipating system Oant out of
the real system by changing the implementation of the
pivot oracle so that it pre-computes the exchanges that
the forward sampler is meant to anticipate inside the
simulator. Therefore, perfect indistinguishability of the
real system (HO,O) and the anticipated system Oant

follows from an argument of determinization.
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Figure 6. Sketch Of Proof

The motivation behind the next step in the proof is
to break the dependency existing between a hash oracle
input and the matching output. We show that Oant is
indistinguishable of another system, denoted FwdSpl,
which is defined as follows. On a fresh input, the hash
oracle resamples all pre-pivot exchanges (no matter
their freshness), which yields a pivot query. Then, the
oracle draws a hash output uniformly at random and
applies FwdSplr to compute a pivot answer and post-
pivot exchanges coherent with the hash output. As for
the anticipating system, pre-pivot exchanges are deemed
invisible and pivot and post-pivot ones partially visible.

Linking systems Oant and FwdSpl involves
bisimulation-up-to arguments. Informally, we prove
that invisible exchanges can be resampled up to some
criterion, before getting rid of the test of this criterion
and replacing original code with executions of forward
sampler. Conditions on the bisimulation relations
can be shown to hold as soon as no inconsistency
predicate is broken. As a result, we can conclude that
an adversary cannot distinguish between interacting
with Oant and FwdSpl with a better advantage that
the probability that Reveal, Collide or Link occurs.

Finally, we justify the perfect indistinguishability
between FwdSpl and (RO(H),SRO(H)) by a deter-
minization argument: indeed, as the hash oracle in
FwdSpl computes a sequence of exchanges independent
from its answer during its execution, we consider that
this constitutes an anticipation of computations that sys-
tem (RO(H),SRO(H)) only performs when necessary,
i.e. when opiv is called on a pivot query.

Generalization. The theorem and proof provided
here are expressed for inner-primitives with random
functions. Dealing with random permutations yields

minor changes in the detailed proof and adds a term in
the bound of the indifferentiability advantage capturing
failure of injectivity as a possible bad simulation event.

VI. APPLICATIONS

Our generic theorem reminds the importance of pre-
venting length-extension attacks. Namely, applying the
theorem on the MD mode yields a bound worth 1, as
length extension always allows to realize event Reveal.

In our examples of application, we do not provide
implementation for a path-finder algorithm (though to
obtain an instantiated bound on the execution time we
should), but only specify forward sampler algorithms.

As the events FCollide, FReveal and FLink can intersect,
we take care to evaluate slightly weaker events but
which partly avoid that some overlapping increases arti-
ficially the bound. The following decomposition proves
useful in both examples we develop.

As there is only one possible label for an edge
between two vertices, when event FCollide happens and
results in the creation of a collision vertex v2, then it
necessarily involves vertices v0, v1 linked to v2 such
that v0 6= v1. Without loss of generality, we suppose
that v0 is created before v1 (see figure 5). We denote
v1 = ( , q1, a1) and let RootCollide capture the event
that v0 = vroot and v1 is created such that the collision
happens. Then necessarily, there exist j, x07→2, x17→2

such that H1(x07→2) = Hj(x17→2, ( , q1, a1)) since they
both equal the query part of v2. Furthermore, WkCollide
is verified when v0 6= vroot is ( , q0, a0), and v1 is cre-
ated; i.e. when there exist (j, x17→2) and (j′, x0 7→2) such
that Hj(x17→2, ( , q1, a1)) = Hj′(x07→2, ( , q0, a0))Note
that we reason on the appearance of v1 in the graph,
whether it is before or after creation of v2. It allows us to
state that FCollide implies FRootCollide∨WkCollide. We define
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WkLink as the event in which a vertex v1 is created
and gets linked to a preexisting vertex v2, without
imposing any visibility constraint on the vertices v1

and v2. We can see that FCollide∨Reveal∨Link is implied by
FWkLink ∨ FRootCollide∨WkCollide ∨ FReveal∧¬WkLink∧¬Collide.

A. The Sponge Construction

We define the forward sampler so that it parses a hash
output t into k blocks of r bits and draws iteratively
the c missing bits of the answers to pivot and post-
pivot queries. Its precise implementation is provided in
appendix A.

If FWkCollide happens at the `-th fresh query
then there exist (j, x1 7→2) and (j′, x07→2) such that
Hj(x17→2, (F , q1, a1)) = Hj′(x07→2, (F , q0, a0)), which
imposes Lastc(a0) = Lastc(a1). Since a1 is drawn
uniformly at random, this happens with probability at
most `−1

2c . Summing on ` yields a bound of ktot(ktot−1)
2c+1 .

When FRootCollide occurs, there exists v1 such that
H1(x07→2) = Hj(x17→2, (F , q1, a1)) for some labels
x07→2 and x17→2 and index j. Hence, the last c bits of
a1 to be worth 0c. The probability that this happens is
bounded by ktot

2c .
If FWkLink happens at the `-th direct query creating v1,

then there exists v2 to which v1 gets linked by an edge
(j, xj). With a1 drawn uniformly at random, the proba-
bility that there is a v2 such that Hj(xj , (F , q1, a1)) =
q2 is at most `−1

2c . Summing on `, it results in a bound
of ktot(ktot−1)

2c+1 .
Finally, we bound the probability of

FReveal∧¬WkLink∧¬Collide by k(F)
2c . Indeed, if this

occurs, a vertex v1 = (F , q1, a1), non-visible, gets
linked to v2 = (F , q2, a2), visible, by an edge labeled
by (j, xj). Since we assume ¬WkLink, necessarily,
v1 is created before v2. Realizing Reveal means
that Hj(xj , (F , q1, a1)) = q2. Since we assume
¬Collide, there is only one vertex v1 which can satisfy
this equation. With v1 at most partially visible, the
probability that a good query q2 is issued is bounded
by 1

2c . To conclude, we sum over the total number of
direct queries.

THEOREM VI.1. We consider the sponge construction.
For an adversary A ∈ Adv(k, t),

Indiff(Sponge,RO(F),RO(Sponge),S) ≤ k2
tot

2c
+
k(F)

2c
where ktot = k(F) + Lsp ∗ k(H).

In [BDPA08], Bertoni et. al. present a clever proof
of the the sponge indifferentiability concluding to a
bound of ktot(ktot+1)

2c+1 . We obtain a greater bound, con-
taining terms which are omitted in their final bound

computation, as was first suggested in [BCCM+08].
The missing term corresponds to the probability that
length-extension attacks can be carried out, which, even
though the authors propose a simulator different from
ours, should not be overlooked in their computation.

B. The ChopMD Construction

We consider the hash function ChopMD introduced
in [CDMP05] and inspired of [DGH+04]. For sake
of completeness, we describe it in appendix A. It is
obtained from the Merkle-Damgård construction by
chopping off the last s bits of the output in order to
prevent extension attacks.

On input (x, t), we define FwdSplr to sample uni-
formly the s missing bits to compute the result of the
pivot query ypiv(x), and outputs the concatenation of
t with these bits. Probability computations are very
similar to the sponge case, see appendix A for details.

THEOREM VI.2. We consider the ChopMDs construc-
tion. For an adversary A ∈ Adv(k, t),

Indiff(ChopMDs,F ,RO(ChopMDs),S) ≤ k2
tot

2n
+
k(F)

2s
where ktot = k(F) + L ∗ k(H).

Indifferentiability results for the Chop construction
already appear in various works. In [CDMP05], Coron
et. al. determine a bound for this construction consider-
ing a random permutation in place of F . We only have
a result for random functions, yet we notice that their
proof results in a bound of O( (L.ktot)

2

2s ), which is the
same magnitude.

Later, Maurer and Tessaro show in [MT07] that
using a prefix-free padding function yields a bound of
O( (L∗ktot)2

2n ). We obtain the same bound: no mean-
ingful path can be obtained as an extension of a
meaningful path, so that Reveal can only happen when
y′ = Firstn(q) belongs to an invisible vertex. As a
consequence, the adversary has to guess all n bits of
y′ and our second term becomes k(F)

2n .
Finally, our result slightly improves the

O( 3(n−s)(k(F)+k(H))
2s ) of Chang and Nandi in [CN08].

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a generic reduction
theorem to prove indifferentiability from a random
oracle for hash constructions when their inner-primitives
are modeled by random functions. In an attempt to
develop a formal approach to security proofs, we have
extended the framework of the logic CIL of [BDK+10]
with a formalization of modes of operations - overlayers
- and proven our theorem in this logic.
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Oracle ChopMDs

In(ChopMDs) = {0, 1}≤264
,

Out(ChopMDs) = {0, 1}n−s
Imp(ChopMDs)F (x, Lchop) =
if x ∈ dom(Lchop) then

return Lchop(x)
else
l := d|x|/re;
w := x||10l∗r−|x|−1;
(w1, . . . , wl) := (w[1, r], . . . , w[r(l − 1) + 1, rl]);
a0 := 0n;
for j = 1 to l do
qj := aj−1||wj ;
let aj ← F(qj) in

endfor
af := Firstn−s(al);
Lchop := Lchop.(x, af );
return af

endif

Figure 7. ChopMD Implementation

APPENDIX

A. Additional Details Of Proofs Of Applications

1) The Sponge Construction: The implementation
of the forward sampler used by the simulator for the
sponge construction is as follows:

FwdSplr(x, t) =
(t0, . . . , tk−1) := (t[1..r], . . . , t[(k − 1)r + 1, r]);
let t′ ← U(c) in
y0 := t0||t′;
q1 := y0;
for j = 1 to k − 1 do
let t′j ← U({0, 1}c) in
yj := tj ||t′j ;
vj := (F , qj , yj);
qj+1 := yj ;
endfor
return (y0, [vj ]j=(piv(x)+1)..(piv(x)+k−1))

2) The ChopMD Construction: The implementation
of the Chop construction can be found in figure 7. This
section details the computations leading to the bound in
the theorem instantiated with the ChopMD construction.

If WkCollide happens at the `-th fresh query, then
the equation between v0 and v1 imposes a0 = a1. For a
random a1, this happens with probability less than `−1

2n .
Summing on `, it results in a bound of ktot(ktot−1)

2n+1 .
In turn, if FRootCollide holds, then there

exist j, x07→2, x17→2 such that H1(x07→2) =
Hj(x17→2, (F , q1, a1)). Necessarily, j > 1, otherwise

v1 = v2. It yields a1 = 0n, occuring with probability
less than ktot

2n .
Then we bound of the probability that FWkLink occurs

by ktot(ktot−1)
2n+1 . Indeed, if it happens at the `-th fresh

query to F , then there exists a vertex v2 to which
v1 gets linked by an edge (j, xj). Since answer a1

is random, the probability that there is a v2 such
that Hj(xj , (F , q1, a1)) = q2 is bounded by `−1

2n . We
conlude by summing on `.

Finally, when FReveal∧¬WkLink∧¬Collide occurs, there
exists a vertex v1 = (F , q1, a1), non-visible, which gets
linked to v2 = (F , q2, a2), visible, by an edge labeled
by (j, xj). Again, ¬WkLink implies v1 is created before
v2. Since Reveal happens, Hj(xj , (F , q1, a1)) = q2. Be-
cause of ¬Collide, there is only one satisfactory vertex
v1. With v1 at most partially visible, the probability that
a satisfactory query q2 is performed is bounded by 1

2s .
We then have to sum over the total number of direct
queries issued, which provides a bound of k(F)

2s .

These three bounds result in a global bound of k2
tot

2n +
k(F)

2s .

B. CIL Rules Used in The Proof

1) Determinization:

Definition A.1. Let O and O′ be compatible oracle
systems. O determinizes O′ by distribution γ : MO →
D(M′′O), written O ≤det,γ O′, iff firstly MO × M′′O =
MO′ , secondly, there exists m̄′′O such that (m̄O, m̄

′′
O) =

m̄′O and γ(m̄O) = δm̄′′
O

, and lastly for all o ∈ NO,
q ∈ In(o), a ∈ Out(o), m1,m2 ∈ MO and m′′2 ∈ M′′O:

Pr[γ(m2) = m′′2 ] p1 =
∑

m′′
1∈M′′

O

Pr[γ(m1) = m′′1 ] p2(m′′1)

where:

p1 = Pr[ImpO(o)(q,m1) = (a,m2)]
p2(m′′1) = Pr[ImpO′(o)(q, (m1,m

′′
1)) = (a, (m2,m

′′
2))]

We start with the proof of a lemma formally link-
ing probabilities of partial executions in both systems.
We define a projection function π from A | O′-partial
executions to A | O-partial executions by extending the
projection from MO ×M′′O to MO to executions.

Informally, we can foresee that if we consider a
partial execution η in A | O finishing with state m,
we have to gather in a set all partial executions in
A | O′ finishing with state (m,m′′) for a given m′′

and projecting to η. Then, from the equation imposed
for one query by the definition of determinization, we
can extrapolate that the set of A | O′-partial executions
weighs the same probability as trace η multiplied by
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the probability that m is mapped to m′′ by γ. This is
proven by the lemma below.

LEMMA A.1. Let O and O′ be such that O ≤det,γ O′,
and let η be a partial O-execution: η = (m̄O, m̄A) act1−→
. . .

(o,q,a)−→ (m,ma). For every O-adversary A and every
m′′ ∈ M′′O:

Pr(A|O : η)Pr[γ(m) = m′′] =∑
η′|π(η′)=η

Last(η′)=((m,m′′),ma)

Pr(A|O′ : η′)

where τ ′ is any partial O′-execution.

LEMMA A.2. We consider two compatible oracle sys-
tems O and O′.

O ≤det,γ O′
I-DetO ∼0 O′

Proof: The previous lemma A.1 immediately re-
sults in Pr(A|O : E) = Pr(A|O′ : E ◦ π) for every
O-event E and adversary A. In turn, this equality yields
our result.

2) Forward Bisimulation-up-to: The idea behind this
bisimulation is the following: states are grouped in
classes according to an equivalence relation R. This
relation is relevant if given two states in a same class,
they offer the same possibility of evolution with the
same probabilities.

Definition A.2. Let φ ⊆ Xch × MO+O′ × MO+O′

be a step-predicate and let R ⊆ MO+O′ × MO+O′

be an equivalence relation. O and O′ are in forward
bisimulation up to φ, written O ≡R,φ O′, iff m̄ R m̄′,

and for all m1
(o,q,a)−→ >0 m2 and m3

(o,q,a)−→ >0 m4 such
that m1Rm3, the following properties hold:
• stability: if m2Rm4 then

φ((o, q, a),m1,m2) ⇔ φ((o, q, a),m3,m4)

• compatibility: if φ((o, q, a),m1,m2), then

Pr[ImpO+O′(o)(q,m1) ∈ (a, C(m2))] =
Pr[ImpO+O′(o)(q,m3) ∈ (a, C(m2))]

where C(m2) is the equivalence class of m2 under
R, and

Pr[ImpO+O′(o)(q,m1) ∈ (a, C(m2))] =∑
mRm2

Pr[ImpO+O′(o)(q,m1) ∈ (a,m)].

we consider fixed O, O′, R and φ satisfying the above
definition. The relation defined on states can be lifted
to (partial) executions quite easily.

Definition A.3. Let η and η′ be two partial execu-
tions of A | O or A | O′ of length k such that η =

(m0,m
0
a) act1−→ (m1,m

1
a) act2−→ . . .

actk−→ (mk,m
k
a) and

η′ = (m′0,m
0
a) act1−→ (m′1,m

1
a) act2−→ . . .

actk−→ (m′k,m
k
a).

They are said to be in relation by R, denoted η R η′,
iff mi R m′i for all i ∈ [0..k].

The equivalence class of η is defined by C(η) =
{η′ | η R η′}. The O-class of η, denoted CO(η), is
the intersection with O-traces of C(η). Its probability is
given by:

Pr[A | O : CO(η)] =
∑

η′∈CO(η)

Pr[A | O : η′]

A similar definition can be written for O′.

Consider a state m1 ∈ MO, in relation with m3 ∈
MO′ . According to the definition of bisimulation up to,
if we perform one step for which φ holds from m1

and its successor or m3 and its successor, then we can
move to the same equivalence classes of states with the
same probability. Say we have gone through such a
step: m1

act−→ m2 and m3
act−→ m4, and m2 R m4.

We can iterate the same reasoning on m2 and m4.
Informally, we can anticipate that if we perform a series
of steps for which φ holds, it yields equivalence classes
on executions with same probabilities in O and O′.

LEMMA A.3. Let η be a partial execution of A | O of
length k such that η = (m0,m

0
a) act1−→ (m1,m

1
a) act2−→

. . .
actk−→ (mk,m

k
a).

Pr[A | O : CO(η)] =
Πk
i=1Pr[A | O : CO((mi−1,m

i−1
a ) acti−→ (mi,m

i
a))]

where

Pr[A | O : CO((mi−1,m
i−1
a ) acti−→ (mi,m

i
a))] =∑

m̃i R mi

Pr[(mi−1,m
i−1
a ) acti−→ (m̃i,m

i
a)]

We can now show that given related partial execu-
tions for which φ holds at every step, we have equal
probabilities to make a next step not verifying φ when
interacting with A | O as when interacting with A | O′.

LEMMA A.4. Let η be a partial execution of A | O of
length k such that φ holds for each of its steps: η =
(m0,m

0
a) act1−→ (m1,m

1
a) act2−→ . . .

actk−→ (mk,m
k
a) and

∀i = 1..k, φ(xi,mi−1,mi)

• Let σ = (mk,m
k
a)

xk+1−→ (mk+1,m
k+1
a ) be a

step. Let η′ = η · σ. If φ(xk+1,mk,mk+1) then
Pr[A | O : CO(η′)] = Pr[A | O′ : CO′(η′)]

• Pr[A | O : η0 · σ0 ∧ (η0 R η) ∧ ¬φ(σ0)] =
Pr[A | O′ : η0 · σ0 ∧ (η0 R η) ∧ ¬φ(σ0)]
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LEMMA A.5. We consider two compatible oracle sys-
tems O and O′ such that O ≡R,ϕ O′. Then Pr[A | O :
R = true ∧ Gφ] = Pr[A | O′ : R = true ∧ Gφ].

3) Backwards Bisimulation-up-to: Forward
bisimulation-up-to is powerful, but ill-conceived
to capture arguments meant to tamper with values
computed in past steps instead of changing the
way we compute values in the current step or in
future steps. This justifies the notion of backwards
bisimulation-up-to, formally defined as follows.

Definition A.4. Let R ⊆ MO+O′ × MO+O′ be an
equivalence relation and φ be a predicate. O and O′
are in backwards bisimulation with R up to φ iff the
initial states is alone in their equivalence class and for
all m1

(o,q,a)−→ >0 m2 and m′2 such that m2Rm
′
2 we

have:

• stability on an equivalence class: for all m′1 ∈
MO+O′ such that m′1

(o,q,a)−→ >0 m
′
2 and m′1 R m1,

φ((o, q, a),m1,m2)⇔ φ((o, q, a),m′1,m
′
2)

• backwards compatibility: if φ((o, q, a),m1,m2)

Pr[ImpO+O′(o)(q, C(m1)) = (a,m2)] =
Pr[ImpO+O′(o)(q, C(m1)) = (a,m′2)]

where C(m1) is the equivalence class of m1 under
R, and

Pr[ImpO+O′(o)(q, C(m1)) = (a,m2)] =∑
m′

1 Rm1

Pr[ImpO+O′(o)(q,m′1) = (a,m2)]

We define a projection AdvT on partial executions
which erases all oracle memories (only exchanges and
adversarial memories are left). It defines the set of
partial adversarial traces, for which we often use meta-
variable α. The fundamental property of backwards
bisimulation is captured by the following lemma. It
mostly states that the probability that a partial execution
ends up in states (m,ma) is constant on equivalence
classes: it does not depend on the actual class represen-
tative m.

LEMMA A.6. Let α be a partial adversarial trace of
length k α = m0

a
act1−→ m1

a
act2−→ . . .

actk−→ mk
a. Then, for

all exchange actk+1, all adversary memory mk+1
a and

for all mk+1,m
′
k+1 ∈ MO such that mk+1 R m′k+1:

∑
η∈PExec(A|O) | AdvT (η)=α

Gφ(T (η
xk+1−→ (mk+1,m

k+1
a )))

Pr[A | O : η
xk+1−→ (mk+1,m

k+1
a )]

=
∑

η∈PExec(A|O) | AdvT (η)=α

Gφ(T (η
xk+1−→ (m′

k+1,m
k+1
a )))

Pr[A | O : η
xk+1−→ (m′k+1,m

k+1
a )]

And if mk+1 ∈ MO,m
′
k+1 ∈ MO′ such that

mk+1 R m′k+1:∑
η∈PExec(A|O) | AdvT (η)=α

Gφ(T (η
xk+1−→ (mk+1,m

k+1
a )))

Pr[A | O : η
xk+1−→ (mk+1,m

k+1
a )]

=
∑

η∈PExec(A|O′) | AdvT (η)=α

Gφ(T (η
xk+1−→ (m′

k+1,m
k+1
a )))

Pr[A | O′ : η
xk+1−→ (m′k+1,m

k+1
a )]

LEMMA A.7. The following probabilities coincide

Pr[A | O : R = true∧Gφ] = Pr[A | O′ : R = true∧Gφ]

4) Composition of Bisimulations: If we were to use
bisimulations one after the other with the same condi-
tion φ, we would count twice the same bad simulation
event, augmenting artificially by a factor of two the
indistinguishability bound in our conclusion. To tackle
this problem, we propose the following rule, which
follows from A.5 and A.7.

LEMMA A.8. The following rule is sound:

O :ε F¬φ O ≡bR,φ O′′ O′′ ≡R′,φ O′
I-2-BisO ∼ε O′

C. Proof Of The Theorem

In this section we provide a detailed proof in CIL
for the generic theorem V.1. The trees summing up the
proof can be found in figure 8. Here is the outline of our
reasoning. The proof starts with a layered oracle system
implemented as in the definition, which we must relate
to the anticipating system Oant. The formal relation
between the real setting and the anticipating system is
mostly one of determinization, though it seems easier
to introduce intermediate systems Q0 and Q1 to write
the underlying distribution properly. This is developped
in C1 and corresponds to the left tree in figure 8.

Then, the anticipating system is progressively trans-
formed into a system FwdSpl closer to the simulated
setting. We show that the probability to distinguish
between Oant and FwdSpl is bounded by the same
bound as our theorem: Pr[A|Oant : FCollide∨Reveal∨Link].
To justify this, we successively present a series of
modified systems, from Q2 to Q4, and the formal link
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existing between one and the next, before being able to
conclude in C6. This corresponds to the middle tree in
figure 8.

Eventually, we argue that FwdSpl is determinized by
the simulated setting. The global conclusion finally fol-
lows from transitivity of the indistinguishabiltiy relation.

1) Relation Between (HO,O) and Oant - Left Tree:
We provide the specification of the intermediate system
Q0 in figure 9. It mostly consists in the anticipating
system but the anticipation part. Namely the visibility
labels are added and computed dynamically, and the
branching is modified in opiv, but H is not called by opiv

to anticipate post-pivot queries. Moreover, a list Pivot
is added to the memory, to collect detected pivot queries,
their answers and the value of x output by the path-
finder PathFinder. Memories of (HO,O) contain lists
Loi , LH. Memories of Q0 contain a shared table LS
collecting all tuples of the form (oi, q, y, lbl), a list LH
and list Pivot. This system is in bisimulation up to
with the real setting, for relation R defined as follows.
Memories m and m′ are in relation iff they are equal
when they belong to the same memory space and if
m ∈ M(HO,O) and m′ ∈ MQ0 :

• (x, af , Q) ∈ m.LH iff (x, af , Q) ∈ m′.LH, but
the order of appearance might not be the same,

• lists (m.Loi)i and list m′.LS contain the same
queries and answers, which we formalize as:
(1.) ∀(q, y) ∈ m.Loi , there exists a label lbl such
that (oi, q, y, lbl) ∈ m′.LS ;
(2.) ∀(oi, q, y, lbl) ∈ m′.LS , (q, y) ∈ m.Loi .

We then have (HO,O) ≡R,true Q0.

We now define a second intermediate system, Q1,
which is similar to Q0 but for the four lines starting
with † in the implementation of opiv, which are replaced
by:

let t← H(x) in
(opiv, q, y) : L := Π3(LH(x))j≥piv(x);
LS := LS .(L, V is);

To apply a determinization rule, we should separate
LS into two tables LS and LantS . However, we bypass
this step and just provide the distribution γ induced by
a memory on LantS , table of anticipated queries. System
Q0 determinizes Q1 for distribution γ for which we
provide a constructive definition:

γ(m) = LantS := [ ];
for q in dom(Pivot) do
let (y, x)← Pivot(q) in
let t← ImpQ0

(H)(x) in
L := Π3(Last(LH(x)));
LS := LS .([L]j>piv(x), V is);
LantS := LantS .([L]j>piv(x), V is);

endfor
return LantS −m.LS

Finally, the justification of the step from Q1 to Oant

is again a perfect bisimulation relation R′ induced by
equality on lists LH and LS .

2) Redrawing Some Invisible Vertices: The idea be-
hind this step is to allow the oracles to redraw new
images for values of which the image has already been
used, or in other words to resample some vertices. When
can such a resampling be a problem for coherence of the
simulation? The idea is to preserve the structure of the
input characteristic graph during oracle calls. Of course,
if the image we consider is visible or partially visible,
we do not redraw it. Furthermore, even when the vertex
we want to modify is invisible, we have to be careful.
The idea is that we have to preserve paths existing
in the input graph. To this end, we introduce a new
terminology: a vertex v′ is one of the next neighbors
of a vertex v in graph CG iff there exists an edge
(v, , v′) between v and v′. The set of next neighbors
of v in graph CG is denoted Next(v, CG). Every time
we change an invisible vertex into another vertex, we
want to modify its next neighbors so that the same
edges still exist between them. This is doable only if
such neighbors are non-visible. Besides, in case one
of the next neighbors is a collision vertex, redrawing
suppresses the collision and changes the structure of
the graph. This is also a case we want to exclude.

Formally, we define a function ReSamp taking as
input a query (o, q) and a memory m such that query
(o, q) corresponds to a vertex (o, q, y) in m. The func-
tion outputs a boolean corresponding to whether we can
redraw vertex (o, q, y) in memory m. The characteristic
graph associated to m is Γ(m) = (vroot, V, E,V).
Function ReSamp : Que × MOant → Bool maps
((o, q),m) to:

true if V((o, q, y)) = Inv,
and Next((o, q, y),Γ(m)) ∩ V−1(V is) = ∅
and Next((o, q, y),Γ(m)) ∩ CollVertex(Γ(m)) = ∅

false otherwise.

In particular, we emphasize that for all values cor-
responding to partially visible and visible vertices,
ReSamp outputs false.

To form up again the paths existing in the input
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Left tree
(HO,O) ∼0 Oant

Middle tree
Oant ∼ε FwdSpl

(U(H),SU(H)) ≤det,γ′ FwdSpl
I-Det

(U(H),SU(H)) ∼0 FwdSpl
(HO,O) ∼ε (U(H),SU(H))

Left tree:

(HO,O) ≡R,true Q0
I-Bis

(HO,O) ∼0 Q0

Q0 ≤det,γ Q1
I-DetQ0 ∼0 Q1

Q1 ≡R′,true Oant
I-BisQ1 ∼0 Oant

(HO,O) ∼0 Oant

Middle tree:

Oant :ε E F¬φ ⇒ E
UR Oant :ε F¬φ Oant ≡bR′′,φ Q2 Q2 ≡=,φ FwdSpl

I-2-BisOant ∼ε FwdSpl
where E = FCollide∨Reveal∨Link

Figure 8. Trees Of The Proof Of The Generic Theorem

graph, we define a function named Stitch : Xch ×
{Inv, PV is} ×MOant → MOant , which takes as input
a (possibly resampled) vertex (o, q, ỹ), a visibility label
for this latter and a memory m and outputs a new
memory m′. If (o, q, y) appears in the memory m for
some y, Stitch modifies the memory so that (o, q, ỹ)
replaces (o, q, y) with the visibility label given in input
of Stitch and next neighbors of the vertex (o, q, y) in
Γ(m) become next neighbors of the new vertex (o, q, ỹ)
in Γ(m′) (with the same edges). Thus, paths existing in
the input graph exist in the output graph too.

Formally, if (o, q, y) appears in the memory m
and (o, q, ỹ) is the new vertex, Stitch outputs m′

computed as follows. To build m′.LS , we start with
m′.LS = m.LS and then proceed in the following
way. For all edges ((o, q, y), l, (o′, q′, y′)) in Γ(m)
where (o, q′, y′) ∈ Next((o, q, y),Γ(m)), if j is an
index such that q′ = Hj(l, (o, q, y)), then we let
q̃ = Hj(l, (o, q, ỹ)). Then, if (o′, q̃) does not appear in
m′.LS yet, (o′, q′, y′, lbl) is removed from m′.LS and
(o′, q̃, y′, lbl) is added to m′.LS . If (o′, q̃) already ap-
pears in m′.LS , we do not modify it. Finally, we remove
(o, q, y, ) from m′.LS and replace it by (o, q, ỹ, lbl),
where lbl is given in input of Stitch. List m′.LH is then
built out of m.LH by rebuilding the third component
of every triple it contains: given (x, af , Q) ∈ m.LH,
(x, af , Q′) is put in m′.LH, where Q′ is the list of
calls necessary to compute H(x) in m′.LS .

To write our new system Q2, we introduce an auxil-
iary procedure Adjust. It takes as input a query (o, q)
and a visibility label lbl, resamples the vertex if it is
possible and modifies the lists with Stitch, which adds
the query and answer to list LS(o) with the desired

visibility label. Its implemntation is as follows:

Adjust ((o, q), lbl,m) =
if q ∈ dom(LS(o)) then
if ReSamp((o, q),m) then
let a← U(o) in
m′ := Stitch((o, q, a), lbl,m);

else (a, lbl′) := Lo(q);
LS := LS .(o, q, a,max(lbl, lbl′));

endif
else let a← U(o) in
LS := LS .(o, q, a, lbl);

endif
return (o, q, LS(o, q))

Then, we can define the implementation of oracle
H in the adjusted system as in figure 10, while both
other oracles remain implemented as in Oant. The
claim proven above justifies the existence and unicity
of related adjusted states when φ holds.

To formalize our proof step, we use a relation of
backwards bisimulation. Two states are in relation R′′

iff they yield graphs with the same structure. Notice
that we cannot turn a vertex into a collision vertex
when we resample it: the fact that a collision occurs
in a vertex depends only on its query part and we only
change the answer. However, there is a possibility when
we apply Stitch that we change the structure of the
characteristic graph. Namely, we can stumble upon a
preexisting vertex by computing a value q̃ which already
corresponds to a vertex. The set of values ỹ such that
it happens is:

PbSet((o, q),m) = {ỹ ∈ Out(o) |
∃j s.t. q̃ = Hj(l, (o, q, ỹ)) ∈ dom(m.LS(oj))}
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ImpOant(H)(x) =
if x ∈ dom(LH) then

(af , Q) := LH(x);
LH := LH.(x, af , Q);
return af

else
l := init(x);
p := piv(x);
(x1, . . . , xl) := Θ(x);
(o1, q1) := H1(x1);
if q1 ∈ dom(LS(o1)) then
(a1, lbl) := LS(o1, q1);
Q := [(o1, q1, a1, lbl)];

else let a1 ← U(o1) in
LS := LS .(o1, q1, a1, Inv);
Q := [(o1, q1, a1, Inv)];

endif
for j = 2 to p− 1 do
qj := Hj(xj , (oj−1, qj−1, aj−1));
if qj ∈ dom(LS(oj)) then
(aj , lbl) := LS(oj , qj);
Q := Q : (oj , qj , aj , lbl);

else let aj ← U(oj) in
LS := LS .(oj , qj , aj , Inv);
Q := Q : (oj , qj , aj , Inv);

endif
endfor
for j = p to l do
qj := Hj(xj , (oj−1, qj−1, aj−1));
if qj ∈ dom(LS(oj)) then
(aj , lbl) := LS(oj , qj);
LS := LS .(oj , qj , aj ,max(PV is, lbl));
Q := Q : (oj , qj , aj ,max(PV is, lbl));

else let aj ← U(oj) in
LS := LS .(oj , qj , aj , PV is);
Q := Q : (oj , qj , aj , PV is);

endif
endfor
af := Hpost(x, ap, [Q]j>p);
LH := LH.(x, af , Q);
return af

endif

If oi 6= opiv:
ImpOant(oi)(q) =
if q ∈ dom(LS(oi)) then
(y, ) := LS(oi, q);

else let y ← U(oi) in
endif
LS := LS .(oi, q, y, V is);
return y

ImpQ0
(opiv)(q) =

if q ∈ dom(LS(opiv)|V is) then
(y, V is) := LS(opiv, q);

elsif PathFinder(q, SG) = (true, x, List) then
† if q ∈ dom(LS(opiv)|PV is, Inv) then
† (y, ) := LS(opiv, q);
† else let y ← U(opiv) in
† endif
Pivot := Pivot.(q, y, x);

elsif q ∈ dom(LS(opiv)|PV is, Inv) then
(y, ) := LS(opiv, q);

else let y ← U(opiv) in
endif
return y
LS := LS .(opiv, q, y, V is);

Figure 9. Implementations Of Q0

Moreover, as the number of neighbors of a resampled
vertex can potentially be modified by stitching, we
impose that it is equal in two states in relation.

Formally, we impose the conditions:
m R′′ m′ iff there exist n ≥ 0 and a list

[(o1, q1, a1), . . . , (on, qn, an)] of distinct vertices and
labels, such that, if we denote m0 = m and mn = m′:

• For all i = 1..n, mi =
Stitch((oi, qi, ai), Inv,mi−1).

• For all i = 1..n, ReSamp((oi, qi),mi−1) or qi /∈
mi−1.LS(oi).

• For all i = 1..n, ai /∈ PbSet((oi, qi),mi−1).
• For all i, if yi is the image of qi by oi in state
mi−1, then Card(Next((oi, qi, yi),Γ(mi−1))) =

Card(Next((oi, qi, ai),Γ(mi))), i.e. the stitch op-
eration conserves the number of neighbors of the
resampled vertex.

To be able to apply rule I − 2 − Bis, we need a
common set of conditions φ for backward and forward
bisimulation relations. Therefore, we choose for φ the
conjunction of every condition that we need to require
in the next steps determining FwdSpl. To do so, we
express two conditions on the execution of an exchange
m1

xch−→ m2, one is a condition on the characteristic
graph from which we start (this is φ1) and one is a
condition on what happens during the exchange execu-
tion (this is φ2).

The first condition expresses that the input charac-
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ImpQ2
(H)(x) = if x ∈ dom(LH) then

(af , Q) := LH(x);
LH := LH.(x, af , Q);
return af

else
l := init(x);
p := piv(x);
(x1, . . . , xl) := Θ(x);
q1 := H1(x1);
if q1 ∈ dom(LS(o1)) then
(a1, lbl) := LS(o1, q1);
Q := [(o1, q1, a1, lbl)];

else let a1 ← U(o1) in
LS := LS .(o1, q1, a1, Inv);
Q := [(o1, q1, a1, Inv)];

endif
for j = 2 to p− 1 do
qj := Hj(xj , (oj−1, qj−1, aj−1));
if qj ∈ dom(LS(oj)) then
(aj , lbl) := LS(oj , qj);
Q := Q : (oj , qj , aj , lbl);

else let aj ← U(oj) in
LS := LS .(oj , qj , aj , Inv);
Q := Q : (oj , qj , aj , Inv);

endif
endfor
for j = p to l do
qj := Hj(xj , (oj−1, qj−1, aj−1));
let (oj , qj , aj , lbl)← Adjust((oj , qj), PV is) in
Q := Q : (oj , qj , aj , lbl);

endfor
af := Hpost(x, ap, [Q]j>p);
LH := LH.(x, af , Q);
return af

endif

Figure 10. Implementation Of H In System Q2

teristic graph exhibits no collision or non-resamplable
vertex. This is naturally formalized as

φ1(m) =

 CollVertex(Γ(m)) = ∅
∀i,∀(o, q, a) ∈ (m.LS(oi)|Inv),

ReSamp((o, q),Γ(m)) = true

The second condition captures that neither Collide nor
Reveal happen during the execution of the exchange,
using the function mapping execution of exchanges to
graph sequences defined in the previous section. We also
impose that no query to oracles oi 6= opiv is labeled
partially visible (this is P1) and that all hash queries, if
they have a matching pivot query that is visible, are not
fresh hash queries (this is P2).

φ2(xch,m1,m2) = G¬Collide∧¬Reveal(StTr(m1
xch−→ m2))

∧ P1(m1) ∧ P2(m1,m2)

where
P1(m) is (xch = (oi, q, y) ∧ oi 6= opiv

∧ q ∈ dom(m.LS(oi)))⇒ V(q) 6= PV is
P2(m, m̃) is (xch = (H, x, af )∧

Π3(m̃.LH)[piv(x)] ∈ dom(m.LS(opiv)|V is))⇒
x ∈ dom(m.LH)

We now let φ(xch,m1,m2) = φ1(m1) ∧
φ2(xch,m1,m2). We must show that R′′ is a
relation of backwards bisimulation up to φ for our
oracle system. We start by showing the following
useful claim.

Claim. Given m1
xch−→>0 m2, and a state m′2 such

that m′2 R
′′m2, if φ(xch,m1,m2), there exists a unique

state m′1 such that m1 R′′ m′1 and m′1
xch−→>0 m′2.

Moreover, the same number of vertices are added in
the graph Γ(m2) w.r.t. Γ(m1) and in the graph Γ(m′2)
w.r.t. Γ(m′1).

Proof: We know that m2 R′′m′2. Hence there
exist n ≥ 0 and a list [(o1, q1, a1), . . . , (on, qn, an)] of
distinct vertices such that, if we denote m0 = m2 and
mn = m′2, we have:
• For all i between 1 and n, we have mi =

Stitch((oi, qi, ai), Inv,mi−1).
• For all i, ReSamp((oi, qi),mi−1) or qi /∈
mi−1.LS(oi).

• For all i, ai /∈ PbSet((oi, qi),mi−1).
• For all i, if yi is the image of qi by oi in state
mi−1, then Card(Next((oi, qi, yi),Γ(mi−1))) =
Card(Next((oi, qi, ai),Γ(mi))).

Let us define the following candidate for m′1:

m′1 = Stitch((o1, q1, a1), Inv, . . .
Stitch((on, qn, an), Inv,m1) . . . )

The state m′1 defined satisfies m1 R′′m′1. Indeed,
without loss of generality, we can assume that the
(oi, qi) are distinct. The stitching application has no
effect on a state m if its first argument (oi, qi, ai) is
such that (oi, qi) does not satisfy qi ∈ dom(m.LS(oi)).

Let us show now that every time a new vertex is
added to m1.LS during the execution leading to m2, it
is added in any state in relation with m1 leading to m′2
too.

Suppose that we reason about an exchange xch with
an oracle oi. First, we argue that related states coincide
on visible vertices, so in particular on visible parts of
the domain of list LS(oi). Moreover, the only invisible
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queries that can be asked without realizing Reveal are
vertices directly linked to the root. If φ1 holds, none
of these vertices can be a collision vertex. Therefore,
there is no possibility that their query part be resampled
as neighbors of another vertex. Consequently, if an
invisible query is asked and φ holds, it is in the domain
of LS(oi) for all related memories. Furthermore, in case
we ask a partially visible query, either oi 6= opiv and
it breaks P1, or it has to be visibly rooted, otherwise
Reveal becomes true. Hence, since it has a visible
(previous) neighbor and no other previous neighbor
(otherwise it is a collision vertex), it cannot be resam-
pled as a next neighbor of some vertex. As a result, it
is in the domain of all related memories.

Suppose now that we reason on an exchange xch
with H. The trick is to notice that our equivalence
relation is built so that the same paths exist in related
states. Consequently, if at step j, we meet the first query
resulting in the addition of a new vertex in Γ(m1),
then it is also the first query resulting in the addition
of a vertex in any related memory, or there would
exist a rooted path in one graph and not the other.
Furthermore, once we start adding vertices during the
execution, we have to draw new vertices until the end,
or we contradict φ by either creating a collision vertex
or realizing Reveal. The conclusion follows.

Let us first check stability, i.e. that given m1
xch−→

m2, and m′2 such that m′2 R′′m2, all states m̃1 in
relation with m1 such that m̃1

xch−→ m′2 are such
that φ(xch,m1,m2) iff φ(xch, m̃1,m

′
2). This follows

from the claim: if φ(xch,m1,m2), then there is one
possibility of state m̃1, it is m′1. Moreover, φ1(m′1)
holds: no collision vertex or non-resamplable vertex can
be created. This allows us to say that φ1(m2) holds
iff φ1(m′2) holds. Therefore, if Reveal happens or a
collision vertex is created, then it is in both cases. This
justifies stability of G¬Collide∧¬Reveal. Concerning P1, it
only deals with input states. Visible vertices are equal
in related states, so we only need to justify that there
cannot exist a vertex which is partially visible in one
state and invisible in the other. In fact, P1 is not a stable
property, but ¬Reveal ∧ φ1 ∧ P1 is. If ¬Reveal ∧ φ1

holds for an exchange, then the only invisible queries
that an adversary can perform are directly linked to the
root, otherwise Reveal happens, and linked only to the
root, since φ1 holds. Since we do not resample the root,
the set of invisible queries not breaking ¬Reveal ∧ φ1

coincide in related states. Therefore, if visible and
invisible queriable vertices coincide, P1 holds for all
or none of the states in relation. Finally, stability of
P2 follows from the visibility property imposed on the

pivot: it has the same value in m1 and m′1, so does LH.
Stability follows.

We have to verify compatibility. We consider states
m1, m2 and m′2 and an exchange xch = (o, q, a)
such that m1

xch−→>0 m2 and φ(xch,m1,m2). The
claim proves that there is only one state m′1 such that
m′1

xch−→>0 m
′
2 and that executions starting in states m1

and m′1 lead to the same number of draws. It yields the
equality between probabilities:

Pr[A | Oant : m1
xch−→>0 m2] = Pr[Q3 : m′1

xch−→>0 m
′
2]

Then, we deduce from the one-to-one mapping be-
tween m1 and m′1 that it yields:

Pr[A | Oant : C(m1) xch−→>0 m2] =
Pr[Q2 : C(m′1) xch−→>0 m

′
2]

3) Replacing Adjust by Simple Sampling: We keep
the same overall implementations but change the imple-
mentation of Adjust into:

Adjust′ ((o, q), lbl) =
let a← U(o) in
if q ∈ dom(LS(o)) then
m′ := Stitch((o, q, a), lbl,m);

else LS := LS .(o, q, a, lbl);
endif
return (o, q, a)

In other words, we redraw a value for q, no matter
whether it is resamplable, and do not take care of
drawing it such that it does not create collisions. This
yields a system we name Q3.

This step is formalized using a bisimulation up to φ,
with as a relation the equality of states. φ is obviously
stable for this relation. Now let us check compatibility.
Given that only the implementation of H possibly
resamples vertices, the simulation is imperfect during
an execution of H(x) (not necessarily called directly).
It can happen if we resample a non-resamplable vertex.

Let v be the first vertex posing a simulation problem
during an execution of H.

• If v has been resampled whereas it was partially
visible, it means v belongs to the pivot and post-
pivot queries of another hash input x′. Necessarily
the paths of x and x′ meet in some vertex v′

(not necessarily distinct of v), which is a collision
vertex. The execution of H(x) realizes Collide at
the moment of the query for v′.
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• If v has been resampled whereas it was visible
and v is not the pivot then Reveal happens: the
visibility label of the pivot is partially visible, so
that sequence of labels has to increase.

• If v has been resampled whereas it was a visible
pivot query matching x, then P2 is broken.

We conclude that Q2 ≡=,φ Q3.
4) Changing Oracles in NO: In this step, we modify

the implementation of the oracles in NO assuming that
pivot queries are on the one hand always detected when
queried directly, and on the other hand always asked
before any of their matching post-pivot queries. It gives
us a new system Q4, for which the implementations are
provided in figure 11.

If the first assumption holds, we can safely simplify
the end of the implementation of opiv by replacing the
test of belonging to (LS(opiv)|PV is, Inv) by that of
belonging to (LS(opiv)|Inv). If the second assumption
holds, no partially visible query should be directly asked
to an oracle oi 6= opiv. Indeed, the pivot query being
queried on before implies that all post-pivot queries
become visible vertices. We thus modify the implemen-
tation of oi 6= opiv by just checking if a query already
belongs to dom(LS(oi)|Inv, V is) before drawing an
answer.

The formal justification of this step is that Q3 ≡=,φ

Q4. Indeed, the simulation is perfect except when:
• opiv is queried on a partially visible vertex, but does

not branch in the path-finder branch, meaning the
vertex is non-visibly meaningfully rooted. Yet, it
is meaningfully rooted since it is partially visible.
This is captured by Reveal.

• During an execution of oi, if we redraw a new
answer to a partially visible query, but then P1 is
broken.

5) Changing H: In this last step, we define a system
FwdSpl (see in figure 12) and replace the series of
uniform sampling of the pivot and post-pivot vertices,
followed by the computation of af , by the sampling of
af and the execution of the forward sampler algorithm.
According to the hypotheses we have formulated on this
latter, both implementations yield equal distributions on
the lists (LH, LS) as soon as the forward sampler does
not stumble on queries for which vertices already exist
in the graph. This is taken care of since neither Collide
nor Reveal happens. It follows that Q4 ≡=,φ FwdSpl

6) Conclusion Of The Tree In The Middle: We
start by providing details about the application of rule
I − 2 − Bis. In the last three transformations, we
have created systems Q2 to FwdSpl, and such that
Q2 ≡=,φ Q3, Q3 ≡=,φ Q4 and Q4 ≡=,φ FwdSpl. From

If oi 6= opiv:
ImpQ4

(oi)(q) =
if q ∈ dom(LS(oi)|Inv, V is) then
(y, ) := LS(oi, q);

else let y ← U(oi) in
endif
LS := LS .(oi, q, y, V is);
return y

ImpQ4
(opiv)H(q) =

if q ∈ dom(LS(opiv)|V is) then
(y, V is) := LS(opiv, q);

elsif PathFinder(q, SG) = (true, x, List) then
let t← H(x) in
(opiv, q, y) : L := Π3(LH(x))j≥piv(x);
LS := LS .((opiv, q, y, V is) : (L, V is));

elsif q ∈ dom(LS(opiv)|Inv) then
(y, Inv) := LS(opiv, q);

else let y ← U(opiv) in
endif
LS := LS .(opiv, q, y, V is);
return y

Figure 11. Implementations Of Oracles In Q4

these statements, we can deduce that Q2 ≡=,φ FwdSpl.
As Q2 is expressed as an adjusted system of Oant, we
can apply rule I − 2−Bis.

Furthermore, we want to justify that F¬φ yields that
eventually, Collide, Reveal or Link happens, i.e. F¬φ ⇒
FCollide∨Reveal∨Link. To do so, we prove that ¬P1 and
¬P2 imply that Reveal or Link have happened. Con-
cerning P1, if when querying oi 6= opiv on q, q ∈
dom(m1.LS(oi)) is part of a partially visible vertex,
then this latter is meaningfully rooted. If it is not visibly
meaningfully rooted, then we can conclude that Reveal
has happened. Otherwise, if all queries on the path
from the root to our queried vertex are visible, since
it is a post-pivot query, but still tagged with a partially
visible label, it means that the matching pivot was not
visibly meaningfully rooted at the time of its query.
Consequently, we are sure that at some point, a query
was issued to one of the oi’s to link two chains of visible
vertices, i.e. Link has happened.

Finally, for property P2, if a fresh query on x is issued
to H with a pivot already visible, it means that the pivot
has been directly queried for, but that at the time of
query, it was not visibly rooted (otherwise H(x) would
have been called). Similarly to the previous event, we
can show that either all queries before the pivot are
visible, and at some point Link has happened, or there
exists an invisible query on the path from the root to
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ImpFwdSpl(H)(x) = if x ∈ dom(LH) then
(af , Q) := LH(x);
LH := LH.(x, af , Q);
return af

else
l := init(x);
p := piv(x);
(x1, . . . , xl) := Θ(x);
(o1, q1) := H1(x1);
if q1 ∈ dom(LS(o1)) then
(a1, lbl) := LS(o1, q1);
Q := [(o1, q1, a1, lbl)];

else let a1 ← U(o1) in
LS := LS .(o1, q1, a1, Inv);
Q := [(o1, q1, a1, Inv)];

endif
for j = 2 to p− 1 do
qj := Hj(xj , (oj−1, qj−1, aj−1));
if qj ∈ dom(LS(oj)) then
(aj , lbl) := LS(oj , qj);
Q := Q : (oj , qj , aj , lbl);

else let aj ← U(oj) in
LS := LS .(oj , qj , aj , Inv);
Q := Q : (oj , qj , aj , Inv);

endif
endfor
qp := Hp(xp, (op−1, qp−1, ap−1));
let af ← UH in
let (ap, Q′)← FwdSplr(x, af ) in
LS := LS .((opiv, q

p, ap, PV is) : (Q′, PV is));
LH := LH.(x, af , Q : (opiv, q

p, ap) : Q′);
return af

endif

Figure 12. Implementation Of H In System FwdSpl

the pivot, and Reveal holds.
This concludes the discussion about the middle tree.
7) Determinization of FwdSpl to Obtain The Simu-

lated System: As we did previously, we abuse a little the
determinization rule and only provide the distribution
yielded by a memory on anticipated queries in LS ,
which we name LantS . To build possible anticipated
components of state out of a state m = (LS , LH) of the
simulated system, we have to generate the list of queries
matching every pair (x, af ) in LH and to tag them with
visibility labels. Given the first pair (x, af ), this can
be done by executing the implementation ImpFwdSpl(H)
given as input x and the list LS where every vertex has
been deemed visible. It provides us with a new table
LS , on which to iterate what we have just done with
the following pairs in list LH. This provides us with

a constructive definition for a distribution γ′ such that
(U(H),SU(H)) ≤det,γ′ FwdSpl:

γ′(m.LS ,m.LH) = m′.LS := (m.LS , V is);
LantS ,m′.LH := [ ];
for x in m.LH do
let af ← ImpFwdSpl(H)(x,m′) in
LantS := LantS .Π3(Last(m′.LH));

endfor
return LantS −m.LS

24


