
Practical Electromagnetic Template Attack on
HMAC

Pierre-Alain Fouque1, Gaëtan Leurent1, Denis Réal2,3, and Frédéric Valette3

1 École normale supérieure/CNRS/INRIA
{Pierre-Alain.Fouque,Gaetan.Leurent}@ens.fr

2 INSA-IETR, 20 avenue des coesmes, 35043 Rennes, France
Denis.Real@insa-rennes.fr
3 CELAR, 35 Bruz, France

{Denis.Real,Frederic.Valette}@dga.defense.gouv.fr

Abstract. In this paper, we show a very efficient side channel attack
against HMAC. Our attack assumes the presence of a side channel that
reveals the Hamming distance of some registers. After a profiling phase
in which the adversary has access to a device and can configure it, the
attack recovers the secret key by monitoring a single execution of HMAC-
SHA-1. The secret key can be recovered using a "template attack" with a
computation of about 2323κ compression functions, where κ is the num-
ber of 32-bit words of the key. Finally, we show that our attack can also
be used to break the secrecy of network protocols usually implemented
on embedded devices.

We have performed experiments using a NIOS processor executed on a
Field Programmable Gate Array (FPGA) to confirm the leakage model.
We hope that our results shed some light on the requirements in term of
side channel attack for the future SHA-3 function.

1 Introduction

HMAC is a hash-based message authentication code proposed by Bellare, Canetti
and Krawczyk in 1996 [3]. It is very interesting to study for at least three reasons:
HMAC is standardized (by ANSI, IETF, ISO and NIST) and widely deployed
(e.g. SSL, TLS, SSH, IPsec); HMAC has security proofs [2,3]; and it is a rather
simple construction. It is used in a lot of Internet standards. For instance em-
bedded devices running IPsec protocols [16] have to implement it. There are
many such efficient equipments on the market from router vendors that incor-
porate security protocols on their systems. It is crucial to study the security of
such implementations since Virtual Private Network (VPN) products are widely
deployed and used to secure important networks.

Recently, new attacks on HMAC based on Wang et al. [31,29,30,28] collision
attacks have emerged. However, either their complexity is very high, or they
attack a function no more widely used in practice such as HMAC-MD4, or the
security model is not really practical such as the related key model [6,24,8]. Here,
we focus on more practical attacks on HMAC. We show that when HMAC is

C. Clavier and K. Gaj (Eds.): CHES 2009, LNCS 5747, pp. 66–80, 2009.
c© International Association for Cryptologic Research 2009

Practical Electromagnetic Template Attack on HMAC 67

implemented on embedded devices, and the attacker has access to the physical
device to use a side channel, then there exist devastating attacks. These kind
of attacks do not rely on previous collision attacks and can be applied on many
hash functions, such as MD5 or SHA-2 for instance. Even though side channel
attacks are believed to be very intrusive techniques, we show that our attack can
be mounted using little contact with the targeted device.

We choose to illustrate our attack with HMAC since it is used in a lot of
Internet standards. Beyond the integrity attacks, the side channel attack we de-
scribe, can be used to attack the confidentiality of other Internet standards such
as the Layer Two Tunneling Protocol (L2TP [27]) or to attack the key deriva-
tion of IPsec in the Internet Key Exchange (IKE [13]) protocol. Our attack can
also be applied on a famous side channel countermeasure, proposed by Kocher
in [18] which is to derive a specific key for each call to the cryptographic appli-
cation. This kind of protection is very efficient against classical DPA techniques
and makes previous attacks infeasible. However our attack allows to recover the
master key after listening to only two derivation processes.

1.1 Description of SHA-1

All the computations in SHA-1 are made on 32-bit words. We use � to denote
the modular addition, and X≪n to denote the bit-wise rotation of X by n bits.
SHA-1 is an iterated hash function following the Merkle-Damgård paradigm.
The message is padded and cut into blocks of k bits (with k = 512 for SHA-1),
and the digest is computed by iterating a compression function, starting with
an initial value IV.

The compression function of SHA-1 is an unbalanced Feistel ladder with an
internal state of five 32-bit registers A, B, C, D, E. The compression function
has two inputs: a chaining value which is used as the initial value of the internal
registers A−1, B−1, C−1, D−1; and a message block cut into 16 message words
M0...M15. The message is expanded into 80 words W0...W79, such that Wi = Mi

for i < 16. Then we iterate 80 steps, where each step updates one of the registers.
Each step uses one word Wi of the expanded message. If we use Ai, Bi, Ci, Di, Ei

to denote the value of the registers after the step i, the compression function of
SHA-1 can be described by:

Step update: Ai+1 = Φi � A≪5
i � Wi � Ei � Ki

: Φi = fi(Bi, Ci, Di)
: Bi+1 = Ai Ci+1 = B≪30

i Di+1 = Ci Ei+1 = Di

Input: A−1 ‖ B−1 ‖ C−1 ‖ D−1 ‖ E−1

Output: A−1 � A79 ‖B−1 � B79 ‖C−1 � C79 ‖D−1 � D79 ‖E−1 � E79

1.2 Description of HMAC

HMAC is a hash-based message authentication code proposed by Bellare, Canetti
and Krawczyk [3]. Let H be an iterated Merkle-Damgård hash function. HMAC is
defined by

HMACk(M) = H(k̄ ⊕ opad ||H(k̄ ⊕ ipad ||M)),

68 P.-A. Fouque et al.

where M is the message, k is the secret key, k̄ its completion to a single block
of the hash function, ipad and opad are two fixed one-block values.

The security of HMAC is based on that of NMAC. Since H is assumed to be
based on the Merkle-Damgård paradigm, we denote by Hk the modification of
H where the public IV is replaced by the secret key k. Then NMAC with secret
key (k1, k2) is defined by:

NMACk1,k2(M) = Hk1(Hk2(M)).

We call k2 the inner key, and k1 the outer key. Due to the iterative structure of
H , HMACk is essentially equivalent to NMACH(k̄⊕opad),H(k̄⊕ipad).

Any key-recovery attack against NMAC can be used to recover an equivalent
inner key H(k̄ ⊕ ipad) and an equivalent outer key H(k̄ ⊕ opad) in HMAC. This
information is equivalent to the key of HMAC, since it is sufficient to compute
any MAC. Most previous attacks against HMAC are of this kind, but our attack
is different: we will use a side channel during the computation of H(k̄ ⊕ ipad)
and H(k̄⊕opad) to recover information about the key k. Thus our attack cannot
be used against NMAC.

1.3 Related Work on Side Channel Attacks

Since there is no efficient and practical attacks against HMAC, it is interesting
to study the security of this function against side channel attacks. Similarly,
Kelsey et al. have studied the security of block ciphers using different leakage
models [15,14].

A classical side channel attack on HMAC has been proposed without exper-
iments by Lemke et al. in 2005 using a Differential Power Analysis [19] in [20].
They show that a forgery attack can be mounted by performing a multi-bit DPA
since SHA-1 manipulates 32-bit registers. This attack allows to recover the inner
and outer keys of HMAC, but does not allow to retrieve the initial key. Note
that other DPA attacks are reported on HMAC based on other hash functions
such as [22,10,21]. But none of them allow to retrieve the initial key value as the
message is not directly mixed with the initial key but only with the derivated
subkeys.

To our knowledge, no Template Attacks (TA) [5,25] have never been applied
on HMAC. This is mainly due to the fact that the manipulated registers are 32
bits long which make classical templates attacks infeasible.

1.4 Our Results

The aim of this paper is two-fold. On the one hand, we assume that we have a
side channel that leaks the number of flipped bits when a value is loaded from
the memory to a register. We show that this side channel is sufficient to recover
the secret key used in HMAC. On the other hand, we show that this side channel
is available in practice. A similar attack can also be used against other standards
or against key derivation process.

Practical Electromagnetic Template Attack on HMAC 69

Our attack is quite different from previous side-channel attacks: we do not
require knowledge of the message being signed, and we only need to measure
one execution of HMAC. Thus some classical countermeasures against DPA will
not affect our attack.

In our attack model, the adversary can profile the device during a first offline
stage. This assumption is classical, and is used in template attacks. It seems
reasonable since the adversary can buy and test its own device. During this pro-
filing phase, the adversary generates curves when loading data from the memory
to a register with all the possible Hamming distances. Then, in a second online
stage, he has access to the targeted device during one execution of the imple-
mentation. During this phase, according to the recorded values, the Hamming
distance can be learned using a single matching between the curves. Finally,
all theses Hamming distances give some information about the key, and we can
combine them to recover the key, even though the secret-dependent variables are
not totally independent. The simulation of the attack has been experimentally
tested to show that we are able to recover the secret key in practice and to show
that the scale can be generated.

Our attack is based on two important facts. First, the key of HMAC is used
as a message in the hash function. The message is processed word by word, as
opposed to the IV which is used all at once, so we can extract information that
depends on only one word of the key. Second, we have two related computations
that leak information on the key. Note that it is important to have two different
values of W0: if HMAC were defined with k|| opad and k|| ipad, the two series of
measures in the first step would be exactly the same, and we would not have
enough information for a practical attack.

The main difference between our attack and classical template attacks is that
we do not consider the value of a register but its Hamming weight. This presents
the advantage to limit the number of profiling (only 33 records are needed instead
of 232 for 32-bit registers) even if it gives less information. If the targeted register
is manipulated a sufficient number of time, then we can combine the partial
information we have recovered to find the entire value of the initial register. To
sum up, this attack can be viewed as a combination of template attacks and
classical power consumption model. Classical template attacks usually separate
keys according to words or substrings of words. To our knowlegde and even if
it seems natural, it is the first time that a template attack is based on power
consumption models.

1.5 Organization of the Paper

In section 2, we describe SHA-1 and we present how our attack works. In sec-
tion 3, we give experimental results on a real implementation on the NIOS pro-
cessor embedded in a FPGA Altera Stratix. Finally, in section 4, we show that
our HMAC attack can be applied to other hash functions such as MD5 and
SHA2. We also show how a similar attack can be used against other construc-
tions: it can break the confidentiality of the L2TP protocol and can recover the
key materials of the IPsec protocol by attacking the key derivation function.

70 P.-A. Fouque et al.

2 Description of the Attack

2.1 SHA-1 Message Leak

In SHA-1, the message is introduced word by word, as opposed to the IV which
is introduced all at once. This means that the values manipulated during the
first rounds of SHA-1 depend only on the first message words. For instance, the
internal value A1 depends only on the IV and on m0. The value A1 is also used as
B2 and after a rotation as C3, D4 and E5. Each time this value is manipulated,
there will be some leakage depending only on m0. If we can model this leakage,
we will be able to recover m0: for all possible values of m0, we simulate the leak,
and we keep the values that give a good prediction. The full message recovery
algorithm is given by Algorithm 1.

Algorithm 1. Recovery of n message words
1: Profiling Stage
2: Study the device and model the leakage

3: Operational Stage
4: Get side-channel information from one run of the hash function

5: Message recovery
6: S ← {IV} � S is the candidate set
7: for 0 ≤ i < n do
8: S ′ ← ∅
9: for all s ∈ S do

10: for all mi ∈ Z232 do
11: Simulate the leak for (s,mi)
12: if it matches the measure then
13: S ′ ← S ′ ∪ (s, mi)
14: end if
15: end for
16: end for
17: S ← S ′

18: end for

The complexity of the message recovery depends on the size of the set of good
candidatesS: each iteration of the loop in line 7costs 232|S|. If we have γ candidates
matching each measure, the set S will be of size γi after iteration i, and the total
cost of the algorithm to recover n message words is about 232γn. The value of γ will
depend of the number of information leaked through the side channel.

2.2 HMAC Key Leak

If we look at HMAC, we see that the secret key is used as a message for the
hash function, so we can use the message leak in SHA-1 to recover the key of

Practical Electromagnetic Template Attack on HMAC 71

HMAC-SHA-1. Note that this does not apply to NMAC, where the key is used
as the initialization vector.

In fact, the secret key is used twice in the HMAC construction: it is used
in the inner hash function as H(k̄ ⊕ ipad) and in the outer hash function as
H(k̄ ⊕ opad). We can collect side-channel information from those two related
messages, which gives two sets of measures for the same key. This property is
crucial for our attack: with only one set of measures, we would have too many
candidates in the set S.

We will now study an implementation of SHA-1 on the NIOS processor to
check whether this leakage is sufficient to identify the secret key.

2.3 Modelization of the Attack

The side channel we will use in our practical experiments is a measure of the
electromagnetic radiation (see Section 3). We model it as follows: each time
the processor loads a data into a register, the electromagnetic signal depends on
the number of flipped bits inside this register.

More precisely, we target the ldw instruction (load word), which loads data
from the memory to a register. Since this instruction does not perform any
computation, we expect the EM signal to be quite clean, and we should be able
to read the number of flipped bits. When a value B is loaded into a register
whose previous value was A, we have a transition A → B, and we can measure
the Hamming weight of A ⊕ B.

2.4 Study of an Implementation of SHA-1

For our experiments, we used the code of XySSL1 which is an SSL library de-
signed for embedded processor. The compiled code for the round function of
SHA-1 is given in Table 1 in Appendix A, together with the values leaked from
the ldw instructions.

Using this implementation of SHA-1, we have 6 measures at each step of the
compression function, which gives 12 measures per key word of HMAC-SHA-1.
The Hamming weight of a 32-bit value contains 3.54 bits of entropy, so we
expect to have a small number of candidates for each key word. Note that the
measures are clearly not independent, which makes it difficult to compute the
number of expected candidates. Therefore, we ran some simulations to estimate
the complexity of the attack.

2.5 Simulations

To estimate the complexity of the attack, we can run the message recovery
step for some initial states. For a given state (Ai, Bi, Ci, Di, Ei), we consider
the 232 values of the message word Wi, and we compute the Hamming weight
of the measures given in Table 1. We can count the number of collisions in

1 Available at http://xyssl.org/code/

http://xyssl.org/code/

72 P.-A. Fouque et al.

Fig. 1. Distribution of the number of candidates γ, for the first message word W0

the measures, which will give the distribution of the number of candidates γ
matching the measure.

More precisely for the first message word W0, we know exactly the constants
involved in the measures: they are given in Table 1, and we will use them with
W0 = k0⊕ ipad and W0 = k0⊕opad. The distribution is given in Figure 1. It has
an average of 2.79 and a worst case value of 81. Experiments with random initial
state instead of the specified IV of SHA-1 give similar results (this simulates the
recovery of the other message words). Moreover, if we allow one of the measures
to be wrong with a difference of one, then we have 4.60 candidates on average,
and 140 in the worst case. This means that we can tolerate some errors in the
measures, without affecting too much the computation time.

In the end, we will assume that the measures give about three candidates at
each step. We expect that the recovery of a 32κ-bit HMAC key will use a set S of
size about 3κ, and the complexity of the attack will be about 232×3κ which will
take a few hours on a PC for a 128-bit key. To identify the correct key among
the set S, we can either use a known MAC, or use some leakage in the following
steps of the compression function.

3 Experimental Validation on a Known Implementation
of HMAC-SHA1

Our side channel attack recovers the message input of the compression function
if we can measure the number of bits flipped when loading from the memory
to a register with the ldw instruction. We experimentally validated this as-
sumption using an implementation of HMAC-SHA1 for a NIOS processor, on

Practical Electromagnetic Template Attack on HMAC 73

an Altera Stratix FPGA. The electromagnetic radiations are measured by near
field methods using a loop probe sensitive to the horizontal magnetic field. We
assume that the assembly code of is known, and we first study the implementa-
tion of the HMAC-SHA1 algorithm. Then, we focus on the leakage of the load
instruction.

Electromagnetic radiation signals are now considered as one of the most pow-
erful side channel signals [9,1,23]. One advantage of the EM side channel is that
is possible to focus on local emanations.

3.1 Leakage of HMAC-SHA1 Implementation

The Figure 2 shows the radiations measured during the computation of HMAC-
SHA1 with a 128-bit key and a 504-bit message M . We can clearly see the 5
executions of the compression function. A sharp analysis of this leakage needs
to be done in order to find out some more useful information. During the exper-
iments, we focus on the load instruction (referred as ldw by Stratix Assembly
Language) but other instructions could also give information about the Ham-
ming weight of the data used during the execution of SHA-1.

3.2 The Leakage of the ldw Instruction

The analysis in Section 2 shows that information leak from this instruction will
be sufficient to recover the secret key. The goal of this section is to validate

0 1ms 2ms

Fig. 2. HMAC-SHA1 Electromagnetic Execution. We see the three calls of the compres-
sion function to compute h = H(k̄⊕ ipad‖M) and two calls to compute H(k̄⊕opad ‖h).

74 P.-A. Fouque et al.

0 10ns 20ns 30ns 40ns 50ns 60ns

Δw = 32
Δw = 0

Fig. 3. Extremal Hamming Distances

that the Hamming distance between the mnemonic operands manipulated by
the instruction ldw leak with electromagnetic radiations. As an example, if the
register R, which value was A, is loaded with the new value B, we claim the
Hamming distance between A and B leaks with the electromagnetic radiations.

For validation, we precharged the register R to A = 0xae8ceac8, Altera
Stratix being a 32-bit register technology. Then two experiments have been per-
formed: in the first one, we use B1 = A = 0xae8ceac8 and in the second one,
we use B2 = Ā = 0x51731537. These two experiments are opposite regarding
the Hamming distance: H(A⊕B1) = 0 while H(A⊕B2) = 32. Fig. 3 illustrates
this link between radiations and Hamming distance.

We must now check if the measures allow to distinguish a small difference
in the Hamming weight, and if they are masked by the noise. For a success-
ful attack, we need to be able to distinguish a Hamming distance of 15 from
a Hamming distance of 16 since on average the frequency of this Hamming
distance is larger than the extremal values. To verify this, we used pairs of
values with those Hamming distance. Fig. 4 shows the results with the follow-
ing pairs: (0x00000000, 0xe0f00ff0), (0x55555555, 0x85a55aa5), (0x00000000,
0xffff0000), (0xffffffff, 0x0f0f0ff0), (0xaaaaaaaa, 0x00050000). We see
that the curve depends on the Hamming distance between the two values, and
not on the actual value of the register. Moreover, the noise level is sufficiently
low in our setting to be able to distinguish a difference of one in the Hamming
distance. These curves have been obtained by zooming on figure 3.

Practical Electromagnetic Template Attack on HMAC 75

0 1ns 2ns 3ns

Δw = 15 and A = 0x00000000
Δw = 15 and A = 0x55555555
Δw = 16 and A = 0x00000000
Δw = 16 and A = 0xFFFFFFFF
Δw = 18 and A = 0xAAAAAAAA

Fig. 4. Electromagnetic radiations for some Hamming distances

Thus, the Side Channel Analysis procedure can be done in two stages, a profil-
ing stage and an operational stage. 33 measures of load instructions with all the
possible Hamming distance are done during the profiling stage. This will allow us
to find the Hamming distance of all ldw instructions for the operational stage. The
profiling stage will also be used to study the timing of the SHA-1 computation, so
as to match each instruction with the assembly code. Then, the operational stage
consists in a Template Attack [5] on the ldw instructions. Following the attack of
Section 2, we expect to recover a secret key of κ words with only one HMAC mea-
sure and a workload of about 2323κ steps of the compressions function.

4 Extension to Other Hash Functions and to Other Usage

In this section, we show that the basic attack we proposed can be extended to
other hash functions, works even though the code is unknown and can also be
used to recover encryption keys in other protocols.

4.1 Other Hash Function of the MD4 Family

The other functions of the MD4 family (MD5, SHA-2, RIPEMD) have a very
similar design and the message words also enter the compression function one
by one. The assembly code of a specific implementation should be studied to
see how many load instructions are used and what information is leaked, but
we expect the attack to be just as efficient. Basically, our attack should work
against any hash function based on a Feistel ladder.

76 P.-A. Fouque et al.

4.2 Unknown Implementation

Even if we don’t have access to the assembly code of the implementation, our
attack is still applicable. The main difference with the previous analysis is that
previous value of the targeted register Ainit is unknown. Anyway, the attacker
can improve the profiling stage. Indeed, he can guess the value of Ainit with Cor-
relation Power Analysis(CPA) [4], making the secret key varying. Let’s remark
that instead of making a 32 bits CPA, the attacker can do 4 CPA, each one on
8 bits. This procedure permits to limit the computational cost of the profiling
stage. Then, thanks to this CPA procedure, the attacker can guess what was a
register value before the secret key bits are written on it. Furthermore, the CPA
peak permits to localize in time the load instruction.

With all these templates obtain at a very low computational cost, the attacker
will be able with only one curve (if the noise is as low as in our setting) to retrieve
the full key.

4.3 Other Attack Scenarios

In this section we identify some other construction where our attack can recover
a secret key. The basic requirement is that the secret key is used as the message
input of the hash function, and we need two related computations where the key
enters the hash function in two different states.

Confidentiality: The L2TP Example. The L2TP protocol [27] is a tunneling
protocol used to implement VPNs. It uses a shared secret K, and two known
values RV and AV . The plaintext is broken into 16-byte chunks, p1, p2, . . . The
ciphertext blocks are called c1, c2, . . . and the intermediate values b1, b2, . . . are
computed as follows:

b1 = MD5(AV ‖K‖RV) c1 = p1 ⊕ b1

b2 = MD5(K‖c1) c2 = p2 ⊕ b2

b3 = MD5(K‖c2) c3 = p3 ⊕ b3 . . .

The secret key K enters the hash function in two different states for the com-
putation of b1 and b2, so we can apply our attack and recover the key.

Key Derivation. Key derivation is sometimes used as a countermeasure against
DPA attacks. The key derivation process described in [17], uses a hash function
H , a master key K and a counter ctr, and computes the sessions keys as SK =
H(ctr‖K). Using our attack, if we observe only two key derivation process, we
have enough information to recover the master key K.

Note About RIPEMD. The RIPEMD family of hash function uses two paral-
lel Feistel ladder, and combines the results in the end of the compression function.
This allows us to recover two series of measures, even if the secret key enters
the hash function only once. The original function RIPEMD-0 uses two lines
with the same permutation and different constants, which gives enough infor-
mation for our attack. Thus, any construction which uses a secret key as a part

Practical Electromagnetic Template Attack on HMAC 77

of a message to be hashed with RIPEMD-0 is vulnerable. The newer functions
RIPEMD-128 and RIPEMD-160 uses different permutations of the message in
the two lines; our attack can reduce the key-space but we don’t have a practical
key recovery with a single hash function call.

4.4 Possible Countermeasure

A possible countermeasure against our attack is to keep the internal state of
SHA-1 inside the processor registers. Our attack uses the fact that the internal
state is stored in the stack and moved in and out the registers: we measure the
radiations during this movement. If all the computations are done inside
the registers, we can still measure the radiations during the computations, but
the signal will have more noise. Another solution is to load random values be-
tween each ldw instruction or to use classical masking methods but this requires
a random generator and may downgrade the performance drastically.

5 Conclusion

In this paper, we show that the electromagnetic radiation of a device can leak
the number of flipped bits when data is loaded into a register. This information
could also be observed using a proper current power analysis. However, EM signal
allows to obtain emanations of local instructions and attacks are not intrusive
since they can be performed in the near field of the device and do not require
to modify the circuitry. Our experimentation studies the ldw instruction since
it is easier to characterize during the profiling stage, but the attack could be
improved by using other instructions. Our attack targets the message input of
the compression function, while previous attacks only considered the IV input.
This allows us to attack other standards and to recover crucial information such
as the master key in some key-derivation schemes.

Finally, these results give some information about the efficiency of side channel
attack on hash functions implemented on embedded processors. It is important
to see that the adversary model is very limited: access to a similar device for a
profiling stage and then one execution leads to an efficient key recovery.

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The em side-channel(s).
In: Kaliski Jr., B.S., et al [12], pp. 29–45

2. Bellare, M.: New proofs for NMAC and HMAC: Security without collision-resistance.
In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer, Hei-
delberg (2006)

3. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

78 P.-A. Fouque et al.

4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye and Quisquater [11], pp. 16–29

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., et al [12],
pp. 13–28

6. Contini, S., Yin, Y.L.: Forgery and partial key-recovery attacks on hmac and
nmac using hash collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 37–53. Springer, Heidelberg (2006)

7. Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg
(2005)

8. Fouque, P.-A., Leurent, G., Nguyen, P.Q.: Full key-recovery attacks on hmac/nmac-
md4 and nmac-md5. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp.
13–30. Springer, Heidelberg (2007)

9. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

10. Gauravaram, P., Okeya, K.: An update on the side channel cryptanalysis of macs
based on cryptographic hash functions. In: Srinathan, K., Rangan, C.P., Yung,
M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 393–403. Springer, Heidelberg
(2007)

11. Joye, M., Quisquater, J.-J. (eds.): CHES 2004. LNCS, vol. 3156. Springer, Heidel-
berg (2004)

12. Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.): CHES 2002. LNCS, vol. 2523. Springer,
Heidelberg (2003)

13. Kaufman, C.: Rfc 4306 - internet key exchange (ike v2) protocol (December 2005),
http://www.ietf.org/rfc/rfc4306.txt

14. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product
ciphers. In: Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D. (eds.)
ESORICS 1998. LNCS, vol. 1485, pp. 97–110. Springer, Heidelberg (1998)

15. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product
ciphers. Journal of Computer Security 8(2/3) (2000)

16. Kent, S.: Security architecture for the internet protocol (November 1998),
http://www.ietf.org/rfc/rfc2401.txt

17. Kocher, P.: Us patent no. 6,304,658 (2003),
http://www.cryptography.com/technology/dpa/Patent6304658.pdf

18. Kocher, P.: Us patent no. 6,539,092 (2003),
http://www.cryptography.com/technology/dpa/Patent6539092.pdf

19. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

20. Lemke, K., Schramm, K., Paar, C.: Dpa on n-bit sized boolean and arithmetic
operations and its application to idea, rc6, and the hmac-construction. In: Joye
and Quisquater [11], pp. 205–219

21. McEvoy, R.P., Tunstall, M., Murphy, C.C., Marnane, W.P.: Differential power
analysis of hmac based on sha-2, and countermeasures. In: Kim, S., Yung, M.,
Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 317–332. Springer, Heidelberg
(2008)

22. Okeya, K.: Side channel attacks against hmacs based on block-cipher based hash
functions. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058,
pp. 432–443. Springer, Heidelberg (2006)

http://www.ietf.org/rfc/rfc4306.txt
http://www.ietf.org/rfc/rfc2401.txt
http://www.cryptography.com/technology/dpa/Patent6304658.pdf
http://www.cryptography.com/technology/dpa/Patent6539092.pdf

Practical Electromagnetic Template Attack on HMAC 79

23. Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (ema): Measures and
counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

24. Rechberger, C., Rijmen, V.: On authentication with hmac and non-random proper-
ties. In: Dietrich, S., Dhamija, R. (eds.) FC 2007 and USEC 2007. LNCS, vol. 4886,
pp. 119–133. Springer, Heidelberg (2007)

25. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–
46. Springer, Heidelberg (2005)

26. Shoup, V. (ed.): CRYPTO 2005. LNCS, vol. 3621. Springer, Heidelberg (2005)
27. Towsley, W., Valencia, A., Rubens, A., Pall, G., Zorn, G., Palter, B.: Rfc 2661 -

layer two tunneling protocol ”l2tp” (August 1999),
http://www.ietf.org/rfc/rf2661.txt

28. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions
md4 and ripemd. In: Cramer [7], pp. 1–18

29. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full sha-1. In: Shoup [26],
pp. 17–36

30. Wang, X., Yu, H.: How to break md5 and other hash functions. In: Cramer [7], pp.
19–35

31. Wang, X., Yu, H., Yin, Y.L.: Efficient collision search attacks on sha-0. In: Shoup
[26], pp. 1–16

http://www.ietf.org/rfc/rf2661.txt

80 P.-A. Fouque et al.

A SHA-1 Code

Table 1. SHA-1 code. The table shows the code for one step of the compression
function. The other steps are exactly the same, excepted that the mapping between
the internal state values A,B, C, D, E and the stack changes at each round.

Stack Registers Measure
Instruction 76 80 84 88 92 r2 r3 r4

Begin step 0 A0 B0 C0 D0 E0 X0 Y0 Z0

ldw r2 76(fp) A0 X0→A0

roli r4, r2, 5 A≪5
0

ldw r3, 84(fp) C0 Y0→C0

ldw r2, 88(fp) D0 A0→D0

xor r3, r3, r2 C0 ⊕D0

ldw r2, 80(fp) B0 D0→B0

and r3, r3, r2 (C0 ⊕D0) ∧B0

ldw r2, 88(fp) D0 B0→D0

xor r2, r3, r2 Φ0

add r3, r4, r2 Φ0 � A≪5
0

ldw r2, 12(fp) W0 Φ0→W0

add r3, r3, r2 Φ0 � A≪5
0 � W0

ldw r2, 92(fp) E0 W0→E0

add r3, r3, r2 Φ0 � A≪5
0 � W0 � E0

movhi r2, 23170 0x5a820000
addi r2, r2, 31129 0x5a827999
add r2, r3, r2 A1

stw r2, 92(fp) A1

ldw r2, 80(fp) B0 A1→B0

roli r2, r2, 30 B≪30
0

stw r2, 80(fp) C1

Begin step 1 B1 C1 D1 E1 A1 X1 Y1 Z1

ldw r2, 92(fp) A1 X1→A1

...

We have the following relations:

Φi = fi(Bi, Ci, Di)

Bi+1 = Ai

Ci+1 = B≪30
i

Di+1 = Ci

Ei+1 = Di

Ai+1 = Φi � A≪5
i � Wi � Ei � Ki

Xi+1 = B≪30
i

Yi+1 = Φi � A≪5
i � Wi � Ei

Zi+1 = A≪5
i

We can make 8 measures per step, but this gives
only 6 informations leaks, because the transitions
Di+1 → Bi+1 and Bi+1 → Di+1 leaks the same in-
formation as Xi → Ai.
For instance, the leaks related to W0 are:

Φ0 →W0 W0 ⊕ 0x98badcfe

W0 → E0 W0 ⊕ 0xc3d2e1f0

A1 → B0 (W0 � 0x9fb498b3)⊕ 0xefcdab89

X1 → A1 (W0 � 0x9fb498b3)⊕ 0x7bf36ae2

Y1 → C1 (W0 � 0x45321f1a)⊕ 0x7bf36ae2

A1 → D1 (W0 � 0x9fb498b3)⊕ 0x98badcfe

	Practical Electromagnetic Template Attack on HMAC
	Introduction
	Description of SHA-1
	Description of HMAC
	Related Work on Side Channel Attacks
	Our Results
	Organization of the Paper

	Description of the Attack
	SHA-1 Message Leak
	HMAC Key Leak
	Modelization of the Attack
	Study of an Implementation of SHA-1
	Simulations

	Experimental Validation on a Known Implementation of HMAC-SHA1
	Leakage of HMAC-SHA1 Implementation
	The Leakage of the {\tt ldw} Instruction

	Extension to Other Hash Functions and to Other Usage
	Other Hash Function of the MD4 Family
	Unknown Implementation
	Other Attack Scenarios
	Possible Countermeasure

	Conclusion
	References
	A SHA-1Code

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

