
Power Attack on Small RSA Public Exponent

Pierre-alain Fouque1, Sébastien Kunz-Jacques1,2, Gwenaëlle Martinet2,
Frédéric Muller3, and Frédéric Valette4

1 École normale supérieure, 45 rue d’Ulm, 75005 Paris, France
Pierre-Alain.Fouque@ens.fr

2 DCSSI Crypto Lab, 51 boulevard de La Tour-Maubourg
F-75700 Paris 07 SP, France

{Gwenaelle.Martinet;Sebastien.Kunz-Jacques}@sgdn.pm.gouv.fr
3 HSBC, France, Frederic.Muller@m4x.org

4 CELAR, 35 Bruz, France
Frederic.Valette@dga.defense.gouv.fr

Abstract. In this paper, we present a new attack on RSA when the
public exponent is short, for instance 3 or 216 +1, and when the classical
exponent randomization is used. This attack works even if blinding is
used on the messages.

From a Simple Power Analysis (SPA) we study the problem of recover-
ing the RSA private key when non consecutive bits of it leak from the
implementation. We also show that such information can be gained from
sliding window implementations not protected against SPA.

Keywords: RSA cryptosystem, sliding window methods, exponent ran-
domization, Simple Power Analysis.

1 Introduction

Simple Power Analysis and Differential Power Analysis attacks are among the
most efficient and devastating attacks on some RSA-based products. Many coun-
termeasures have been proposed that prevent these attacks by securing the ex-
ponentiation algorithm which is usually targeted. This is the basis of a number
of academic papers whose results are widely used in practice. However, such
countermeasures often lead to a slower implementation and thus another area
of research is the speedup of the exponentiation process. As we will show in
this article, unfortunate interactions between side-channel countermeasures and
optimized exponentiation algorithms may lead to insecure implementations.

The aim of this paper is to present a new attack on RSA in the special case
where both a short public exponent and a randomization of the private exponent
are used. In such a case, free information on the private exponent can be obtained
from the public key and can be used to efficiently recover the whole private key.
The attack studies the problem when non-consecutive bits of the private key
can be found. It works on sliding window implementations not protected against
SPA attack.

Known results on partially known information. Partial information on the
RSA private key allows it to be recovered in some cases. This kind of attacks has
experienced a revival since 1998 with the work of Boneh, Durfee and Frankel [1].
In their article, they give some results about the security of RSA schemes when
some bits of the private key are exposed. However, the lattice technique used
in such cases cannot be applied for non-consecutive bits. None of the previous
papers have considered this particular case. Boneh et al. have even considered
in [1] that “[the authors] view attacks that require non-consecutive bits of d as
artificial”, showing the lack of interest for this topic at that time.

However, some practical attacks are now very efficient and allow the attacker
to recover some bits of the private key, not necessarily consecutive. This is mainly
due to the combination of very specialized attacks, based on side channel anal-
ysis, and of the various countermeasures based on algorithmic remarks.

Main idea of the attack. Here, we do not solve the open problem of recovering
the whole private key from non-consecutive partial information on it. However,
we focus on the special case where several non-consecutive bits of randomized
versions of the private key are known.

Efficient countermeasures against SPA attack are often not perfect. It is
classical that some information about the secret exponent leaks. For example,
sliding window implementations can leak when consecutive bits are equal to
zero. By randomly generating bitstring and applying the parsing exponent algo-
rithm of the sliding window algorithm, either Constant Length Non-zero Window
(CLNW) or Variable Length Non-zero Window (VLNW), one can observe that
the information gained is 40% of the bits. This is not sufficient to recover the
entire secret by using previous results such as those of [1].

The first part of the attack is to record some power curves Ci which cor-
respond to the exponentiation of a message with the unknown private key
di = d+λi×ϕ(N) associated to an unknown short value λi. Then, using the fact
that the public exponent is small, we can consider that the most significant bits
of the secret exponent d are known. With this information, we can try all the
possible values of λ and check if the most significant bits of the value d̃ + λ ·N ,
where d̃ equals d on the half bits of high order, are compatible with the partial
information that can be recovered from the power curve by SPA. If we have
enough information, we can associate a single λi to the curve Ci.

The second part of the attack is now to recover the least significant bits of
d. Once we have enough curves with the known random value λi we can then
use partial information on the least significant bits of the randomized exponent
on all the curves to retrieve the least significant bits of the secret exponent. The
principle is to guess the least significant bits of ϕ(N) and so of d and of the
secret exponent di. Then, we check if the guess is compatible with the partial
information on the curve Ci. If we have enough curves, only one guess will be
compatible. We can then guess the next bits and continue until we know enough
bits of d.

2

Our results. We recall in section 2 how to get non-consecutive bits of the
RSA secret exponent by using side channel attacks. Such leakage depends on the
exponentiation algorithm used and on the various countermeasures implemented
against side channel attacks.

Then, in section 3 we formally show how to recover the whole RSA secret
key from such information in the case of the public exponent is 3. We extend
this attack for e = 216 +1 in section 4, and we give practical results in section 5.

Related Works. A lot of work has already been done on the particular topic of
attacks when countermeasures are implemented. Indeed, a countermeasure may
allow or simplify a side channel attack.

Previous works have also been done to study the security of fast exponen-
tiation algorithm. Walter, in [9], describes the Big Mac attack which works on
sliding and m-ary window algorithms. He assumes that he can distinguish squares
and multiplies and operand of the multiplies. Here, we only assume that we can
distinguish squares and multiplies but we do not need to distinguish the different
operands of the multiplications.

Walter has also see in [10] that “in the classical m-ary and sliding windows
exponentiation algorithms, the most significant half of the public modulus yields
information which can be used to halve the number of key digits which need to
be guessed.” Having reduce the key digit by half or a quarter is not sufficient for
an 1024-bit value since 256 are missing.

The problem of computing the RSA private exponent from partial informa-
tion on it has known only a little attention in the literature. In [8], Stinson
presents two algorithms to compute discrete logarithms in a prime field, when
the Hamming weight of the discrete log is small. As we want to recover d such
that s = f(H(m))d mod N , where f is the padding function, and we know s
and f(H(m)), d can be viewed as the discrete log of s in basis f(H(m)) in Z∗N .
In appendix A, we show that this algorithm can be used to recover d from non-
consecutive bits of it if the number of missing bits is relatively small, 128 for
instance. However the memory and time complexity of this algorithm is high
compared to our algorithm and cannot recover a large number of bits.

2 Modular exponentiation and side channel attacks

2.1 Classical countermeasures against side channel attacks

To defeat DPA attacks, many protections methods have been suggested in the
literature. The most secure and widely used is the exponent randomization [6] as
it is very easy to implement and it comes at a reasonable computational cost. The
idea of this countermeasure is to use a classical SPA-protected implementation of
the exponentiation and to randomize the private exponent at each computation.
This randomization is based on the fact that the private exponent d is defined
modulo ϕ(N) since for all M ∈ Z?

N and all λ ∈ Z, Mλ×ϕ(N) = 1 mod N . Figure 1
describes this randomized exponentiation algorithm.

3

– Inputs: a message M , an exponent d, a modulus N
and ϕ(N)

– Output: Md mod N

1. Pick at random λ ∈ {0, . . . , 2` − 1}
2. Compute d′ = d + λ · ϕ(N)

3. Return SPA protected exponentiation Md′ mod N

Fig. 1. The exponent randomization algorithm

The success of this countermeasure lies in its very good efficiency and the
security it offers. Indeed, without randomization an attacker is able to guess the
exponent bit per bit and his check would be confirmed with a DPA attack [7].
With the randomization, such a guess cannot be made anymore on the value d′

since the attacker does not know the random value used.

2.2 Optimized exponentiation algorithms

Timing attacks or SPA attacks are known to be very efficient on RSA-based
cryptosystems. In [6], Kocher has shown how to recover the whole private key
from the power consumption of a single RSA signature or decryption. If the
square-and-multiply algorithm is used for the exponentiation without any coun-
termeasure, various side channel attacks may be used to compromise the private
key.

More efficient exponentiation algorithms may be used. Some of them use a
parsing of the private exponent into windows of constant or variable length.
In that case, side channel attacks cannot recover the whole private exponent
anymore. Only some bits of it leak from the implementation, whose distribution
depends on technical details of the exact algorithm used. The m-ary or the
sliding window techniques are such methods.

The sliding window methods. Such methods have been developed to speed up
the exponentiation algorithm by searching in the exponent large windows of bits
equal to zero. Contrary to the m-ary algorithm, sliding window methods relax the
splitting of the exponent into sliding windows. There are two variants known as
the Constant Length Non-zero Window (CLNW) technique due to Knuth [3] and
the Variable Length Non-zero Window (VLNW) technique due to Bos and Coster
in [2]. Both of these techniques try to minimize the number of multiplications in
the square-and-multiply algorithm by performing some precomputations. These
techniques have been described and analyzed by Koç in [4, 5] and allow 5 to
8% of the multiplications to be avoided compared to the binary exponentiation
algorithm.

The CLNW method consists in splitting the exponent as follows: a non-zero
window will always be of length m, for a given parameter m, often equal to 4 in

4

practice, and the zero windows are of variable length. For the exponentiation,
precomputations have to be done for all the 2m−1 values of the m non-zero
windows (with a bit 1 in low order since the parsing is done from the least
significant bit to the most significant one).

The Variable Length version is an optimization of it and is more tricky to
detail. The rule is to split the exponent into zero windows of length at least a
given value and non-zero windows of length at most another given parameter.
We can show that the number of leaking bits during a SPA attack will be the
same for both techniques and so we only focus on the CLNW variant.

Figure 2 details the sliding window exponentiation algorithm. Such a method
assumes that the exponent is split into windows. This splitting may be done
either with the m-ary, CLNW or VLNW method, depending on the splitting
criteria used. The exponentiation just uses squarings and multiplications with
precomputed values.

– Inputs: x, e, N, m
– Output: y = xe mod N

1. Compute and store xw for all odd integer w ∈
{1, . . . , 2m − 1}

2. Parse e into zero and non-zero windows Fi of length
L(Fi) at most m for the non-zero windows and for i =
0, 1, . . . k− 1. The parsing algorithm may be CLNW
or VLNW.

3. y ← xFk−1 mod N (which is a precomputed value)
4. for i = k − 2 downto 0

– y ← y2L(Fi)
mod N

– if Fi 6= 0, then y ← y · xFi mod N
5. return y

Fig. 2. The Sliding Window Algorithm

2.3 SPA Information leakage

To mount the attack described in section 3, the underlying assumption will
be that the attacker knows partial information on the exponent used during the
RSA signature or decryption. To this end, we will assume that we can distinguish
squares from multiplies.

The optimized exponentiation algorithms such as m-ary, CLNW or VLNW
leak some information about the exponent. For example, the CLNW algorithm,
as described in section 2.2, consists in splitting the exponent into non-zero win-
dows of fixed length. For all these windows, some precomputations are made to
reduce the total cost of the exponentiation. If no protection against SPA attacks

5

is used, an attacker may be able to distinguish the squaring operations from the
multiplications. Each time the number of squarings is greater than the length of
the window, the attacker can deduce that there are some 0 bits in the exponent.
The position is deduced from the total number of previous multiplications and
squarings. When a multiplication is detected, the attacker knows that there is a
non-zero window of exactly m bits. In this window, the lowest order bit is 1 and
the other ones are unknown. Thus, in the worst case, when there are are only
non-zero windows, the attacker learns one bit of the exponent over m. These
bits are the least significant ones (equal to 1) of the non-zero windows.

Thus, if m = 4, the attacker learns 25% of the bits of the exponent in the
worst case. In practice, we obtain 40% of the bits of each randomized exponent.
For m = 3, we obtain 50% of these bits.

For the attack to be successful in the case e = 216 + 1, the attacker has to
obtain a given number of windows of two bits. Note that if the attacker learns
3 consecutive bits, the two overlapping windows of two bits can be used in the
attack. Simulations show that for a 1024-bit modulus, the CLNW methods for
parameter m = 4 may leak 200 such windows if squarings and multiplies are
distinguishable. For 2048-bit modulus, 400 windows are obtained. For m = 3,
we obtain 250 2-bit windows for 1024-bit modulus and 500 for 2048 ones.

3 Recovering a private RSA exponent from partial
information on randomized versions of it

We focus in this section on the special case e = 3. In this context, additional
and free information can be deduced from the public key. This gives the attacker
the knowledge of some bits on the private key “for free”. Although this does not
allow an adversary to break RSA cryptosystems in general, such information
is very useful when combined with a side channel attack on some particular
implementation of the exponentiation.

3.1 Free information

Let N be an RSA modulus, e the public exponent and d the private one.
The first remark is that the modulus N is a good approximation of ϕ(N) =

(p−1)×(q−1) = N−p−q+1 on essentially the n/2 most significant bits. Since
the number of these bits depends on a carry propagation, with high probability,
the n/2− 10 bits of high order of ϕ(N) are those of N . To simplify, we consider
that the n/2 bits of high order of ϕ(N) are known and equal to those of N .

Secondly, when e = 3, the n/2 most significant bits of d are also known.
Indeed, d satisfies the relation

ed = 1 + kϕ(N) (1)

for some positive integer k. Let us choose a representative of d in [0, ϕ(N)− 1].
Since k×ϕ(N) = ed− 1 < ed, then k < e: if e = 3, then k = 1 or k = 2. In fact,

6

3 divides neither p nor q and since 3 is invertible mod ϕ(N), 3 also divides
neither p − 1 nor q − 1. Thus, p 6= 0 mod 3, p − 1 6= 0 mod 3 (resp. for q), and
finally, p = 2 mod 3 and q = 2 mod 3. Consequently, ϕ(N) = 1 mod 3. Finally,
since k = −1/ϕ(N) mod 3, then k = 2 mod 3, and finally k = 2. Therefore,

3d− 2ϕ(N) = 1 (2)

and

d̃ =
⌊

1 + kN

e

⌋
=

⌊
1 + 2N

3

⌋
is a good approximation of d on the half bits of high order. Equation (2) will be
extensively used in the cryptanalysis described above.

3.2 Recovering the RSA private key

We consider the countermeasure consisting in randomizing the private exponent
d. Thus for each exponentiation, an equivalent exponent di is first computed as
di = d + λi × ϕ(N), for a random value λi of ` bits. Typically, ` = 20 or ` = 32.
Furthermore, an optimized exponentiation algorithm, such as the CLNW or
the VLNW method, is supposed to be used. In this context, as described in
section 2.3, we suppose that the attacker knows a fraction 1/r of the bits of the
private exponents used, randomly distributed amongst the n + ` bits of each
exponent. We also suppose that these bits are available for ω different exponents
di. The position of the known bits differ from one exponent to another. These
bits are obtained by signing or decrypting ω messages whose value does not
matter for the attack. This is a model for the side channel attack.

In the rest of this paper, the following notations will be used:

– for an integer x of n bits, the i-th bit of x is denoted by x[i]. The integer x
can then be written as an n-bit string x = x[n− 1]x[n− 2] . . . x[0];

– for a randomized exponent di of n bits, [di] is a vector of length n such that
for all j ∈ {0, . . . , n− 1}:

[di][j] = di[j] if the bit di[j] is known
= 2 otherwise

– for a vector [di] of length n and integers a and b such that 0 ≤ a ≤ b ≤ n−1,
[di]a,b is the extracted vector for the positions a to b;

– for integers x and di of n bits, we write [di]
.= x if di and x matches on all

the known bits of di. That is, for all 0 ≤ j ≤ n− 1 such that [di][j] 6= 2, we
have di[j] = x[j].

For example, for an 8-bit value x = 01010101 = x[7]x[6] . . . x[1]x[0] for which
the bits known are in positions 1, 4, 5 and 7, [x] = [0, 2, 0, 1, 2, 2, 0, 2] and [x]3,6 =
[2, 0, 1, 2].

We first show how partial knowledge of the randomized exponents di allows
the attacker to recover the λi values used to generate them from d. We then
show in a second step how to recover the entire private exponent d from the
partial leakage on the randomized exponent and from the known bits of d.

7

Step 1: recovering the λi. The strategy to recover the random values λi used
to mask the private exponent d is to use the known approximation of d and
ϕ(N) to compute all the possible values

d̃j = d̃ + j ×N

for all j ∈ [0, 2`−1]. On the n/2 high order bits, d̃j is equal to dj = d+j×ϕ(N).
Indeed, dj = d̃j + j(p + q − 1) and since j(p + q − 1) is a number of at most
(n/2+`) bits, the two (n+`)-bit values have near half of the most significant bits
in common with high probability. Only if a carry propagates, some bits will not
be equal. However, if two random bitstrings are added, a carry will be absorbed
with probability 1/4 at a step. Consequently, with probability 1−(3/4)10 ≈ 0.94,
the carry coming from the least significant half bits will not propagate after the
(n/2 + ` + 10)-th bit.

Given these 2` values and the known bits of the ω randomized exponents di,
the attacker is now able to recover the corresponding λi values. For each value
di, he knows a ratio 1/r of the bits. In particular this applies for the n/2 high
order ones. He then looks for a matching value from the computed d̃j on these
bits. When he finds j such that di equals d̃j on the known bits, he deduces that
λi = j. The detailed algorithm is given in figure 3.

– Inputs: [di]n/2+`,n+` the known bits of high order of di for all i ∈ {1, . . . , ω}
– Outputs: the value λi such that di = d + λi × ϕ(N), for all i ∈ {1, . . . , ω}

1. For j = 0 to 2` − 1, d̃j ← d̃ + j ×N
2. For i = 1 to ω,

j ← 0
While (j < 2`)

If [di]n/2+`+10,n+`
.
= d̃jn/2+`+10,n+` then λi ← j, break;

else j ← j + 1;
3. Return λi for all i ∈ {1, . . . , ω}.

Fig. 3. The attacker strategy to recover the λi corresponding to each di

Some optimizations may be implemented depending on the value `, and the
best time-memory trade-off for the attacker. However, as long as the random
values λ are relatively small, for example of at most 20 bits, the exhaustive
search of figure 3 is clearly practical.

At the end of this step, the attacker has thus recovered each random value
used to randomize the private exponent for ω RSA executions.

Let us now present some analysis of the success probability of the first step.
For each given di, we compare it with the 2` values of d̃j . Let us denote by Badi

the event “a bad value λ is associated with di”. If we assume that the bitstrings
di and d̃j are uniformly distributed, we match a false j to λi with probability

8

less than (1/2)(n/2−α)/r where α depends on the carry propagation during the
computation of d̃j . As seen above, α may be upper bounded by 10 with high
probability.

As we have 2` comparisons corresponding to all the d̃j , the probability of
Badi is upper bounded by 2`/2(n/2−α)/r. Therefore, we get

Pr[∃i 1 ≤ i ≤ ω : Badi] ≤
2`ω

2(n/2−α)/r

For n = 1024, r = 5, ` = 32, α = 10 and ω ≈ 64, we get a probability of a
good association for each di of 1− 1/263. Such an estimation does not take into
account imperfect input data.

Step 2: recovering ϕ(N) and d. The attacker’s goal is now to recover the
entire private key. To this end, he makes an exhaustive search, 8 bits per step,
on the bits of ϕ(N). He will now use the known least significant bits of di to
recover d.

First, the attacker recovers the 8 least significant bits of ϕ(N). This is per-
formed by guessing ϕ(N) mod 28. From this guess, he computes the correspond-
ing guess for d mod 28 from the equation 2:

d mod 28 =
1 + 2ϕ(N)

3
mod 28

Then with high probability there exists i s.t. some of the 8 least significant bits of
di are known from the side channel attack. For this value di, the corresponding λi

gives us some constraints on the low order bits of the value d+λi×ϕ(N) mod 28.
If the constraints on the corresponding di value cannot be met, another guess
for ϕ(N) mod 28 is made. Otherwise, if for all i ∈ {1, . . . , ω}, no incompatibility
has been discovered, the guess is the good one with high probability. The attack
can then be extended with a guess for ϕ(N) mod 216 and so on. Figure 4 details
the algorithm to recover ϕ(N) mod 28k from ϕ(N) mod 28(k−1).

Note that in practice the attacker should deal with imperfect input data since
these data are collected in a side channels context. Thus, candidates that match
a sufficiently high fraction of these data should be accepted: this may be done
by implementing a more complex version of the Boolean function OK.

We need to estimate the average number of false candidates at each step. We
have 28 values for each d̄ and we have 8/r bits on each 8-bit window for each d̄i

where 1/r is the ratio of known bits deduced from the side channel attack. As
the correct value for d̄ allows ω correct values d̄i for all i to be computed, then on
average the number of false candidates is

(
1/28/r

)ω×28 if all the experiments are
independent and the bitstrings uniformly distributed. Thus, the average number
of candidates tends to 1 as the number of false candidates tends to 0 and the
correct candidate matches the input data, or eventually almost fit the input
data.

9

– Inputs:
• {([di], λi)}1≤i≤ω the list of the known bits for each di and the correspond-

ing λi value
• a candidate for ϕ(N) mod 28(k−1)

– Output: a list of candidates for ϕ(N) mod 28k

1. For j = 0 to 28 − 1,
(a) yj ← ϕ(N) mod 28(k−1) + j · 28(k−1);

/* yj is a candidate value for ϕ(N) mod 28k */

(b) d̄← 1+2yj

3
mod 28k;

/* d̄ is the corresponding candidate for d mod 28k */

(c) OK ← true;
(d) i← 1;
(e) While (OK = true) and (i ≤ ω)

d̄i ← d̄ + λi × yj mod 28k;
if [dj]0,8k−1

.
= d̄i then i← i + 1;

else OK ← false;
(f) if OK = true, add yj to the list of candidates for ϕ(N) mod 28k;

2. Return the list of candidates for ϕ(N) mod 28k

Fig. 4. The attacker strategy to recover ϕ(N) mod 28k from ϕ(N) mod 28(k−1)

4 Extension for e = 216 + 1

In case e = 3, one knows that k = 2. For each measure using a random value λ,
as shown in previous section, some bits in the upper half of⌊

1 + kN

e

⌋
+ λN (3)

are known: this allows us to retrieve λ with an exhaustive search. For other
values of e, this approach cannot work directly as k is not known anymore. In
this section, we show how to extract k and λ from only one measure yielding
some bits of the randomized exponent, when e is not too large, the typical case
being e = 216 + 1. Once k is found, the attack can proceed exactly as described
in Step 2 of the attack of section 3.

4.1 Finding k and λ by exhaustive search

The value (3) can be used to perform a direct exhaustive search of k and λ from
one exponentiation measure. One has 0 < k < e and 0 ≤ λ < 2`: if e is u-bit
long, there are 2u+` candidates to try, and the exhaustive search yields only the
correct values with good probability if the number of known bits in equation (3)
is above u + `. For the typical values of u = 16 and ` = 20, this approach
requires to perform 236 additions of large integers, assuming the values of λN
for 0 ≤ λ < 2` and kN

e for 0 < k < e are precomputed. The aim is to recover k
more efficiently.

10

4.2 Finding Matching Pairs of Values of k and λ

From now on, we consider a unique measure of an RSA signature or decryption
with randomized exponent. Let δ denote the randomized exponent used during
the exponentiation considered. One has:

δ = d + λ× ϕ(N)

As before, the most significant half U(d) of the private exponent d is equal to
U

(⌊
1+kN

e

⌋)
except maybe on a few least significant bits. U(δ) can likewise be

approximated by U
(⌊

1+kN
e

⌋)
+ U(λN). Our goal is to recover k and λ.

If U(δ) were completely known, the exhaustive search on both k and λ could
be transformed it into a list matching problem: indeed, correct values of k and
λ correspond to matching elements in the lists

L1 =
{

U(δ)− U

(⌊
1 + kN

e

⌋) ∣∣∣∣ 0 < k < e

}
and L2 =

{
U(λN) | 0 ≤ λ < 2`

}
However, since only some bits of δ are known, some further work is required

to find matching elements. In the next paragraphs, we show how to associate
with each candidate value of k a partially known value for δ−

⌊
1+kN

e

⌋
, and then

how to find matches between the list of these partially known values and L2.

Step 1a: Compute Partial Values for δ −
⌊

1+kN
e

⌋
. In the following, b(k)

denotes
⌊

1+kN
e

⌋
.

For each candidate value of k, some bits of δ−b(k) can be computed. Indeed,
assume that two consecutive bits δi, δi+1 of δ are known as a result a side-channel
attack like the one of paragraph 2.3. Let bi and bi+1 the corresponding bits of
b(k), and ci, ci+1 the corresponding carry bits in δ − b(k). The bits δi, δi+1, bi,
bi+1 are known while the carries are unknown. The subtraction looks as follows :

δi+1 δi

− bi+1
ci+1← bi

ci←
.

Assume that bi = 1⊕ δi. Then one has:

δi+1 0
− ...← bi+1

1← 1 ci←
1⊕ δi+1 ⊕ bi+1 1⊕ ci

or
δi+1 1

− ...← bi+1
0← 0 ci←

δi+1 ⊕ bi+1 1⊕ ci

Therefore whenever bi = 1 ⊕ δi, the (i + 1)-th bit of δ − b is equal to
bi ⊕ δi+1 ⊕ bi+1 which is a known value.

To compute partial values for δ − b(k), first mark the (possibly overlapping)
windows of two consecutive known bits in the upper half of δ. Assume there are
v such windows.

11

For each value of k in [1, e−1], compute the value b(k) =
⌊

1+kN
e

⌋
. Depending

on the bits of b(k) aligned with the marked windows in δ, some bits of δ − b(k)
can be computed according to the rules above : in each 2-bit window, the most
significant bit of δ − b(k) can be computed with probability 1/2, according to
bi = 1⊕ δi. A sequence (sk) of v known or unknown bits in δ − b(k) is therefore
obtained.

Step 1b: Find Matches for Partial Values. Associate to each value of λ
the sequence tλ of the values of the most significant bits of λN in the targeted
2-bit windows of δ (remember that there are v such windows). The correct value
for k and λ yields a match between tλ and the known bits in sk. If there are
sufficiently many windows, only the correct values gives a match.

For each value of k, let L(k) denote the set of all λ such that tλ matches sk.
Assuming L(k) can be built efficiently, the exhaustive search for (k, λ) proposed
in subsection 4.1 can be improved by adding an early elimination step where
pairs (k, λ) s.t. λ /∈ L(k) are discarded. If L(k) is small enough, this reduces the
complexity of the exhaustive search. We therefore focus on efficiently computing
the set L(k).

A direct approach to the construction of L(k) consists in considering every
possible value of the unknown bits of sk. For each of them, the set of the matching
tλ can be computed. Since each of the v bits in sk is known with probability
1/2, the number of possible values for the unknown bits in sk is the product of
v independent random variables that are equal to 2 with probability 1/2 and to
1 with probability 1/2. This number is therefore equal on average to (3/2)v.

For u = 16, v = 40, there are about 216 × (3/2)40 ≈ 239.4 completions of the
sk, for all values of k, 0 < k < e. Therefore, whatever the method used to find
the corresponding tλ for each of these completions, at least 239.4 operations are
required to build all lists L(k) this way.

This approach can however be refined by splitting sk into subpieces before
exploring the possible values of the unknown bits. From now on, we assume that
v = 2`; the attack is even faster for higher values v which correspond to cases
where more information is available.

First, precompute the lists Ll(α) = {λ | the left half of tλ is equal to α} for
0 ≤ α ≤ 2` and the lists Lr(β) = {λ | the right half of tλ is equal to β} for
0 ≤ β ≤ 2`. This requires 2× 2` operations on large integers.

Then for a candidate k, if α1, . . . , αn (resp. β1, . . . , βm) are the values of the
left (resp. right) half of sk obtained by filling the unknown bits with any possible
value,

L(k) =

[
n⋃

i=1

Ll(αi)

]
∩

[
m⋃

i=1

Lr(βi)

]
On average, n ≈ m ≈ (3/2)v/2, and for any i, #Ll(αi) ≈ #Lr(βi) ≈ 2`−v/2 = 1.
Using suitable data structure (of size 2v/2) to be able to compute an intersection
in constant time, the formula above can therefore be evaluated using 2×(3/2)v/2

12

constant-size operations. This means that all the lists L(k) can be built using
only 2u × 2× (3/2)v/2 operations.

For u = 16, ` = 20, v = 2` = 40, the total complexity is 228.7 operations.
One can show that cutting sk in two halves is optimal when v = 2`.

Assuming that the tλ and the completions of the sk are random, the birthday
paradox shows that the average number of elements in L(k) is (3/2)v×2`

2v . With
` = 20, v = 2`, #L(k) ≈ 23.4. Therefore after the above early elimination step,
219.4 pairs (k, λ) must be considered if u = 16, compared to 236 pairs before the
elimination step.

Overall, this improved attack retrieves k using 228.7 constant-size operations
and around 220 operations on large integers. We implemented the attack; it runs
in about one minute on an average PC.

In practice, as shown in section 2.3, the number of windows available is far
above what is needed: with a 1024-bit exponent and the exponentiation algo-
rithm of figure 2 with windows of size 4, one has approximately v = 100 windows
of two known consecutive bits in the upper half of δ. This extra information can
be taken into account to eliminate more pairs (k, λ). With v large enough, this
filters out all the wrong pairs, thereby eliminating the need for an exhaustive
search phase. On the other side, the complexity of the pair elimination phase is
linear in v.

5 Practical results

There are two limits for this attack: the first one is to have enough information
on one curve to be able to recover only one λ for each curve, the second one
is to have enough information on all the curves to recover only one possibility
for the least significant bits. The following tables will give some examples where
the attack is feasible or not. We can note that the attack is more efficient on
larger modulus size. Table 5 gives the results in the case e = 3. In that case,
only a ratio of bits has to be known in each randomized exponent. In practice, if
side channel attack is possible on a CLNW or VLNW splitting method, we may
obtain a better ratio than detailed in the table.

Table 6 gives the results for e = 216 + 1. In that case, as explained in sec-
tion 4, the attack has better complexity if 2-bit windows are obtained for one
randomized exponent. Such information may be obtained with the CLNW or
VLNW splitting algorithms. For the optimized method to be more efficient than
exhaustive search, the number of 2-bit windows should be twice the length of
the random value λ used to randomized the private exponent.

The fifth column is computed by using the formula n/(2r) � `. For each
parameter, 50 curves are sufficient in practice, without considering imperfect
input data.

In conclusion we can see that for classical size and reasonable information
leaking, the attack is feasible and of low complexity.

13

Modulus `, size 1/r, ratio of partially attack
size of random known information success

512 20 1/16 no
1024 20 1/16 yes

32 1/16 no
2048 20 1/32 yes

32 1/64 yes

Fig. 5. Practical results for e = 3.

Modulus `, size number of 2-bit 1/r, ratio of partially attack
size of random windows known information success

512 20 40 1/16 no
1024 20 40 1/16 yes

32 64 1/16 yes
2048 32 64 1/32 yes

Fig. 6. Practical results for e = 216 + 1.

6 Acknowledgments

The authors would like to thank the anonymous referees for many useful com-
ments on the first version of this paper.

References

1. D. Boneh, G. Durfee, and Y. Frankel. An attack on RSA given a fraction of
the private key bits. In K. Ohta and D. Pei, editors, Advances in Cryptology –
Asiacrypt’98, volume 1514 of LNCS, pages 25 – 34. Springer-Verlag, 1998.

2. J. Bos and M. Coster. Addition Chain Heuristics. In G. Brassard, editor, Advances
in Cryptology – Crypto 1989, volume 435 of LNCS, pages 400 – 407. Springer
Verlag, 1989.

3. D. E. Knuth. The Art of Computer Programming, Vol 2: Semi Numerical Algo-
rithms. Addison Wesley, 1969.

4. C. K. Koç. High Speed RSA Implementation. Technical report, Tech Rep. 201,
RSA Laboratories, 1994.

5. C. K. Koç. Analysis of Sliding Window Technique for Exponentiation. Computers
and Mathematics with Applications, 10(30):17 – 24, 1995.

6. P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Others Systems. In N. Koblitz, editor, Advances in Cryptology – Crypto ’96,
volume 1109 of LNCS, pages 104 – 113. Springer-Verlag, 1996.

7. T. S. Messerges, E. A. Dabbish, and R. H. Sloan. Power Analysis Attacks of Modu-
lar Exponentiation in Smartcard. In Ç. K. Koç and C. Paar, editors, Cryptographic
Hardware and Embedded Systems – CHES 2000, volume 1717 of LNCS, pages 144
– 157. Springer-Verlag, 1999.

14

8. D. R. Stinson. Some Baby-Step Giant-Step Algorithms for the Low Hamming
Weight Discrete Logarithm Problem. Mathematics of Computation, 71:379 – 391,
2002.

9. C. D. Walter. Sliding Windows Succumbs to Big Mac Attack. In Ç. K. Koç and
C. Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2001,
volume 2162 of LNCS, pages 286 – 299. Springer-Verlag, 2001.

10. C. D. Walter. Seeing through MIST Given a Small Fraction of an RSA Private
Key. In M. Joye, editor, CT-RSA 2003, volume 2612 of LNCS, pages 391 – 402.
Springer-Verlag, 2003.

A When few bits are missing

In this appendix, we show that when the number of missing bits is small, we
can recover missing bits of d by using a discrete log based algorithm. Stinson
describes and analyzes several algorithms due to Heiman and Odlyzko and Cop-
persmith in [8]. Let m be the number of missing bits of x = logα β and t is the
Hamming weight of x. Heiman and Odlyzko describe a meet-in-the-middle at-
tack. We search Y1 and Y2 ⊆ Zm such that αval(Y1) = β(αval(Y2))−1 mod N where
val(Yi) =

∑
j∈Yi

2j by ranging through all Y1 and Y2 such that |Y1| = |Y2| = t/2.
As there are

(
m
t/2

)
such sets Y1 and Y2, the space and time complexity of the

attack is of order O(
(

m
t/2

)
). Moreover, if we have only an upper bound t′ on t,

we have to run through all t = 1 to t = t′ and the time complexity becomes
O(

∑t′

t=1

(
m
t/2

)
) = O(t′

(
m

t′/2

)
).

Coppersmith’s algorithm, described in [8], allows one to lower the time com-
plexity to O(m

(
m/2
t/2

)
) and the space complexity to O(

(
m/2
t/2

)
). The idea is to use

an (m, t)-splitting system for Zm. Such combinatorial structure is a pair (X,B)
with the following properties:

1. |X| = m, and B is a set of subsets of size m/2 of X, called blocks
2. for every Y ⊆ X s.t. |Y | = t, there exists a block B ∈ B s.t. |B ∩ Y | = t/2

Coppersmith shows that there exists an (m, t)-splitting system of size m/2.
Therefore by picking Y1 ⊆ Bi for all Bi ∈ B and Y2 ∈ Zm \ Bi for any t-set Y2

in Zm \Bi the same algorithm finds the matching in time O(
(
m/2
t/2

)
).

The last algorithm can be adapted to work mod N where N is a RSA
modulus and when the missing bits are not consecutive. The memory complexity
is O(m

(
m/2
t/2

)
) where t is the number of 1 bits among m bits.

Consequently, if we assume that in the m missing bits, one of two are a
one, then t = m/2. Therefore, the complexity is O(m2

(
m/2
m/4

)
). Since,

(
N

N/2

)
≈√

2/π · 2N , then the complexity becomes O(m2 · 2m/2), and in practice, we can
only deal with m ≈ 128.

15

