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ABSTRACT
In this paper, we study the security of a practical random-
ness extractor and its application in the tls standard. Ran-
domness extraction is the first stage of key derivation func-
tions since the secret shared between the entities does not
always come from a uniformly distributed source. More pre-
cisely, we wonder if the Hmac function, used in many stan-
dards, can be considered as a randomness extractor? We
show that when the shared secret is put in the key space of
the Hmac function, there are two cases to consider depend-
ing on whether the key is larger than the block-length of the
hash function or not. In both cases, we provide a formal
proof that the output is pseudo-random, but under different
assumptions. Nevertheless, all the assumptions are related
to the fact that the compression function of the underlying
hash function behaves like a pseudo-random function. This
analysis allows us to prove the tls randomness extractor
for Diffie-Hellman and RSA key exchange. Of independent
interest, we study a computational analog to the leftover
hash lemma for computational almost universal hash func-
tion families: any pseudo-random function family matches
the latter definition.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption[Standards]

General Terms
Security

Keywords
key extraction, randomness extraction, Hmac, TLS

1. INTRODUCTION
Randomness extraction is the first stage of key deriva-

tion mechanisms. After the key exchange protocol, entities
share a secret element of a distribution, called source in the
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sequel, but the entropy of this source is not maximal in gen-
eral. This means that it is not a uniformly distributed bit
string. For example, the Decisional Diffie-Hellman assump-
tion guarantees that a Diffie-Hellman element is a uniformly
distributed element in the group but its binary represen-
tation is not a uniformly distributed bit string in {0, 1}n

(where n is the bit-size of the element). Consequently, the
secret element cannot be just plugged as a secret key in a
symmetric scheme. To transform this high entropy source
into a bit string with maximal entropy, or at least indis-
tinguishable from a maximal entropy bit string, randomness
extractors come to play. This transformation condenses the
entropy source by generating a bit string smaller than the
input source. Even if they are not designed toward this secu-
rity goal, many standards use hash functions or MACs (see
for example [9, 10, 18, 19]) also for this task since they are
already implemented in cryptographic products and so do
not require to implement other functions. The reason why
they have been considered for this is that MAC functions are
usually thought as being good pseudo-random functions and
that they condense their input. Here, we study the Hmac
function as a randomness extractor. The main application
we target is the proof of the randomness extractor of the
new draft-version of tls standard, namely tls v.1.2 [11]. In
this standard, Hmac is an intermediate function used in the
randomness extraction function, and it is not difficult to see
that the security of this function as a randomness extractor
reduces to the security of Hmac as a randomness extractor.
The key generation in the new tls version 1.2 is not very
different from the key generation in the previous tls version
1.1 however we focus here in the emerging version. There
is a small difference in the derivation function used, but the
main difference relies on the specific hash functions in used
and some of our results could be adapted but one has to be
careful on the output size of the hash functions.

1.1 Related works
There is some well-known extractor, the Leftover Hash

Lemma [15], which can be applied on any source with high
entropy. Such an extractor is particularly interesting since
it can be built under standard assumption. The use of this
lemma on the Diffie-Hellman source has been proposed by
Gennaro et al. in [14]. But, for this particular source, there
also exists simple and efficient extractor provided the group
size is sufficiently large. For instance, in [8], Chevassut et
al. show that for safe prime numbers, a simple extractor on
the group of squares can be done whose output is perfect.
Later, Fouque et al. in [13], extended this result to large
subgroups by simply taking the high or low order bits of



the group elements. This result is achieved using characters
and exponential sums as proposed by Canetti et al. in [6,
7]. Such constructions are very simple but not so efficient as
the Leftover Hash Lemma since the subgroup is always very
large. Consequently, the key exchange is not very efficient.

In [12], Dodis et al. were the first to consider randomness
extraction as an important stage of key derivation mecha-
nisms. They study how classical cryptographic primitives,
such as MACs or hash functions, behave as randomness ex-
tractors. More precisely, they reduce the security of ran-
domness extraction to the assumption that the compression
function behaves like a good randomness extractor, namely
like an almost universal hash function family.

One widely used MAC function is the Hmac function,
hash-based Message Authentication Code, proposed by Bel-
lare et al. in [3]. In [2] Bellare shows that Hmac is a
pseudo-random function under the whole assumption that
the compression function is a pseudo-random function.

Finally, the tls key exchange has been studied by Jonsson
and Kaliski in [17], for the security of RSA Encryption in the
random oracle model. They prove that the key exchange in
tls is an IND-CCA2 tagged key encapsulation mechanism,
with the assistance of a “partial-RSA decision oracle”, under
the assumptions that both the key extraction and derivation
functions are random functions and that RSA is hard to in-
vert. Here we focus on a security proof of the key extraction
function in the standard model.

1.2 Our Results
In this paper, we study the situation where the common

secret is used as the secret key of Hmac. We show that in
this case, for any input of Hmac, the output is indistinguish-
able from a random bit string, namely it is a pseudorandom
string. This construction is used in tls and therefore is of
practical interest. More precisely, we give theoretical secu-
rity results on this construction for Hmac and then refor-
mulate these results for the particular case of tls. We focus
on the practical security of the tls extraction function when
sha-384 is used and prove that in this case we can obtain a
124-bit security with RSA and Diffie-Hellman key exchange.

The construction we study is different from the one stud-
ied in [12]. In [12], there is a proof for Hmac as a ran-
domness extractor but when the source is injected in the
message space, with a random but known key. Whereas our
construction is used in the tls key extraction, the latter
construction is used in the IPSec standard. In the IPSec
construction, the shared key length can be larger than the
block length. For example, in Hmac-sha-1 the block-size
is 512 bits and a shared Diffie-Hellman element is at least
1024-bit long, therefore it is splitted over at least two blocks.
Consequently, the hash function must be iterated and the re-
sults of [12] require high conditional min-entropy of at least
one block. That means that, in our example, the entropy
of the most significant bits of the Diffie-Hellman element is
high, even when the least significant bits are given. This re-
sult can be achieved following result of [13] but it requires a
large subgroup. With our technique, we avoid this drawback
and, as in the Leftover Hash Lemma, we require only that
some entropy is present in the group element. We are always
able to extract the entropy diluted in the whole bit string.
Therefore, we can use groups with rather small prime order
subgroups, which allows much more efficient key exchange
protocols.

In this work, we use some computational assumptions,
notably the classical assumption in cryptography that the
compression function is a pseudo-random function. This as-
sumption has also been done by Bellare et al. in [3, 2].

In [2], Bellare introduced the notion of computationally
almost universal hash function. We extend this notion and
prove a computational analog of the famous Leftover Hash
Lemma, which allows to extract entropy easily. Since any
pseudo-random function (prf) is also computationally al-
most universal, therefore a strong key (i.e. computationally
indistinguishable from a true random bit string) is derived
from any good entropy source using a good prf. The only
restriction is on the size of the output on the prf: the lat-
ter should be smaller than the prf key size, otherwise the
advantage of the prf is not small enough to be used with
the Leftover Hash Lemma. This means that this result has
a practical impact for truncated iterated hash functions, as
sha-384 or Hmac-sha-384. This justifies, with reasonable
computational assumptions, the use of these hash functions
in practice to derive keys.

Finally, the Hmac standard imposes that if the key is
larger than the block-length, Hmac begins by hashing the
secret to reduce it, and then the result is put as the key of
Hmac. Therefore, to be complete, there are actually two
cases to consider depending on whether the key is larger
than the block-length of the hash function or not. If the
common secret is larger than the block-length, we show that
hashing the secret key allows us to extract entropy whose
distribution is indistinguishable from a random bit-string.
Then, we use the recent results of Bellare [2] at Crypto 2006,
to show that the output of Hmac is pseudo-random. As far
as we know, we are the first to study this particular case.

If the shared secret is smaller than the block size, two bit
strings are generated and then used to key an intermedi-
ate pseudorandom function Nmac. As pointed out by Bel-
lare [2], assuming that these keys are chosen independently
is not true for Hmac since they are derived from a single
bit string. Instead, we show that these strings are compu-
tationally indistinguishable from two random bit strings.

Note that the both cases may append in practice: the
Diffie-Hellman key exchange over Z

⋆
p (with p a prime) gener-

ates a key of at least 1024 bits, which is greater than the 512-
bit Hmac-sha-1 key size, whereas the elliptic curve Diffie-
Hellman key exchange generates a key of generally exactly
512 bits.

1.3 Organization of the Paper
In section 2, we give useful notations and security defi-

nitions. Then, we give the main security results for Hmac,
tearing apart the case when the key is smaller than the block-
length and the case when it is longer. Finally, we apply the
method presented in section 3 to give theoretical and prac-
tical security results for the tls key extraction function.

2. NOTATIONS AND DEFINITIONS
Notations. If X is a random variable taking values in X

and drawn according to the distribution D then X
D
← X

denotes the choice of X in X according to D and X
$
← X

denotes the choice of X when X is uniformly distributed in
X . The uniform distribution on {0, 1}κ is denoted by Uκ.

When an adversary A can interact with an oracle O and
at the end of the interaction outputs b, it is denoted by



AO ⇒ b. If B and C are two events, the probability that the
event B occurs, knowing the event C is denoted by Pr[B : C].
When an adversary is involved in an event, the probability
is considered upon the adversary random coins.

Min-Entropy, Universal Hash Family and Random-
ness Extractor.

Let X be a random variable with values in a set X . The
guessing probability of X, denoted by γ(X), is the proba-
bility maxx∈X (Pr[X = x]). The min entropy of X denoted
H∞(X) is equal to − log2(γ(X)).

Let D1 and D2 be two distributions on the same set X .
The statistical distance between D1 and D2 is:

SD(D1,D2) =
1

2

X

x∈X

˛̨
˛̨
˛ Pr
X

D1
←X

[X = x]− Pr
X

D2
←X

[X = x]

˛̨
˛̨
˛ .

Let Ext be a function family from {0, 1}d × {0, 1}n into
{0, 1}ℓ. Let i be a uniform random variable in {0, 1}d and Uℓ

denote a random variable uniformly distributed in {0, 1}ℓ.
The function family Ext is an (ε, m)-strong extractor if for all
random variables X over {0, 1}n of min entropy at least m,
with Uℓ, i and X independent: SD (〈i, Exti(X)〉, 〈i, Uℓ〉) < ε.

Presumably, the most famous way of extracting entropy
is provided by the Leftover Hash Lemma presented in [15,
16]. A variant of this lemma introduced by Dodis et al. [12]
is presented below.

Let H : {0, 1}d×{0, 1}n → {0, 1}ℓ be a family of efficiently
computable hash functions. The family H is called an ε-
almost universal hash (ε-auh) function family if for every
x 6= y in {0, 1}n, Pri∈{0,1}d [Hi(x) = Hi(y)] ≤ 1/2ℓ + ε.

Theorem 1 (Leftover Hash Lemma). Let H be an
ε-auh function family from {0, 1}d × {0, 1}n to {0, 1}ℓ. Let
i denote a random variable uniformly distributed in {0, 1}d,
Uℓ a random variable uniformly distributed in {0, 1}ℓ, and
A a random variable taking values in {0, 1}n, with i, A, Uℓ

mutually independent. Then:

SD(〈i, Hi(A)〉, 〈i, Uℓ〉) ≤
q

2ℓ(2−H∞(A) + ε)/2.

Computational Randomness Extractor. A computa-
tional randomness extractor (cre) is an extension of ran-
domness extractor where the output is computationally in-
distinguishable from the uniform variable. This notion has
also been implicitly used in [15, 12]. It is a function family
cExt from {0, 1}d × {0, 1}n × Dom to {0, 1}ℓ that satisfies
the following game. At the beginning, the challenger chooses
uniformly at random a bit b and a random d-bit string i. Ac-
cording to the value of b, he assigns ext to a random function
taken in F(n,ℓ), the set of all functions from {0, 1}n to {0, 1}ℓ,
or to the randomness extractor cExti. Then the adversary
sends to the challenger an efficiently samplable probabil-
ity distribution D over {0, 1}n whose min-entropy is greater
than m and possibly a label label ∈ Dom. The challenger
chooses x according to the distribution D and sends to the
adversary (i, ext(x, label)). Finally, the adversary outputs a
random bit b′ for her guess of b. Her advantage, denoted
advcrecExt (A), is:
˛̨
˛Pr[Aext ⇒ 1: ext

$
← cExt]− Pr[Aext ⇒ 1: ext

$
← F(n,ℓ)]

˛̨
˛

This notion directly implies the semantic security, against
a passive adversary, of a key generated with a computational

randomness extractor from a high-entropy random source.
Indeed, if an adversary is able to attack the semantic se-
curity of the key, then it is able to distinguish this com-
putational randomness extractor from a perfectly random
function. Therefore, if a good computational randomness
extractor is used to generate the key, the semantic secu-
rity of the key is guaranteed. If authentication techniques
are used, the key exchange security against an active adver-
sary reduces to the security against a passive adversary and
therefore the semantic security of the key is guaranteed even
against an active adversary.

Computational Almost Universality. Let F : Keys ×
Dom → Rng be a function family. We generalize here the
definition of [2]. The goal of a m-au adversary A is to gener-
ate an efficiently samplable distribution D over Dom2 with
min-entropy at least m such that, for a random key K and
a random couple (M1, M2) chosen according to D in Dom2,
FK(M1) and FK(M2) collision with high probability. Her
m-au-advantage, denoted advm−auF (A), is:

Pr

"
F (K, M1) = F (K,M2)

M1 6= M2
:

A⇒ D; K
$
← Keys

(M1, M2)
D
← Dom2

#
.

Note that Bellare’s definition is the particular case when
m, the min-entropy of D, equals 0. When m ≥ 1, this is
a weaker notion than the original one, because every m-au
adversary can be turned into a 0-au adversary with the same
running-time and the same advantage (the 0-au adversary
runs the m-au adversary, chooses (M1, M2) according to D
and sends it to the challenger).

Pseudo-Random Function. Let F : Keys×Dom→Rng
be a function family. We denote by F = F(Dom,Rng) all the
functions from Dom to Rng. The goal of a prf-adversary
A, which runs in time T , against F is to guess the value of
b in the following game. The challenger chooses a bit b at
random; if b = 1 he assigns f to a random function from F
otherwise he chooses a random key K in Keys and assigns
f to F (K, ·). The adversary can interact with f making up
to q queries xi and receives f(xi). The prf-advantage of A,
denoted adv

prf

F (A), is:
˛̨
˛Pr
h
AF (K,·) ⇒ 1: K

$
← Keys

i
− Pr

h
Af ⇒ 1: f ← F

i˛̨
˛ .

Prefix-freeness. Let S be a set of bit strings and let
x and x′ be a couple of bit string from S , we denote by
x ⊂ x′ the fact that x is a prefix of x′. A distribution D
over S is prefix-free if for all couple (x, x′) ∈ S2 such that

Pr
h
(X, X ′) = (x, x′) : X

D
← S ,X ′

D
← S

i
> 0, x ⊂ x′ implies

x = x′. The set S is prefix-free if for all couples (x, x′) ∈ S2,
x ⊂ x′ implies that x = x′. An adversary is said prefix-free
if the set of its queries form a prefix-free set and if it outputs
only prefix-free distributions.

3. HMAC SECURITY AS A KEY DERIVA-
TION FUNCTION

3.1 Description of Hmac

3.1.1 The cascade construction
The cascade construction is the construction used for iter-

ated hash functions. We denote by H : {0, 1}κ × {0, 1}∗ →



{0, 1}κ such a hash function and by h : {0, 1}κ × {0, 1}b →
{0, 1}κ the so-called compression function. The cascade con-

struction of h is the function h∗ : {0, 1}κ ×
`
{0, 1}b

´∗
→

{0, 1}κ, defined by:

y0 = a, yi = h(yi−1, xi) and h∗(a, x) = yn

where x = (x1, . . . , xn) is a n · b bit string and a ∈ {0, 1}κ.
To construct H , a way to pad messages to an exact multiple
of b bits needs to be defined. In practice this padding is
a function of the length of the input x, |x|. We denote
by pad(|x|) the function induced by the padding and by
xpad = x‖pad(|x|). The function H is defined by H(a, x) =
h∗ (a, xpad).

Let 1 ≤ t ≤ κ be an integer. In the following, for any
function with range {0, 1}κ, we denote F the function F
for which the κ − t least significant bits of the output are
truncated, that is if msbt (·) denote the t most significant bits
of a bit string, for every input x, F (x) = msbt (F (x)). We
mostly use this notation for h∗ and H (the reader may think
about sha-384 which is a truncated iterated hash function
for which t = 384 and κ = 512).

3.1.2 Nmac
Nmac is a hash function family from {0, 1}κ × {0, 1}κ ×
{0, 1}∗ to {0, 1}c. It is constructed from a (possibly trun-
cated) iterated hash function Hash from {0, 1}κ × {0, 1}∗

to {0, 1}c. If (k1, k2) ∈ ({0, 1}κ)2 is a couple of keys and
x ∈ {0, 1}∗ the input, the definition of Nmac is:

Nmac
Hash(k1, k2, x) = Hash (k2, Hash(k1, x)) . (1)

The hash function family Hash can be either a classical or
a truncated iterated hash function family, that is Hash = H
and c = κ or Hash = H and c = t. In these cases equation (1)
becomes:

Nmac
H(k1, k2, x) = h∗

“
k2, h

∗ (k1, xpad)pad

”

= h (k2, h
∗(k1, xpad)pad) ,

Nmac
H(k1, k2, x) = h∗

“
k2, h∗ (k1, xpad)pad

”

= h
`
k2, h∗(k1, xpad)pad

´
.

From now on, we assume that the padded message obtained
from any κ-bit query is never larger then b bits (it is the
case in practice). This explains the last equality.

3.1.3 Hmac
Hmac is a hash function from {0, 1}∗ ×{0, 1}∗ to {0, 1}κ.

Let ipad and opad be two b-bit strings and IV be a κ-
bit string. If the key k is a bit string from {0, 1}b, then
HmacHash

IV (ipad, opad; k, x) is equal to:

Hash
“
IV,

ˆ
k ⊕ opad

˜‚‚Hash
`
IV, [k ⊕ ipad]‖x

´”
. (2)

The bit strings opad, ipad and IV are constants defined
in the Hmac standard [5], but in the following we assume
that ipad and opad could vary and are chosen uniformly at
random. In practice, these variables were chosen at random
once for all when the standard was defined. The conse-
quences of this assumption in practice are discussed in de-
tails in subsection 4.2.2. In the following we denote as index
of Hmac the fixed value IV and we put between the brackets
variables ipad and opad which are chosen randomly.

If k is a b-bit string, in the cases when Hash = H and
Hash = H , definition (2) can be restated using Nmac, and

then HmacH
IV (ipad, opad;k, x) and HmacH

IV (ipad, opad;k, x)
are respectively equal to:

Nmac
H (h(IV, k ⊕ ipad), h(IV, k ⊕ opad), x) ,

Nmac
H (h(IV, k ⊕ ipad), h(IV, k ⊕ opad), x) .

Note that these equations are not exactly true because
the padding is not exactly the same in Hmac and in Nmac:
in Hmac one block key is concatenated to the message and
this changes the length of the hash function input and then
changes the associated padding. However, to simplify the
notations, we can omit this particularity since it does not
alterate the results.

If k is not a b-bit string, then it is first transformed into
a b-bit string. If k is smaller than b bits, then it is first
padded with as many ’0’ as needed to obtain a b-bit string
; the resulting bit string is used as a key, as defined in (2).
If k is longer than b bits, as we explain in the introduction,
the Hmac standard [5] imposes to first hash k using Hash to
obtain a c key digest ; since c ≤ b in practice, the key digest
is padded with b− c ’0’ and the resulting b-bit string is used
as a key, as defined in (2).

3.1.4 The key extraction construction
In this paper we study the following construction used for

key derivation: let pmk denote a high entropy s-bit string
called the premaster-secret, label some bit string possibly
adversarily generated, opad the fixed bit string as described
in the Hmac standard [5] and mk the master-key generated
by this construction. The two variables ipad and opad are
chosen uniformly at random and mk is computed as follows:
mk = HmacHash

IV (ipad, opad; pmk, label). We show that this
construction is a good computational randomness extractor
that is that the triplet (ipad, opad;mk) is indistinguishable
from a random bit string. As the definition of Hmac de-
pends on the size of the pmk, our proof is also pmk depen-
dent: the proof method is not exactly the same if pmk is
smaller that the block size or if it is longer.

3.2 When the Shared Key is Smaller Than the
Block Length

The study of this case is motivated by the use in practice of
elliptic curve Diffie-Hellman key exchange. The premaster-
secret pmk generated is then presumably 512-bit long, and is
smaller than the block-length. We directly show that Hmac
is a randomness extractor when it is used with H and H .

3.2.1 Hmac with H

Firstly we show that, for a key smaller than the block size,
Hmac is a good randomness extractor when it is used with
H . For the proof see the appendix A. We underline that
in this theorem we assume that ipad and opad are chosen
uniformly at random, that h(k, ·) is a prf when k is the key,
and that h(IV, · ⊕ k) is a prf when k is the key.

Theorem 2. Let IV be a fixed κ-bit string and let h be a
function family from {0, 1}κ × {0, 1}b to {0, 1}κ, where the
key is the first input on κ bits. Let h′ be the hash func-
tion defined by h′IV (pad, ·) = h(IV, · ⊕ pad) where the key is
pad. Let A be a cre-adversary against the construction that
has time-complexity at most T , generates labels of at most
ℓ blocks and a key of at most 1 block and min-entropy m.



Then there exist one prf-adversary A1 against h′ and two
prf-adversaries A2 and A3 against h such that advcre

HmacH (A)
is upper bounded by:

q
22κ

`
2−m + 2 · adv

prf

h′ (A1)
´

2
+

1

2κ

+ adv
prf

h (A2) + 2ℓ · adv
prf

h (A3)

where A1 makes two queries with time-complexity T + 2Th,
A2 makes one query with time-complexity T and A3 makes
at most 2 queries with time-complexity O(ℓ · Th), where Th

is the time for one computation of h.

The main ideas of the proof is to show that the two bit-
strings k1 = h(IV, ipad ⊕ k) and k2 = h(IV, opad ⊕ k) are
pseudorandom and independent and then to use them to key
Nmac as a prf. Firstly, contrary to [4] where it is assumed
that k1 and k2 are computationally independent, we prove
it using the following hash function family:

F = (h(IV, · ⊕ ipad)‖h(IV, · ⊕ opad))(ipad,opad)

which is a prf and therefore it is cau. More precisely, there
exists a prf-adversary A1 against h′ such that the advan-
tage of the cau-adversary against F is upper bounded by
2adv

prf

h′ (A1) + 1/22κ. Then we can apply a computational
variant of the Leftover Hash Lemma to F to extract the
entropy of the key and thus show that the output is indis-
tinguishable from a random bit string.

The computational Leftover Hash Lemma is the following:

Lemma 1 (computational LHL). Let H be a family
of functions from {0, 1}k × Dom to {0, 1}t such that for
every au-adversary B, running in time T and producing a
distribution over Dom × Dom of min-entropy at least 2m,
advcauH (B) ≤ 1/2t + ε. Then for every adversary A run-
ning in time O(T ) producing a distribution of min-entropy
at least m:

adv
cre
H (A) ≤

p
2t · (2−m + ε).

The proof of this lemma is in appendix C. Note that if ε
were greater than 2−2κ, we would have 22κ · ε ≥ 1 and the
upper bound would be meaningless. We need that ε≪ 2−2κ,
that is why we make ipad and opad vary and not only IV as
we would have preferred to have one assumption on h. In-
deed, making the IV vary is equivalent to consider h as a prf
when the key is IV . Yet, the exhaustive search prf-adversary
against h has a prf-advantage which is equal to O(2−κ). It
means the better prf-adversary against h has an advantage
better than O(2−κ), where κ is the key size. Therefore, as-
suming that h is a prf is not enough, whereas, since ipad
and opad are large, h′ security level may be sufficient.

In the previous step of the proof, we have generated with
F , two (concatenated) computationally pseudorandom and
independent κ-bit strings which can be used to key Nmac.
Thus, we can use the fact that Nmac is a prf. When Nmac
is used with a classical iterated hash function, this fact was
proved by Bellare [2]:

Lemma 2. Let h : {0, 1}κ × {0, 1}b → {0, 1}κ be a family
of functions. Let ANmacH be a prf-adversary against NmacH

that makes at most q oracle queries, each of at most ℓ blocks,
and has time-complexity T . Then there exist prf-adversaries
A1 and A2 against h such that adv

prf

NmacH
(ANmacH ) is upper

bounded by:

adv
prf

h (A1) +

 
q

2

!»
2ℓ · adv

prf

h (A2) +
1

2κ

–
.

Furthermore, A1 has time-complexity at most T and makes
at most q oracle queries while A2 has time-complexity at
most O(ℓ ·Th) and makes at most 2 oracle queries, where Th

is the time for one computation of h.

3.2.2 Hmac with H

Secondly we show that, for a key smaller than the block
size, Hmac used with H is a good randomness extractor.

Theorem 3. Let IV be a fixed κ-bit string and let h be a
function family from {0, 1}κ × {0, 1}b to {0, 1}κ, where the
key is the first input on κ bits. Let h′ be the hash func-
tion defined by h′IV (pad, ·) = h(IV, · ⊕ pad) where the key is
pad. Let A be a cre-adversary against the construction that
has time-complexity at most T , generates labels of at most
ℓ blocks and a key of at most 1 block and min-entropy m.
Then there exist one prf-adversary A1 against h′ and two
prf-adversaries A2 and A3 against h such that advcre

HmacH (A)
is upper bounded by:

q
22κ
`
2−m + 2 · adv

prf

h′ (A1)
´

2
+

1

2t

+ adv
prf

h (A2) + 2ℓ · adv
prf

h (A3)

where A1 makes two queries with time-complexity T + 2Th,
A2 makes one query with time-complexity T and A3 makes
at most 2 queries with time-complexity O(ℓ · Th), where Th

is the time for one computation of h.

The proof of this theorem, which can be found in ap-
pendix A, is similar to the proof of theorem 2, but Bellare’s
result cannot be applied directly to Nmac used with H: the
output of H is much smaller than the output of H and due
to it, his proof has to be adapted. We obtain this result:

Lemma 3. Let h : {0, 1}κ × {0, 1}b → {0, 1}κ be a fam-
ily of functions. Let A

NmacH be a pf-prf-adversary against

NmacH that makes at most q oracle queries, each of at most
ℓ blocks, and has time-complexity T . Then there exist prf-
adversaries A1 and A2 against h such that the advantage
adv

pf−prf

NmacH

`
A

NmacH

´
is upper bounded by:

adv
prf

h (A1) +

 
q

2

!»
2ℓ · adv

prf

h (A2) +
1

2t

–
.

Furthermore, A1 has time-complexity at most T and makes
at most q oracle queries while A2 has time-complexity at
most O(ℓTh) and makes at most 2 oracle queries, where Th

is the time for one computation of h.

This lemma can be established with a proof similar to the
one for Hmac with H , that can be found in [2], except that
the tests are made upon the t most significant bits of the
output of H and that the adversary is constrained to output
prefix-free messages.

3.3 When the Shared Key is larger than the
block length



As explain in section 3.1, if the key is larger than the
block size, then it is first hashed and padded with ’0’ bits
to obtain a b-bit string. This case is rarely studied in Hmac
security analysis and requires that we study what is the
impact of the key hashing. However it is of practical interest
since the Diffie-Hellman key exchange over Z

⋆
p (where p is

a prime) generates a premaster-secret of at least 1024 bits,
which is greater than the 512-bit Hmac-sha-1 key size. In
this section, we focus on Hmac used with a truncated hash
function H. We first give the security results and then give
the intermediate lemmas used in the proof, in particular we
study the cascade mode as a randomness extractor.

3.3.1 Results for Hmac
The hashing of the premaster-secret has two main conse-

quences on our proof. The output is a t-bit string and as a
first consequence we have to show that a lot of the entropy
of the input is preserved: if the output had low entropy,
an exhaustive search could allow to guess the few possible
values of the key. We are more precise and show that the
output of the hashing is indistinguishable from the uniform
when Hmac is used with H.

The other consequence of the hashing is that Hmac is
keyed with a key with the b − t least significant bits equal
to ’0’. We have to show that even in these circumstances
it is still a good prf, which guarantees that the output of
Hmac is indistinguishable from the uniform. To this end,
we consider the related key attacks against h when the input
and the output are reversed.

From the function family h : {0, 1}κ×{0, 1}b → {0, 1}κ we

define the family of functions bh : {0, 1}t × {0, 1}κ → {0, 1}κ

defined by bh(x, y) = h(y, x‖0b−t).

A related-key attack on a family of functions bh : {0, 1}t ×
{0, 1}κ → {0, 1}κ is parametrized by a set Φ ⊂ F(t,t) of key-
derivation functions (where F(t,t) is the set of all functions
from {0, 1}t to {0, 1}t). In the rka game, a challenger chooses
a random bit b and a random key K. If b = 1 it chooses
a random function G from the set of all the functions from
{0, 1}t×{0, 1}κ to {0, 1}κ and uses G(K, ·). If b = 0, it uses
bh(K, ·). The goal of the rka-adversary is to guess the value
of b. She may make an oracle query of the form φ, x where
φ ∈ Φ and x ∈ {0, 1}κ and the oracle returns G(φ(K), x)

if b = 1 and bh(φ(K), x) otherwise. Her rka-advantage is
defined by:

adv
rka
bh,Φ

(A) = Pr
h
A

bh ⇒ 1
i
− Pr

h
AG ⇒ 1

i
.

For any string str ∈ {0, 1}t let ∆str : {0, 1}t → {0, 1}t be
defined by ∆str(K) = K ⊕ str.

Theorem 4. Let h be a function family from {0, 1}κ ×
{0, 1}b to {0, 1}κ. Let ipad and opad be two b-bit strings
and let Φ = {∆ipad, ∆opad}. Let A be a pf-cre-adversary
against the construction that has time-complexity at most t,
generate labels of at most ℓ blocks and a key of s ≥ 2 blocks
and min-entropy m. Then there exist a rka-adversary A2

against bh and three prf-adversaries A1, A3, A4 such that
adv

pf−cre

HmacH
(A) is upper bounded by:

q
2t
`
3 · 2−m + 2s · adv

prf

h (A1)
´

+ advrkabh
(A2)

+adv
prf

h (A3) + 2ℓ · adv
prf

h (A4) + 1
2t

where A1 and A2 make at most 2 queries and have time-
complexity t, A3 makes one query with time-complexity t and
A4 makes at most 2 queries with time-complexity O(ℓ · Th).

To show this theorem, we first apply a prefix-free com-
putational variant of the Leftover Hash Lemma to the cas-
cade construction. This result is stated in lemma 4 below.
This way we show that the output of the hashing is a ran-
dom looking t-bit string. Since h, where input and key
are reversed and where the key is restricted to the t first
bits, is a prf resistant to rka, and since the output k of
the hashing is random looking, the output of h(IV, ipad ⊕
k‖0b−t)‖h(IV, opad ⊕ k‖0b−t) is indistinguishable from the
uniform. Therefore we key with two random looking bit
strings and since Nmac is a prf, its output seems to be uni-
formly distributed. All the precise proofs of the results of
this section are in appendix B.

Note that in this proof we assume that IV is chosen at
random at the beginning of the game. On the other hand,
we do not use the fact that ipad and opad are chosen at
random at the beginning of the game. This assumption is
indeed not useful in this particular context.

3.3.2 The cascade mode is a good pf-cre
In this section we show that the cascade mode is a good

extractor of entropy, if the compression function is a prf.
The main result of this part is the following lemma, used in
the proof of theorem 4:

Lemma 4. Let A be a pf-cre-adversary against h∗ which
has a time-complexity at most T and produces a distribution
of min-entropy at least m, with messages of at most ℓ blocks.
Then there is a prf-adversary A′ with running-time at most
O(T ) and messages at most ℓ-block long such that:

adv
pf-cre

h∗
(A) ≤

q
2t · (3 · 2−m + 2ℓ · adv

prf

h (A′)).

This lemma is a direct consequence of the two lemmas 5
and 6 below.

Lemma 5. Let A∗ be a pf-au-adversary against h∗ which
generates messages of at most ℓ blocks. Then there is a prf-
adversary A against h such that:

adv
pf-au

h∗
(A∗) ≤ 2ℓ · adv

prf

h (A) +
1

2t

and A makes at most 2 queries and has about the same time-
complexity as A∗.

Lemma 6 (pf computational LHL). Let H be a fam-
ily of functions from {0, 1}k ×Dom to {0, 1}t such that for
every au-adversary B, running in time T and producing a
distribution over Dom×Dom of min-entropy at least 2m−2,
adv

pf−cau
H (B) ≤ 1/2t + ε. Then for every adversary A run-

ning in time O(T ) producing a distribution of min-entropy
at least m:

adv
pf-cre

H (A) ≤
p

2t · (3 · 2−m + ε)

Remark that ε ≥ 2−κ that is why the output of the hash
function has to be smaller than the key, that is t < κ. In-
deed, consider the following prf-adversary with running time
T and which makes two queries: she chooses at random
(x1, x2) ∈ {0, 1}b, sends it to the challenger which returns
(y1, y2). Then she chooses T = T/Tf keys K and tests for all



key if h(K, x1) is equal to y1. If it is the case, she checks if
h(K, x2) equals y2 and if it is also the case, then she returns
1, else she returns 0 at the end. Her prf-advantage is greater
than 2−κ, therefore ε ≥ 2−κ. This adversary is called the
exhaustive search adversary.

4. APPLICATIONS TO THE KEY DERIVA-
TION FUNCTION OF TLS

In this section we apply the methods and the results of
previous section to the new draft-version of tls v.1.2 [11].
We give security proofs for the key-extraction function de-
scribed in the standard, function which is very similar to the
one used in previous versions of tls.

Besides, the new tls standard promotes the use of at least
sha-256 or a stronger standard hash function. In this paper,
we focus on sha-384 and give security results addressing the
specific case of a truncated iterated hash function.

4.1 Brief Description of TLS Key Extraction
Function

In tls the key extraction is performed the following way.
Firstly the client and the server exchange two random 256-
bit strings rands and randc with 224 random bits in each.
Then the client and the server exchange a premaster key.

In the RSA key exchange, the client generates a 368-bit
random string, concatenates it to the latest version of the
protocol supported, encoded on 16 bits, and encrypts them
under the server’s RSA public key. The latter 384-bit string
is the premaster-secret. It is a 384-bit value, but there are
only 368 random bits of entropy (the 16 most significant bits
are fixed).

In the Diffie-Hellman key exchange, the client and the
server use a group G, in which the DDH assumption holds,
and then perform a DH protocol to obtain a common ran-
dom element of G. The binary representation of this element
is the premaster-secret. Note that this binary representation
is not a uniformly distributed bit string.

In both cases, we denote by pmk the premaster-secret.
Then, the so-called master-secret, denoted by mk is created.
During the first computation, the parties extract the entropy
of pmk using a function called Hprf.

The function Hprf can be any function specified by the
cipher-suite in used, but in this paper we focus on the func-
tion proposed in the standard, function which is very simi-
lar to the one used in the previous version of the protocol,
tls 1.1. This function is constructed from several concate-
nations and iterations of Hmac. For sake of simplicity, we
do not describe precisely this function here, for more details,
see [11]. The same way Hmac is derived from Nmac, func-
tion Hprf can be seen as derived from a function that we
call Nprf, that is HprfHash

ipad,opad(IV ; k, x) is equal to:

Nprf
Hash (h(IV, k ⊕ ipad), h(IV, k ⊕ opad), x) .

The same way we have shown that Hmac is a good com-
putational randomness extractor since it is the composite
of Nmac, which is a prf, with a computational randomness
extractor, we show here that Hprf is a good computational
randomness extractor since is the composite of Nprf, which
is a prf, with a computational randomness extractor. Note
that contrarily to Hmac, we only have to choose randomly
IV , ipad is fixed.

As Nprf is a concatenation and a composite of several

Nmac, the prf-resistance of Nprf can be reduced to the
prf-resistance of Nmac. The number v of concatenations
depends on the output length required by the cipher suite
and the prf-security of this number.

Theorem 5. Let u ≥ 1, t ≥ 1 and let h : {0, 1}κ ×
{0, 1}b → {0, 1}κ be a family of functions. Let A be a prf-

adversary against NprfH constructed with v concatenations

of NmacH . The algorithm A can make at most q queries,
each of at most u blocks, and has time-complexity at most
T . Then there exist a prf-adversary A′ against Nmac such
that:

adv
prf

NprfH
(A) ≤ adv

prf

NmacH

`
A′
´

+ qv2/2κ.

Besides, A′ has time-complexity at most T + O(qv) and
makes at most 2vq queries of at most u blocks.

4.2 Security Results
In this subsection, we adapt theorems of the previous sec-

tion to the case of tls.

4.2.1 Theoretical Results
First we give the security result for a long key, that is a

s-block key with s ≥ 2. Note the similarity with theorem 4.
It is proved exactly the same way, except that at the end of
the proof the Nprf prf-security is introduced and is reduced
to the prf-security of Nmac.

Theorem 6. Let h be a function family from {0, 1}κ ×
{0, 1}b to {0, 1}κ. Let ipad and opad be two b-bit strings
and let Φ = {∆ipad, ∆opad}. Let A be a pf-cre-adversary
against Hprf that has time-complexity at most T , generate
labels of at most ℓ blocks and a key of s ≥ 2 blocks and
min-entropy m. Assume that Hprf is a concatenation of v

Hmac. Then there exist a rka-adversary A2 against bh and
three prf-adversaries A1, A3, A4 such that adv

pf−cre

HmacH
(A) is

upper bounded by:
q

2t
`
3 · 2−m + 2s · adv

prf

h (A1)
´

+ adv
rka
bh

(A2)

+adv
prf

h (A3) + 4v2ℓ · adv
prf

h (A4) +
2v2

2t
+

v2

2κ

where A1 and A2 make at most 2 queries and have time-
complexity T , A3 makes 2v queries with time-complexity T
and A4 makes at most 2 queries with time-complexity O(ℓ ·
Th).

When the key is not longer than a block, similarly to
theorem 3, we could establish a security result where there
would be the term

p
22κ(2−m + ε) for some ε. This term

is small for sha-1, but it is greater than 1 in the case of
sha-384, since b = 2κ and m ≤ b. Therefore, we adapt

the security hypothesis and assume that bh is a prf resistant
against related key attacks when it is keyed with a bit string
of min-entropy at least m (m = κ for the classical rka).
That is, the aim and the power of the m-rka are the same
as the ones of a classical rka-adversary, excepted that at
the beginning of the game, the m-rka adversary generates
an efficiently samplable distribution of min-entropy at least
m, gives it to the challenger and the latter chooses the key

according to this distribution. We say that bh is resistant
against m-rka and note advm−rka

bh,Φ
(A) the advantage of a m-

rka adversary against bh.



This assumption cannot be reduced to the h prf-security
against rka. Indeed, the prf assumption requires that the
key is uniformly distributed and a good prf for a uniformly
distributed key is not necessary a good prf for a high-entropy
key. Consider the following example. Let f from {0, 1}n ×
{0, 1}n to {0, 1}n be the function family defined by fK(x) =
K ⊕ x. If K is chosen uniformly at random in {0, 1}n, the
function family f is a perfect random function family against
adversaries which are limited to ask one query. But if K =
K′‖0 where K′ is chosen uniformly in {0, 1}n−1, K is a n-bit
string with min-entropy n− 1 and f is not secure any more
against adversaries which are limited to ask one query, since
the f output least significant bit can be guessed.

Theorem 7. Let ipad and opad be two fixed b-bit string,
let Φ = {∆ipad, ∆opad} and let h be a function family from
{0, 1}κ × {0, 1}b to {0, 1}κ which is resistant against m-
rka. Let A be a cre-adversary against Hprf that has time-
complexity at most T , generate labels of at most ℓ blocks and
a key of at most 1 block and min-entropy m. Assume that
Hprf is a concatenation of v Hmac. Then there exist a m-
rka adversary A0 and two prf-adversaries A1, A2 such that
the advantage adv

pf−cre

HprfH
(A) is upper bounded by:

adv
m−rka
bh,Φ

(A0) + adv
prf

h (A1) + 4v2ℓ · adv
prf

h (A2) +
2v2

2t
+

v2

2κ

where A0 makes at most two queries with time complexity T ,
A1 makes 2v query with time-complexity T and A2 makes at
most 2 queries with time-complexity O(ℓ · Th), where Th is
the time for one computation of h.

4.2.2 Practical Security
The tls standard imposes that the master-secret is 384-

bit long. Therefore if one uses sha-384 as the underlying
hash function, v = 1, κ = 512 and t = 384. The label and
the two random nonces, when concatenated, are 616-bit long
and then smaller than the 1024-bit block of sha-384, that is
why in practice ℓ = 1.

Let h denote the compression function of sha-384. As-
sume that the best-known prf-adversary against h in time
T , is the exhaustive search adversary whose advantage is
smaller than (T/Th)/2κ. Similarly, assume that the best
known m-rka-adversary against h with time-complexity T
and with Φ = {∆ipad, ∆opad} is the exhaustive search ad-
versary whose advantage is smaller than (T/Th)/2m.

We examine, in this context, the practical security of the
key derivation, when the master-secret is smaller than the
block size and when it is longer than the block size. For a
long key of s = 2 blocks, the pf-cre-advantage of an adver-
sary in time T is smaller than

p
(T/Th) · 2−124 if m ≥ 512.

This implies a 62-bit security if m ≥ 512.
For a small key, the cre-advantage of an adversary in time

T is smaller than (T/Th)
`
2−383 + 2−m+3

´
. This implies at

least a 124-bit security if m ≥ 128.
In the case of RSA, the premaster-secret length is 384 bits

which is smaller than the 1024-bit block. As its min-entropy
is 368 bits, therefore, this case has a 124-bit security at least.

In the case of Diffie-Hellman, if the DDH assumption is
true then the result of the key exchange is indistinguish-
able for the adversary from a random element in the group.
Therefore, with the DDH assumption, if the key exchange
is performed in a subgroup G of Z

⋆
p, where p is a prime of

exactly 1024 bits, a 256-bit subgroup is enough to guaran-
tee a 124-bit security. If p is strictly larger than 1024-bit

block size, then G has to be at least a 512-bit subgroup to
guarantee a 62-bit security.

4.2.3 When the IV is not Random
Our security proofs rely on the fact that IV (and for

Hmac, ipad also) is chosen randomly every time a new
master-secret is extracted. However, IV (and ipad) are fixed
once for all in the Hmac standard [5] and cannot vary. Con-
sequently, it may seem that our proofs are not of practical
interest. Fortunately, it is not the case.

Indeed, our definition of computational randomness ex-
tractor allows the adversary to make only one query to guess
the bit b. However, one could allow the adversary to make
at most q queries with the same IV . In this case, using an
hybrid argument, it can be proven that the advantage of the
adversary is upper bounded by q times its advantage in the
one-query game.

It implies that if IV was generated randomly when the
Hmac standard was written, then the advantage of any cre-
adversary against the tls extraction function or Hmac in-
creases linearly with the number of master-secret extractions
the adversary witnesses. Such an assumption has already
been made by Barak et al. [1] with the same consequences
upon the security bound. One can found a proof of it in
the particular case of the Leftover Hash Lemma in Shoup’s
book [20] (see theorem 6.22.).

5. CONCLUSION
We have shown that Hmac is a good randomness extrac-

tor, whatever the size of the key is, even when it is greater
than the block size. These results can be applied to the secu-
rity of the tls key extraction function. Our results promote
the use of sha-384 as the hash function in the key extrac-
tion function. We can guarantee a security of 124 bits in the
case of RSA key exchange and in the case of Diffie-Hellman
key exchange with a 1024-bit prime for a 256-bit group size,
which is very reasonable. We can also guarantee a 62-bit
security in the case of Diffie-Hellman key exchange with a
prime longer than 1024 bits for a 512-bit group size.
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APPENDIX

A. SECURITY PROOF FOR SMALL KEYS
In this appendix we give the two proofs of the theorem of

subsection 3.2, when the key is smaller than the block size.
First we remind the theorem when Hmac is used with a
classical iterated hash function and give its proof, and then
remind the theorem in the case of a truncated iterated hash
function with its proof.

Theorem 2. Let IV be a fixed κ-bit string and let h be a
function family from {0, 1}κ × {0, 1}b to {0, 1}κ, where the
key is the first input on κ bits. Let h′ be the hash func-
tion defined by h′IV (pad, ·) = h(IV, · ⊕ pad) where the key is
pad. Let A be a cre-adversary against the construction that
has time-complexity at most T , generates labels of at most
ℓ blocks and a key of at most 1 block and min-entropy m.
Then there exist one prf-adversary A1 against h′ and two
prf-adversaries A2 and A3 against h such that advcre

HmacH (A)
is upper bounded by:

q
22κ

`
2−m + 2 · adv

prf

h′ (A1)
´

2
+

1

2κ

+ adv
prf

h (A2) + 2ℓ · adv
prf

h (A3)

where A1 makes two queries with time-complexity T + 2Th,
A2 makes one query with time-complexity T and A3 makes
at most 2 queries with time-complexity O(ℓ · Th), where Th

is the time for one computation of h.

Proof. Before considering the proof itself, we prove that
the hash function family

F = (h(IV, · ⊕ ipad)‖h(IV, · ⊕ opad))(ipad,opad)

is cau. Indeed since any prf-adversary A′ against h′ with
2 queries and a time-complexity T has a prf-advantage de-
noted adv

prf

h′ (A′), any prf-adversary AF against F with time-
complexity T − 2Th and with 2 queries, has a prf-advantage
which is smaller than 2adv

prf

h′ (A′). Then, it can be easily
seen that from any cau-adversary against F one can con-
struct a prf-adversary against F . This implies that any cau-
adversary against F which has a time-complexity at most
T + 2Th and generates probability distributions of at least
min-entropy at least m (for any m !), has a cau-advantage
which is upper bounded by adv

prf

F (A)+2−t, for a particular
prf-adversary A against F with two queries and same time
complexity.

Let consider now the following sequence of games.
Game 0: this game corresponds to the attack when the real
extraction is performed.

1. A sends (D, label)

2. pmk
D
← {0, 1}s, opad

$
← {0, 1}b, ipad

$
← {0, 1}b

3. (k1, k2) = (h(IV, pmk ⊕ ipad), h(IV, pmk ⊕ opad))

4. k = NmacH(k1, k2, label), send (IV, ipad, k) to A

5. A sends its guess b′

Game 1: in this game, we choose k1 and k2 uniformly at
random in {0, 1}κ.
Game 2: in this game, we choose k uniformly at random
in {0, 1}k.

Firstly, the distance between Game 0 and Game 1 can
be upper bounded using the computational Leftover Hash
Lemma with F : it is upper bounded by

q
22κ · (2−m + 2 · adv

prf

h′ (A1)).

Secondly there exists a prf-adversary A′ against Nmac which
makes at most one query and has time-complexity T such
that the distance between Game 1 and Game 2 is upper
bounded by adv

prf

NmacH
(A′). Bellare’s result implies that the

latter is smaller than adv
prf

h (A3)+2ℓ ·adv
prf

h (A4)+1/2κ.
We consider now the case when Hmac is used with an

truncated iterated hash function.



Theorem 3. Let IV be a fixed κ-bit string and let h be a
function family from {0, 1}κ × {0, 1}b to {0, 1}κ, where the
key is the first input on κ bits. Let h′ be the hash func-
tion defined by h′IV (pad, ·) = h(IV, · ⊕ pad) where the key is
pad. Let A be a cre-adversary against the construction that
has time-complexity at most T , generates labels of at most
ℓ blocks and a key of at most 1 block and min-entropy m.
Then there exist one prf-adversary A1 against h′ and two
prf-adversaries A2 and A3 against h such that advcre

HmacH (A)
is upper bounded by:

q
22κ

`
2−m + 2 · adv

prf

h′ (A1)
´

2
+

1

2t

+ adv
prf

h (A2) + 2ℓ · adv
prf

h (A3)

where A1 makes two queries with time-complexity T + 2Th,
A2 makes one query with time-complexity T and A3 makes
at most 2 queries with time-complexity O(ℓ · Th), where Th

is the time for one computation of h.

Proof. Let consider the following sequence of games.
Game 0: this game corresponds to the attack when the real
extraction is performed.

1. A sends (D, label)

2. pmk
D
← {0, 1}s, IV

$
← {0, 1}κ, ipad

$
← {0, 1}b

3. (k1, k2) = (h(pmk ⊕ ipad, IV ), h(pmk ⊕ opad, IV ))

4. k = NmacH(k1, k2, label), send (IV, ipad, k) to A

5. A sends its guess b′

Game 1: in this game, we choose k1 and k2 uniformly at
random in {0, 1}κ.
Game 2: in this game, we choose k uniformly at random
in {0, 1}k.

Firstly, the distance between Game 0 and Game 1 can be
upper bounded using lemma 1:

q
22κ · (2−m + 2 · adv

prf

h′ (A1)).

Secondly there exists a prf-adversary A′ against Nmac which
makes at most one query and has time-complexity T such
that the distance between Game 1 and Game 2 is upper
bounded by adv

prf

NmacH
(A′). Since A′ makes only one query,

she is obviously prefix-free and therefore her advantage is in
particular smaller than adv

pf−prf

NmacH
(A′). The latter is smaller

than adv
prf

h (A3)+2ℓ·adv
prf

h (A4)+
1
2t , as we prove in lemma 3.

B. SECURITY PROOF FOR LONG KEYS
In this section we give a proof of theorem 4. First we give

the proofs for the cascade mode.

B.1 The Cascade Mode

Lemma 5. Let A∗ be a pf-au-adversary against h∗ which
generates messages of at most ℓ blocks. Then there is a prf-
adversary A against h such that:

adv
pf-au

h∗
(A∗) ≤ 2ℓ · adv

prf

h (A) +
1

2t

and A makes at most 2 queries and has about the same time-
complexity as A∗.

To show this lemma, we need the following result from [4].

Lemma 7 (BKC). If D is a prefix-free prf-adversary
against h∗ that makes at most q queries, each of at most
ℓ blocks, then there is a prf-adversary A against h such that

adv
pf-prf

h∗ (D) ≤ qℓ · adv
prf

h (A)

and A makes at most q queries and has about the same time
complexity as D.

We can now prove the lemma.

Proof. Let D be the following prf-adversary:
Adversary Dh∗

(M1, M2)← A∗

Send (M1, M2) to the challenger C, the latter answers
(h∗(M1), h

∗(M2)).
If msbt (h∗(M1)) == msbt (h∗(M2)) then return 1, else

return 0.
Note that adv

pf−au

h∗
(A∗) − 2−t ≤ adv

pf−prf
h∗ (D) and that D

makes at most 2 queries. If A∗ is prefix-free and the mes-
sages are at most ℓ-block-long, lemma 7 gives us a prf-
adversary A against h such that:

adv
pf−prf
h∗ (D) ≤ 2ℓ · adv

prf

h (A)

The lemma follows.

Besides we need this lemma.

Lemma 6 (pf computational LHL). Let H be a fam-
ily of functions from {0, 1}k ×Dom to {0, 1}t such that for
every au-adversary B, running in time T and producing a
distribution over Dom×Dom of min-entropy at least 2m−2,
adv

pf−cau
H (B) ≤ 1/2t + ε. Then for every adversary A run-

ning in time O(T ) producing a distribution of min-entropy
at least m:

adv
pf-cre

H (A) ≤
p

2t · (2−m + ε).

This lemma can be proven similarly as the proof of the
original Leftover Hash Lemma that can be found in [20].
However, due to the prefix-freeness assumption, one have to
adapt the proof. All the details are in the last appendix.

As a direct consequence of the two above lemmas, we have
the following result.

Lemma 4. Let A be a pf-cre-adversary against h∗ which
has a time-complexity at most T and produces a distribution
of min-entropy at least m, with messages of at most ℓ blocks.
Then there is a prf-adversary A′ with running-time at most
O(T ) and messages at most ℓ-block long such that:

adv
pf-cre

h∗
(A) ≤

q
2t · (3 · 2−m + 2ℓ · adv

prf

h (A′)).

B.2 The case of Hmac

Theorem 4. Let h be a function family from {0, 1}κ ×
{0, 1}b to {0, 1}κ. Let ipad and opad be two b-bit strings
and let Φ = {∆ipad, ∆opad}. Let A be a pf-cre-adversary
against the construction that has time-complexity at most t,
generate labels of at most ℓ blocks and a key of s ≥ 2 blocks
and min-entropy m. Then there exist a rka-adversary A2

against bh and three prf-adversaries A1, A3, A4 such that
adv

pf−cre

HmacH
(A) is upper bounded by:

q
2t
`
3 · 2−m + 2s · adv

prf

h (A1)
´

+ advrkabh
(A2)

+adv
prf

h (A3) + 2ℓ · adv
prf

h (A4) + 1
2t



where A1 and A2 make at most 2 queries and have time-
complexity t, A3 makes one query with time-complexity t and
A4 makes at most 2 queries with time-complexity O(ℓ · Th).

Proof. Let consider the following sequence of games.
Game 0: this game corresponds to the attack when the real
extraction is performed.

1. A sends (D, label)

2. pmk
D
← {0, 1}s, IV

$
← {0, 1}κ, K = H(IV, pmk)

3. (k1, k2) =
“
bh(K ⊕ ipad, IV ),bh(K ⊕ opad, IV )

”

4. k = NmacH(k1, k2, labels), send (IV, k) to A

5. A sends its guess b′

Game 1: in this game, we choose K uniformly at random
in {0, 1}t.
Game 2: in this game, we choose k1 and k2 uniformly at
random in {0, 1}κ.
Game 3: in this game, we choose k uniformly at random
in {0, 1}k. It corresponds to the attack when the extraction
is performed thanks to a random function.

As A is prefix-free, the distance between Game 0 and
Game 1 can be upper bounded using lemma 4: it is upper

bounded by
q

2t · (2−m + 2s · adv
prf

h (A1)). The distance be-

tween Game 1 and Game 2 is upper bounded by advrkabh,Φ
(A2).

As A is prefix-free, there exists an adversary A′ making at
most 1 query of length at most ℓ blocks with time-complexity
approximately t and distance between Game 1 and Game 2
is upper bounded by adv

pf−prf

NmacH
(A′). The latter is smaller

than adv
prf

h (A3)+2ℓ ·adv
prf

h (A4)+ 1
2t (where A3 and A4 are

as described in the theorem) as we proved in lemma 3.

C. PROOF OF THE CLHL

C.1 The cLHL

Lemma 1 (computational LHL). Let H be a family
of functions from {0, 1}k × Dom to {0, 1}t such that for
every au-adversary B, running in time T and producing a
distribution over Dom × Dom of min-entropy at least 2m,
advcauH (B) ≤ 1/2t + ε. Then for every adversary A run-
ning in time O(T ) producing a distribution of min-entropy
at least m:

adv
cre
H (A) ≤

p
2t · (2−m + ε).

Proof. Let A be a pf-cre-adversary against H which out-
puts distributions of min-entropy at least m, let E1 and E2

denote respectively the events


K ← UKeys, A⇒ DA,
X ← DA, Y = H(K,X)

ff
,


K ← UKeys, A⇒ DA,

Y ← URng

ff
.

Let δ = adv
pf−cre
H (A), that is:

δ = Pr [A(K, Y )⇒ 1: E1]− Pr [A(K,Y )⇒ 1: E2] .

To show lemma 6 we successively show:

1 + δ2

2k · 2t
≤ Pr

»
K = K′

Y = Y ′
: E

–
(3)

Pr

»
K = K′

Y = Y ′
: E

–
≤

1

2k

„
2−m +

1

2t
+ ε

«
(4)

where

E′1 =


K′ ← UKeys, A⇒ D

′
A,

X ′ ← D′A, Y ′ = H(K′, X ′)

ff
, E = E1 ∧E′1.

With these two results it is easy to conclude.
To show the first result, we remark that δ is equal to:

X

y,k

Pr

2
4

A(k, y)⇒ 1
K = k
Y = y

: E1

3
5− Pr

2
4

A(k, y)⇒ 1
K = k
Y = y

: E2

3
5 .

Since the way (k, y) is chosen is independent of the event
A(k, y)⇒ 1 knowing that A⇒ DA, this can be restated as:

X

y,k

Pr[A(k, y)⇒ 1: A⇒ DA]

·

„
Pr

»
K = k
Y = y

: E1

–
−

1

2k · 2t

«
.

Let denote by qk,y :

1

δ
· Pr[A(k, y)⇒ 1: A⇒ DA]

·

„
Pr

»
K = k
Y = y

: E1

–
−

1

2k · 2t

«
.

As
P

k,y qk,y = 1, we have 1
2k·2t

≤
P

k,y q2
k,y and then:

1

2k · 2t
≤

1

δ2

X

k,y

„
Pr [K = k ∧ Y = y : E1]−

1

2k · 2t

«2

≤
1

δ2

0
@X

k,y

Pr [K = k ∧ Y = y : E1]
2 −

1

2k · 2t

1
A

Therefore, it follows immediately the first result:

1 + δ2

2k · 2t
≤

X

k,y

Pr [K = k ∧ Y = y : E1]
2

≤ Pr
ˆ
K = K′ ∧ Y = Y ′ : E

˜

We now upper bound Pr [K = K′ ∧ Y = Y ′ : E]. This col-
lision probability is equal to:

Pr

»
K = K′ :

K ← UKeys

K′ ← UKeys

–

· Pr

2
4H(K, X) = H(K, X ′) :

A⇒ DA, X ← DA,
A⇒ D′A, X ′ ← D′A,

K ← UKeys

3
5

This can be restated as:

1

2k

„
Pr

»
X = X ′ :

A⇒ DA, X ← DA,
A⇒ D′A, X ′ ← D′A,

–

+ Pr

2
4 X 6= X ′

H(K, X) = H(K,X ′)
:

A⇒ DA, X ← DA,
A⇒ D′A, X ′ ← D′A,

K ← UKeys

3
5
1
A

Let denote by DA and D′A two distributions given by two
independent runs of A and DB the product distribution
DA × D

′
A. Let B be the following cau-adversary: B runs

A twice independently, simulating A challenger. Let denote
DA and D′A the two distributions given by A in each run and
DB the probability distribution which is sent by B to the
challenger which is constructed as describe above. Since DA



and D′A have min-entropy at least m, DB has min-entropy
at least 2m.

The time complexity of B is 2TA + O(1) and its cau-
advantage is exactly:

Pr

2
4 X 6= X ′

H(K,X) = H(K,X ′)
:

A⇒ DA, X ← DA,
A⇒ D′A, X ′ ← D′A,

K ← UKeys

3
5

This cau-advantage is upper bounded by 1/2t + ε, thus
Pr [K = K′ ∧ Y = Y ′ : E] is upper bounded by:

1

2k

„
Pr

»
X = X ′ :

A⇒ DA, X ← DA,
A⇒ D′A, X ′ ← D′A,

–
+

1

2t
+ ε

«
.

For every fixed distributions DA and D′A, the probability

Pr

»
X = X ′ :

X ← DA,
X ′ ← D′A,

–
is equal to:

X

x

Pr
ˆ
X = x : X ← DA

˜
Pr
ˆ
X ′ = x : X ′ ← D′A,

˜
.

This can be upper bounded using Cauchy-Schwarz inequal-
ity, namely it is upper bounded by:
sX

x

Pr [X = x : X ← DA]2
sX

x

Pr [X ′ = x : X ← D′A]2

As DA and DA has min-entropy at least m, this is smaller
than 2−m/2 ·2−m/2 ≤ 2−m. As this is true for every fixed DA

andD′A, this is true for Pr

»
X = X ′ :

A⇒ DA, X ← DA,
A⇒ D′A, X ′ ← D′A,

–

and we have:

Pr
ˆ
K = K′ ∧ Y = Y ′ : E

˜
≤

1

2k

„
2−m +

1

2t
+ ε

«

Combining the previous equation with equation 3 we have:

1 + δ2

2k · 2t
≤

1

2k

„
2−m +

1

2t
+ ε

«

It follows immediately:

δ ≤
p

2t (2−m + ε).

If ε ≤ 2−m, and we want to impose a 2−e security, this
result can be restated as:

m ≥ t + 2e + 1.

C.2 The Prefix-Free cLHL

Lemma 6 (pf computational LHL). Let H be a fam-
ily of functions from {0, 1}k ×Dom to {0, 1}t such that for
every au-adversary B, running in time T and producing a
distribution over Dom×Dom of min-entropy at least 2m−2,
adv

pf−cau
H (B) ≤ 1/2t + ε. Then for every adversary A run-

ning in time O(T ) producing a distribution of min-entropy
at least m:

adv
pf-cre

H (A) ≤
p

2t · (3 · 2−m + ε).

Proof. The proof is similar to the previous proof, ex-
cepted the way the cau-adversary B is simulated.

Let denote by DA and D′A two distributions given by two
independent runs of A andDπ the product distribution DA×
D′A. First note that since DA may be different from D′A, for
every X ← DA and X ′ ← D′A we may have X ⊂ X ′ or X ′ ⊂
X and Dπ is not guaranteed to be prefix-free. Therefore the

adversary B cannot generates the probability distribution
Dπ .

Let DB be the following distribution: choose (X, X ′) fol-
lowing Dπ, if X ⊂ X ′ or X ′ ⊂ X, then choose Y uniformly
at random in Dom and output (Y, Y ), else output (X, X ′).
Let show that this efficiently samplable probability distri-
bution has min-entropy at least 2m − 2. By definition of
prefix-freeness for every x′ there is at most one x such that
x ⊂ x′, PrDa

[X = x] > 0 and PrD′
a
[X ′ = x′] > 0. There-

fore, the probability that X ⊂ X ′ is equal to
P

x′ Pr[X ′ =
x′]
P

x Pr[X = x] Pr[x ⊂ x′]. Due to the previous remark,
there is at most one term in the sum

P
x Pr[X = x] Pr[x ⊂

x′] and the sum is upper bounded by the min-entropy 2−m.
Thus, Pr[X ⊂ X ′] is upper bounded by 2−m. Therefore the
probability to obtain a couple (x, x′) which is not prefix-free
is smaller than 2−2m and the probability of a couple (y, y) is
upper bounded by 2−2m +2 · 2−m · |Dom|−1, which is upper
bounded by 4 ·2−2m . The min-entropy of DB is thus greater
than 2m− 2 and DB is prefix-free.

The time complexity of B is 2TA + O(1) and its cau-
advantage is exactly:

Pr

2
4 X 6= X ′

H(K, X) = H(K, X ′)
:

A⇒ DA, A⇒ D′A,
(X, X ′)← DB ,

K ← UKeys

3
5 .

This cau-advantage is upper bounded by 1/2t + ε. Besides,
it is equal to

P
(x,x′)

x 6⊂x′

x′ 6⊂x

Pr
ˆ

H(K,x) = H(K, x′) : K ← UKeys

˜

· Pr
DB

ˆ
(X, X ′) = (x, x′)

˜
.

If (x, x′) is prefix-free, PrDπ
[(X, X ′) = (x, x′)] is equal to

PrDB
[(X, X ′) = (x, x′)], therefore previous formula equals

=
P

(x,x′) Pr

»
x 6= x′

H(K,x) = H(K, x′)
: K ← UKeys

–

· Pr
Dπ

ˆ
(X, X ′) = (x, x′)

˜

−
P

(x,x′)

x⊂x′

x′⊂x

Pr

»
x 6= x′

H(K,x) = H(K, x′)
: K ← UKeys

–

· Pr
Dπ

ˆ
(X, X ′) = (x, x′)

˜

Therefore the probability

Pr

2
4 X 6= X ′

H(K,X) = H(K,X ′)
:

A⇒ DA, A⇒ D′A,
(X, X ′)← Dπ,

K ← UKeys

3
5

is equal to

X

(x,x′)

x⊂x′

x′⊂x

Pr

»
x 6= x′

H(K,x) = H(K,x′)
: K ← UKeys

–

· PrDπ
[(X, X ′) = (x, x′)] + advcauH (B) .

It is smaller than Pr[(X ⊂ X ′ ∨X ′ ⊂ X) ∧X 6= X ′] + 2t +
ε, which is upper bounded by 2 · 2−m + 2t + ε. With the
upper bound for this probability, the proof is similar to the
previous one.


