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Abstract. The aim of this article is to propose a fully distributed
environment for the RSA scheme. What we have in mind is highly
sensitive applications and even if we are ready to pay a price in terms of
efficiency, we do not want any compromise of the security assumptions
that we make. Recently Shoup proposed a practical RSA threshold
signature scheme that allows to share the ability to sign between a set
of players. This scheme can be used for decryption as well. However,
Shoup’s protocol assumes a trusted dealer to generate and distribute
the keys. This comes from the fact that the scheme needs a special
assumption on the RSA modulus and this kind of RSA moduli cannot
be easily generated in an efficient way with many players. Of course, it is
still possible to call theoretical results on multiparty computation, but
we cannot hope to design efficient protocols. The only practical result to
generate RSA moduli in a distributive manner is Boneh and Franklin’s
protocol but it seems difficult to modify it in order to generate the kind
of RSA moduli that Shoup’s protocol requires.
The present work takes a different path by proposing a method to
enhance the key generation with some additional properties and revisits
Shoup’s protocol to work with the resulting RSA moduli. Both of these
enhancements decrease the performance of the basic protocols. However,
we think that in the applications we target, these enhancements provide
practical solutions. Indeed, the key generation protocol is usually run
only once and the number of players used to sign or decrypt is not very
large. Moreover, these players have time to perform their task so that
the communication or time complexity are not overly important.
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1 Introduction

The cryptosystem RSA [34] is widely used in today practical systems. For in-
stance, a lot of PKI products are based on it. In such systems, the protection of
the root key needs strong security requirements. Therefore, threshold protocols
can be used to share the signature capabilities among a subset of people rather
than to give the power of signing to only one person. Moreover, this kind of
protocols can withstand stronger adversaries than “centralized” cryptosystems.

C. Boyd (Ed.): ASIACRYPT 2001, LNCS 2248, pp. 310–330, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Fully Distributed Threshold RSA under Standard Assumptions 311

Indeed, threshold cryptography can cope with break-ins adversaries that have
the ability to corrupt people and read the memory of servers [6]. These ad-
versaries are stronger than “normal” adversaries that can only read exchanged
messages. In a “centralized” cryptosystem, if one break-ins adversary attacks
the memory, he then knows all the key and the system is down. As this kind
of attacks done by intruders (hackers, Trojan horses) or by corrupted insiders
are very common and frequently easy to perform, systems must be protected
against them. In threshold cryptography, the secret key is split into shares and
each share is given to one of a group of servers. However, in order to be sure that
at no moment the key is entirely in one machine, one can also distribute the key
generation phase. Consequently, we say that a cryptosystem is fully distributed
if it is distributed from the key generation to the signature or decryption phase.

In the case of discrete-log based cryptosystems, known solutions exist to
distribute DSS, El Gamal, Cramer-Shoup [20,38,7]. Moreover, a protocol to dis-
tribute a discrete-log key has been first proposed by Pedersen in [27]. This proto-
col has been further revisited to solve a security flaw [21,15]. Therefore, discrete-
log cryptosystems are fully distributed. However, a fully distributed version of
RSA is a more challenging and important task.

In this paper we propose new techniques to fully distribute RSA. This solves
an open problem where one needs to cope with requirements that do not match.
On one hand, at Eurocrypt’00, Shoup describes a practical threshold signature
scheme in [37] where the primes of the RSA modulus should be safe. On the other
hand, Boneh and Franklin at Crypto ’97 [4] describe a protocol to share the key
generation of an RSA modulus. However, the generation of safe modulus seems to
be hard with this protocol. The present work takes a different path by proposing
a method to enhance the key generation with some additional properties and
revisits Shoup’s protocol to work with the resulting RSA moduli.

1.1 Why It Is Important to Share Shoup’s Threshold RSA ?

Shoup threshold RSA signature scheme [37] presents interesting features. First of
all, it is secure and robust in the random oracle model assuming the RSA problem
is hard. Next, the signature share generation and verification are completely non-
interactive and finally, the size of an individual signature share is bounded by
a constant times the size of the RSA modulus. However, this scheme requires a
trusted dealer to generate the keys and distribute the shares of the secret key
among � servers.

When a message m has to be signed by a quorum of at least t + 1 servers,
where 2t + 1 ≤ �, a special server, called the combiner, forwards the message
m or x = H(m) to all servers. Then, each server computes its signature share
along with a proof of correctness. Finally, the combiner selects a subgroup of
t + 1 servers by checking the proofs and combines the t + 1 related signature
shares to generate the signature s.

Efficient communication model against active adversary. The main char-
acteristic of Shoup’s protocol in relation to previous proposals [17,16,32] is the
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following. In the discrete-log case, it is easy to compute inverses mod q, if we
note q the order of the group G generated by g, because q is public. With RSA,
we cannot disclose inverses of a known value mod ϕ(N) without revealing the
factorization of N unless we use a special algebraic structure, called a module,
as in [35,19]. We can note that computations in such structure can be done effi-
ciently if we consider [25]. If we do not want to use a module, we face the problem
of computing inverses when we use polynomial sharing in order to compute the
Lagrange coefficients. Consequently some authors in [17,32] have proposed ad-
ditive sharings to avoid this calculation. Therefore, as they need all shares to
generate the signature, they devise strategies to cope with corrupted or crashed
servers. Different strategies can be used to reconstruct the lost shares by non-
corrupted servers : either using two different sharings (additive and polynomial)
as in [32] or using probabilistic assignments as in [17]. With additive sharing,
d =

∑�
i=1 di mod ϕ(N), the combiner easily computes the signature s from the

� correct signature shares si = xdi mod N , where x = H(m) is the message to
be signed, by using the formula :

s =
�∏

i=1

si

(
=

�∏
i=1

xdi = x
∑�

i=1 di = xd mod N

)
(1)

The main drawbacks of these techniques are the size of the key shares because
of the need of different sharings and the use of protocols to reconstruct the bad
signature shares in the presence of active (malicious) players.

In [16], the authors proposed the first proven scheme based on polynomial
sharing, which is based on Desmedt and Frankel’s scheme [13]. However in the
case of active adversaries, which are allowed to send bad shares, the protocol
has to be rewind at most t times, to remove the bad servers as the signature
shares depend on the subgroup of t+1 servers enabling the reconstruction of the
signature. Let ∆ = �!. The shares of d are such that ∆|di and di = f(i) where f is
a polynomial of degree t and of constant term equals to d. If we denote by S the
subgroup of t + 1 servers, let Lagrange coefficients to be λ′S

i,j =
∏

j′∈S\j
i−j′

j−j′ .

Therefore, d =
∑

i∈S λ′S
0,idi mod ϕ(N) from the Lagrange formula. There are

two problems. First of all, λ′
i,j cannot be computed in Zϕ(N) since (j− j′) could

be even and not invertible modϕ(N). Next, the combiner has to compute

s =
∏
i∈S

s
λ′S

0,i

i

(
=
∏
i∈S

sλ
′S
0,idi = s

∑
i∈S λ′S

i,0di = sd mod N

)
(2)

But, as λ′S
i,j ’s are not integers and the combiner cannot compute roots modulo a

composite number, otherwise it can solve the RSA Problem, he cannot compute
equation (2). The key idea is to note that ∆ × λ′

i,j
S are integers. Therefore, if

we write di = ∆× d′
i, then, for a group S of t+ 1 servers, each one can compute

lS0,i = ∆ × λ′S
0,i ∈ Z and s′

i = xλ
′S
i,0di = xl

S
0,i×d′

i mod N . Finally, the combiner
computes
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s =
∏
i∈S

s′
i

(
=
∏
i∈S

xl
S
0,j×d′

i =
∏
i∈S

x∆×λ′S
0,i×d′

i =
∏
i∈S

xλ
′S
0,idi = xd mod N

)
(3)

If the signature is not valid, the combiner removes the bad servers thanks to a
proof of robustness, defines another group S and rewind the protocol. It is then
obvious that after t trials, all bad servers are removed from the set S and the
signature will be correct. However, this redefinition of the subgroup does not
seem very nice and Shoup and others have proposed a new trick to avoid this
problem.

Shoup in [37] and Miyazaki, Sakurai and Yung in [26] solve this problem
by using a well-known lemma to extract an e-root of w modulo a composite
number from a e-root of a known power of w [24] without any secret. The
solution is to multiply Lagrange coefficients by ∆ such that they are integers :
λS
i,j = ∆ × λ′S

i,j ∈ Z and ∆d =
∑

i∈S λS
0,idi, if we denote by S a subset of t + 1

elements. Therefore, if we let si = xdi , the combiner can compute signatures and
change of group (compute new Lagrange coefficients according to the group of
t + 1 servers) without asking new signature shares to the servers. He computes

equation (2) using λS
i,j and gets s∆ =

∏
i∈S s

λS
0,i

i (= x∆d) mod N . Finally, the
combiner can compute a e-root of x∆ with the previous formula and can recover
a e-root of x using the well-known lemma. Consequently, if we use Shoup’s
scheme, there is no need to generate di such that ∆|di as it is done in [18,12].

Even if the protocol of Frankel et al. in [16] proposed a fully distributed
version of RSA, it is less elegant than Shoup’s one and it will be nice to share this
protocol. Moreover, this scheme proposes others improvements that are valuable
such as the proof of robustness. This proof uses safe primes, like Gennaro et
al.’s one [20] and avoids the drawbacks of a special relation between prover and
verifier. Furthermore, in [16], the authors describe an interactive protocol which
leads to a less efficient protocol than Shoup’s one which uses non-interactive
zero-knowledge proofs. Therefore, we face the problem of distributing this non-
interactive proof.

Proof of robustness and use of safe primes. As we said before, a second key
point in Shoup’s signature scheme is the proof of correctness, which guarantees
the robustness of the scheme. Robustness means that corrupted servers should
not be able to prevent uncorrupted servers from signing. This property is at-
tractive for threshold protocols in presence of active adversaries that can modify
the behavior of servers. In Shoup’s scheme, the proof of correctness requires an
RSA modulus built with safe primes. In the proof of correctness, servers must
prove that they raise x to the correct power, namely di, their share of the secret.
To this end, each server i has a verification key vi = vdi mod N and makes a
proof that logv vi = logx si(= di mod ϕ(N)). The problems are : ZN

∗ is not a
cyclic group, its order is unknown, such generator v do not exist and elements
of maximal order cannot be easily found. However, Shoup noted that if we use
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RSA moduli with safe primes, then the group of squares in ZN
∗ is cyclic and it

is easy to find generators. Consequently, the proof of correctness can be made
non-interactively and correctly proved without further assumptions. Finally, safe
prime moduli are also used in the key generation protocol in order to guarantee
the secrecy of Shamir’s secret sharing.

Shared Generation of RSA Keys. This raises the question of generating
RSA moduli for Shoup’s threshold scheme without a trusted dealer. There exist
protocols that generate RSA keys in a distributive manner [4,18,9,10,3,30,23].
Boneh and Franklin in [4] designed such protocol for the generation of an RSA
modulus in the honest-but-curious model. Later, Frankel, MacKenzie and Yung
in [18] made this algorithm robust against malicious servers. In [30], Poupard
and Stern also provided a protocol to compute a shared modulus for two players
only. Finally, Gilboa in [23] has extended Poupard and Stern method. As we can
note, the Boneh and Franklin protocol is most efficient but no protocol is known
to efficiently create shared safe RSA moduli.

1.2 Outline of the Paper

We begin by presenting the problem in section 2, i.e. where the properties of
safe primes are used in Shoup’s protocol, and in section 3 the security model.
Next, in section 4, we describe how to enhance the Boneh-Franklin scheme to
generate RSA moduli having special requirements. In section 5 we show that
Shoup’s protocol is still secure against passive adversary and in section 6, we
show a new proof of correctness making Shoup scheme robust against active
adversary. Finally, in section 7 we present practical parameters for our scheme.

1.3 Notations and Definitions

Throughout this paper, we use the following notation: for any integer N = pq,
where n = log(N) is a security parameter, as well as k, �, t, k′, k1 and k2,

– we use QN to denote the group of squares in ZN
∗,

– we use ϕ(N) to denote the Euler totient function, i.e. the cardinality of ZN
∗,

– we use λ(N) to denote Carmichael’s lambda function defined as the largest
order of the elements of ZN

∗.

Let p = 2p′ + 1 and q = 2q′ + 1 where in general p′ =
∏

pi
pi

ei and q′ =∏
qj

qj
ej . Set M = p′q′. Finally, a prime number p is a safe prime if p and p′ are

both prime. A RSA modulus N = pq is called a safe prime modulus if p and q
are both safe primes.

2 The Problem

As we will see in the following, safe primes are used in the key generation in
order to prove that Shamir secret sharing scheme [36] is secure in the ring ZM ,
and not in a finite field, and in the proof of correctness. Let us explain the second
problem as it is less obvious.
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2.1 What Is the Problem?

Robustness guarantees that even if t malicious players send false signature shares,
the signature scheme still correctly generates a signature s. This property is
needed since otherwise combination faces the problem of selecting the correct
shares.

For example, the combiner receives signature shares from the servers and has
to generate the correct signature. One way for him is to pick at random t + 1
signature shares, generate the possible signatures s′ and test whether s′ is a valid
signature of m. If s′ passes the verification protocol, the correct signature has
been found, otherwise, the combiner has to test another group of t+ 1 signature
shares. Since the combiner cannot guess where the bad shares are, it might face
an exponential number of trials. Therefore, it is necessary to devise an efficient
test in order to check whether a player has correctly answered a request. Shoup
has proposed an efficient proof to achieve such check non-interactively and the
same kind of proof appears in [32,19] but still requires safe prime modulus.

In order to avoid the generation of shared safe moduli, which appears cur-
rently out of reach, this paper proposes a tradeoff between the requirements of
the RSA modulus for the signature and decryption protocols and the require-
ments at key generation. Independly of our work, Damgard and Koprowski have
recently considered the same problem in [12]. They revisited Shoup’s paper and
used non-standard assumptions to show that the proof of correctness works with-
out other requirements on the RSA modulus. They use [18] to generate standard
RSA moduli.

In our work, we consider environments where high security is required such
as electronic voting schemes. Therefore, we prefer to use protocols based on
standard assumptions. We believe that standard assumptions and security proofs
are needed to build secure protocols. Several electronic schemes [14,11,1] have
been based on Paillier cryptosystem which is related to RSA. The techniques
developed in the paper can be used to fully share this cryptosystem.

2.2 Our Results

We prove that Shoup’s protocol can be modified to work with RSA moduli
having special properties under standard assumptions and that these moduli
can be jointly generated.

Safe prime moduli are needed in the proof of robustness and in the key
generation. Moreover, different characteristics of these numbers are used in the
proof of robustness. Indeed, Shoup’s protocol uses two important properties of
the subgroup QN of squares of ZN

∗ when N is a safe modulus. On one hand,
this subgroup is cyclic and on the other hand, its order M does not have small
prime factors. The cyclic group is used to show the existence of the discrete
log in the proof of correctness. The use of safe primes allows to guarantee that,
with overwhelming probability, a random element in QN is a generator.

Our first observation relates the structure of QN with gcd(p−1, q−1) and the
search for generators in this group to the prime factor decomposition of p−1

2 and
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q−1
2 . In particular, if p−1

2 and q−1
2 have no small prime factors, then with high

probability few randomly chosen elements generate the entire group QN . If we
choose enough random elements (g1, . . . , gk), we can guarantee that the group
generated by 〈g1, . . . , gk〉 is all of QN with high probability. Such techniques
have already been used by Frankel et al. in [18] and a precise treatment has been
given by Poupard and Stern in [31]. Moreover, using a nice trick of Gennaro et
al. which first appeared in [22] and the protocol recently proposed by Catalano
et al. in [8], the calculation of gcd(p−1, q−1) can be performed in a distributed
way. These methods allow to keep key generation and signature efficient.

In this paper, we show how to jointly construct RSA moduli such that the
subgroup QN is cyclic, which guarantees the existence of discrete logs and of
generators of QN . Moreover, the order M of this group does not have small
prime factors less than some sieving bound B. Checking such primes does not
exceedingly increase the running time of the key generation algorithm.

3 Security Model

3.1 The Network

We assume a group of � servers connected to a broadcast medium, and that mes-
sages sent on the communication channel instantly reach every party connected
to it.

3.2 The Adversary

The adversary is computationally bounded and it can corrupt servers at any mo-
ment by viewing the memories of corrupted servers (passive adversary), and/or
modifying their behavior (active adversary). The adversary decides on whom
to corrupt at the start of the protocol (static adversary). We also assume that
the adversary corrupts no more than t out of � servers throughout the protocol,
where � ≥ 2t + 1.

3.3 Formal Definition

A RSA threshold signature scheme consists of the four following components :

– A key generation algorithm takes as input security parameters n,the number
k of elements to generate QN , the number � of signing servers, the threshold
parameter t and a random string ω; it outputs a public key (N, e) where n
is the size in bits of N , the private keys d1, . . . d� only known by the correct
server and for each u ∈ [1, k] a list vu, vu,1 = vu

d1 , . . . vu,� = vu
d� mod N of

verification keys.
– A share signature algorithm takes as input the public key (N, e), an index

1 ≤ i ≤ �, the private key di and a message m; it outputs a signature share
si = xdi mod N , where x = H(m) and H(.) is a hash-and-pad function, and
a proof of its validity proofi (for all u ∈ [1, k], logvu

vu,i = logx si).
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– A combining algorithm takes as input the public key (N, e), a message m, a
list s1, . . . s� of signature shares, for each u ∈ [1, k] the list vu, vu,1, . . . vu,� of
verification keys and a list proof1, . . . proof� of validity proofs; it outputs a
signature s or fails.

– A verification algorithm takes as input the public key (N, e), a message m,
a signature s; it outputs a bit b indicating whether the signature is correct
or not.

3.4 The Players and the Scenario

Our game includes the following players : a combiner, a set of � servers Pi, an
adversary and users asking signature. All are considered as probabilistic poly-
nomial time Turing machines. We consider the following scenario :

– At the initialization phase, the servers use the distributed key generation
algorithm to create the public, private and verification keys. The public key
(N, e) and all the verification keys vu’s and vu,i’s are published and each
server obtains its share di of the secret key d.

– To sign a message m, the combiner first forwards m to the servers. Using
its secret key di and its verification keys vu, vu,i for u ∈ [1, k], each server
runs the share signature algorithm and outputs a signature share si together
with a proof of validity of the share signature proofi. Finally, the combiner
uses the combining algorithm to generate the signature, provided enough
signature shares are available and valid.

3.5 Properties of Threshold Signature Schemes

The two properties of a t out of � threshold signature scheme of interest to us are
robustness and unforgeability. As we already mentioned, robustness guarantees
that even if up to t malicious players send false signature shares, the scheme still
returns a correct signature. This property is useful only in the presence of active
adversaries.

Unforgeability guarantees that any subset of t+1 players can generate a signa-
ture s, but disallows the generation by fewer than t players. This unforgeability
property should hold even if some subset of less than t players are corrupted
and collude. This property expresses the security of the signature scheme and is
useful in the presence of passive or active adversary.

3.6 The Games

In this section, we describe the security notions for threshold key generation
and threshold signing protocols. We have to show that the information revealed
during the key generation and the signing protocols does not release secret in-
formation to the adversary.
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Game for the threshold key generation. The correctness of the key gener-
ation requires that the probability of the secret keys d, p, q, and the public key
(N, e) seem be uniformly distributed to the adversary.
The secrecy of the key generation means that if there exists an adversary A
which corrupts at most t servers at the beginning of the game, then he cannot
obtain more information on the secret key held by uncorrupted players.

Game for the threshold signing protocol. The secrecy of the signing pro-
tocol means that if there exists an adversary A which corrupt at most t servers
at the beginning of the game and even if he can obtain signatures on messages
adaptively chosen, then he cannot forge a signature on a new message.

4 Enhancing the Boneh-Franklin Scheme to Generate
RSA Moduli with Special Requirements

The aim of this section is to generate RSA moduli such that the group of squares
is a cyclic group whose order has no small prime factors, namely N = pq, p =
2p′ +1 and q = 2q′ +1, gcd(p′, q′) = 1 and no primes p < B divises neither p′ nor
q′. In section 6, we will prove that this group can be generated with few random
elements. Moreover, we use here a sieving method to simultaneously improve
the key generation protocol, the probability of finding a set of generators of QN ,
and to make secure Shamir Secret Sharing Scheme. We also present a protocol to
compute the GCD of a known value and a shared value and prove the robustness
and the secrecy of this new distributed key generation protocol.

4.1 A New Distributed RSA Modulus Generation

In [4] Boneh and Franklin present a protocol for generating a shared RSA mod-
ulus. We describe this protocol here with our adaptation.

1. In the first step, each server picks at random two values pi and qi in the
interval [
2(n−1)/2�, 
 2n/2−1

� �[ according to [39], where n is the size in bits
of the modulus N . Then, we use a sieving algorithm in order to discard
p1+. . .+p� and q1+. . .+q� that have small prime factors and if p1+. . .+p�−1
or q1 + . . . + q� − 1 have small prime factors. The servers check whether
gcd(p − 1, 4P ) ?= 2 and whether gcd(4P, q − 1) ?= 2, where P =

∏
2<pi<B pi

and B is the sieving bound using the GCD algorithm that we describe below.
2. Then the BGW protocol [2,4] is run to compute the product N of p1+. . .+p�

and q1 + . . .+ q�. They also compute the product ϕ(N) = (p− 1)(q − 1) and
check whether gcd(ϕ(N), N − 1) ?= 1 using the GCD algorithm.

3. Next, the parties perform a primality test similar to the Fermat test modulo
N . The practicality of this test is based on the empirical results of [33]
where Rivest showed that if a sieving algorithm is first performed, the Miller-
Rabin primality test is not needed as pseudoprimes are rare according to
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Pomerance’s conjectures [28,29]. Moreover, carmichael numbers are avoided
due to a trick similar to Soloway-Strassen primality test. We set p = p1 +
. . . + p� and q = q1 + . . . + q�.

4.2 Computing the gcd of a Public Value and a Shared Secret Value

We briefly recall the protocol presented by Catalano et al. [8] for inverting a
public value e modulo a shared value ϕ. The basic trick stems from the obser-
vation that gcd(e, ϕ) = gcd(e, ϕ + Re) where R is a large integer used to mask
the shared and secret value ϕ = ϕ1 + . . .+ϕ�. Server i chooses a random integer
ri∈R[0..2n+k′

], where k′ is a security parameter, computes ci = ϕi + eri and
forwards ci to all other servers. Each server can compute c =

∑
i ci = ϕ + eR

if we set R =
∑

i ri. This value can be publicly known and then, all servers can
compute gcd(e, c) which is equal to gcd(e, ϕ) and u and v such that eu + cv = 1
when gcd(e, ϕ) = 1. Then, it is easy to show that if we replace c by ϕ + eR,
we obtain e(u + Rv) + ϕv = 1. Hence, u + Rv is the inverse of e modulo ϕ. In
this case, if we note d the inverse of e mod ϕ, each server assigns its share of the
inverse d to di = vri and the first server to d1 = u + vr1.

We have presented here the protocol in the honest-but-curious model. But
this protocol can be made robust following [8]. We can also note that this al-
gorithm allows to compute the gcd of a known value and a shared one. We call
this protocol the GCD algorithm.

4.3 Efficient Sieving Algorithm Improving the Generation of
Random Number without Small Factors

In this subsection, we present the sieving algorithm used in phase 1 of proto-
col 4.1 and we show how to generate N such that neither p′ = p−1

2 nor q′ = q−1
2

have no small prime factors. Our method uses a new distributed sieving protocol
designed by Boneh, Malkin and Wu in [5] that we patch in order to create p such
as neither p, nor p′ has a small prime factor less than B. Moreover, we show how
to withstand malicious adversaries. We denote by P the product of all odd small
primes up to B.

1. Each server picks a random integer ai in the range [1, P ] such that ai is
relatively prime to P . Then, since each ai is a random integer relatively
prime to P , their product a = a1 × . . . × a� mod P is also relatively prime
to P .

2. The servers perform a protocol to convert the multiplicative sharing of a to
an additive sharing of a = b1 + . . . + b� using the BGW protocol.

3. Each server picks a random ri ∈ [

√
2.2n/2−1

P �, 
 2n/2−1
P� �[ and sets pi = riP+bi.

Clearly, p =
∑

pi ≡ a mod P and hence p is not divisible by any prime
smaller than B. We can note that p = RP + a where R =

∑
i ri. This sieve

works only for B s.t. P < p. We can increase the bound B to B1 by checking
whether gcd(P ′, p) = 1 where P ′ =

∏
B≤p≤B1

p thanks to the GCD algorithm.
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In order to also prove that p′ = p−1
2 has no prime factors less than B, one has to

check whether gcd(p−1, P ) = gcd(2p′, P ) = 1 and gcd(p−1, 4P ) = 2 to test the
power of 2. If we denote P ′ by 4P , we can perform a single test gcd(p−1, P ′) = 2.
To distribute this test in the honest-but-curious model, the first server sets its
parts p1 to p1 − 1 and we use the distributed GCD protocol described in section
4.2. It is also possible to make this test robust in presence of malicious players
as it is explained in appendix 9.1.
Finally, the protocol that transforms the multiplicative sharing of a into an
additive sharing can also be made robust as it uses the BGW protocol. This
transformation calls � times the BGW protocol. At the beginning, bi,0 = 0 for all
i ∈ {0, . . . , �}. Then, for i = 1 to �, ui = ai and uj = 0 for ∀j �= i, and the BGW
protocol performs (b1,i−1+. . .+b�,i−1)×ai = (b1,i−1+. . .+b�,i−1)(u1+. . .+u�) =
b1,i + . . . + b�,i.

Theorem 1. The key generation protocol of Boneh-Franklin and the sieving
protocol allow to generate RSA moduli such that the order M of the group QN

does not contain small prime factors less than B.

It is obvious to see that the use of the sieving method to guess pi’s and qi’s
allows to improve the first step of Boneh-Franklin’s protocol and speeds up the
running time of this algorithm since this avoids many rewindings in phase 3 of
Boneh-Franklin. Moreover, this sieving protocol is adapted to take into account
the small factors in the factorization of p′ and q′.

4.4 The Key Generation of N Such That QN Is Cyclic

Here, we show how to generate N such that the group QN is cyclic. To guarantee
this property, we use the fact that the product of two cyclic groups which orders
are coprime is a cyclic group. The following lemma and the GCD protocol enables
to check that p′ and q′ are coprime in a distributed way. First we prove a lemma
which has been used in another form in [22].

Lemma 1. Let N = pq an RSA modulus, gcd(p − 1, q − 1)| gcd(N − 1, ϕ(N))
and the square free part of gcd(N − 1, ϕ(N)) divides gcd(p − 1, q − 1).

See appendix section 9.2 for a proof of this lemma.

Corollary 1. If gcd(N − 1, ϕ(N)) = 2, then gcd(p − 1, q − 1) = 2.

Proof. If gcd(N − 1, ϕ(N)) = 2, then as gcd(p − 1, q − 1)| gcd(N − 1, ϕ(N)),
gcd(p − 1, q − 1) = 2 since gcd(p − 1, q − 1) cannot be equal to 1. These last
verification can be jointly done using the GCD algorithm described in section 4.2

��
Theorem 2. The key generation protocol of Boneh-Franklin and the GCD pro-
tocol allow to generate RSA moduli such that the group QN is cyclic of order
M = p′q′, where N = pq, p = 2p′ + 1, q = 2q′ + 1 and neither p′ nor q′ have
prime factors smaller than B. The iteration number of this protocol with respect
to the Boneh-Franklin protocol is on average 4 × eγ ln(B).
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Proof. Following section 4.3 and corollary1, we can assume that we get an RSA
modulus such that p− 1 and q − 1 have all theirs prime divisors greater than B,
they do not have common divisors, i.e., gcd(p − 1, q − 1) = 2 and p−1

2 and q−1
2

do not have small prime factors. As the product of cyclic groups whose order
are coprime is a cyclic group, the groups of squares in Zp

∗ and in Zq
∗ are cyclic,

and so the group QN is also cyclic. This allows to guarantee that there exists a
cyclic subgroup in ZN

∗ of order M = p′q′.
We can estimate the iteration number of this algorithm with respect to

phase 1 of the Boneh-Franklin protocol. First, it is a well-known fact that
limn→∞ Pr(p′,q′)∈[1,n[2 [gcd(p′, q′) = 1] = 6

π2 > 1/2 assuming prime numbers
in [2

n−1
2 , 2

n
2 [ are uniformly distributed. Moreover, the only slowing factor at

the key generation is the check that gcd(P ′, p − 1) = 2, where P ′ = 4P . We
can note that Prp′ [gcd(2p′, P ′) = 2] = Prp′ [2 � p′ ∧ 3 � p′ ∧ . . . ∧ B � p′] =
(1 − 1

2 )(1 − 1
3 ) . . . (1 − 1

B ) =
∏

pi≤B(1 − 1
pi

) ≈ 1
eγ ln(B) according to the second

theorem of Mertens, where γ is the Euler constant. Therefore, we have to run
this algorithm 2 × (eγ ln(B) + eγ ln(B)) on average in order to get such RSA
moduli. ��

4.5 Proofs of Security and Robustness

For security and robustness proofs see [4,18,8] or the extended version.

4.6 Distributed Generation of the Keys in Shoup’s Protocol

Once N is generated, let prime e be the first prime greater than 4∆2 so that each
server can compute it. Then, Catalano et al. protocol’s [8] is run to generate a
shared secret key d in a distributed manner. At the end of the protocol, each
server can compute its verification keys as vu,i = v∆di

u for random vu computed
as y2u mod N where yu is the concatenation of H(N‖i) for sufficiently many i’s
to get the correct security parameter in the random oracle model.

5 Security of Shoup Protocol against Passive Adversary

In this part we show that Shoup’s protocol is secure with the RSA moduli
generated in previous section against static and passive adversary.

5.1 Key Generation

At the end of the key generation protocol, we want to know if the information
an adversary can collect, helps him to get useful information on the secret key
d. Let di1 , . . . , dit , t shares of the secret key obtained by the adversary from the
t correupted servers.
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Information revealed by the shares dij
. For each dij , we can note that

dij = f(ij) = a0 + a1ij + . . . + ati
t
j mod M

If we add a (t+1)th equation, a0 = d, we obtain the following linear system :


a0 + a1i1 + . . . + ati1
t = di1 mod M

a0 + a1i2 + . . . + ati2
t = di2 mod M

. . .
a0 + a1it + . . . + atit

t = dit mod M
a0 + 0 + . . . + 0 = d

or with matrix I.A = D mod M


1 i1 i21 . . . it1
1 i2 i22 . . . it2

. . .
. . . . . .

1 it i2t . . . itt
1 0 0 . . . 0


 .




a0
a1
...
at


 =




di1
di2
...

dit
d


 mod M

The matrix I is a Vandermonde matrix. The determinant of such matrix is
det(I) =

∏
1≤j<k≤t+1(ik − ij) mod M , where it+1 = 0. As the ij ’s are distinct

in ZM , ik − ij �= 0 mod M since � < B. Hence, each factor (ik − ij) is invertible
modulo M , so det(I) is invertible modulo M . Therefore, all values of d are
possible. Hence a group of t players cannot get information on d from shares
of d. We see here that the sieving algorithm performed is important to avoid
leakage of information on d. Consequently, � < B.

Information revealed from the verification keys. For all u ∈ [1, k], the
verification keys vu,i’s of non-corrupted servers do not reveal any information
as they can easily be simulated from the parts of the corrupted servers. The
simulator chooses at random yu ∈ ZN

∗, computes vu = y2∆e
u mod N . Hence,

vdu = y2∆u . We can note that ∆di =
∑t+1

k=1 λ
S
i,kdj mod ϕ(N) if we denote by

S a group of t + 1 values and if we define the Lagrange coefficients as λS
i,j =

∆×∏j′∈S\j
i−j′

j−j′ ∈ Z. The simulator can then compute for all u ∈ [1, k], v∆di
u =

y
2∆λS

i,0
u × ∏t

j=1 v
λS

i,ij
dij

u mod N , where S = {0, i1, . . . , it}. Hence a group of t
players cannot get information from the validation keys of non-corrupted servers.

5.2 Signing Protocol

To generate a signature on message m, each server i computes x = H(m),
si = x2∆di mod N and sends si to the combiner without any proof because
we are in the honest-but-curious model. The combiner selects a set S of t + 1

values and computes w =
∏t+1

j=1 s
2λS

0,ij

ij
mod N . It then follows that we = x4∆

2
as
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s2ij = x4∆dij . Applying a well-known lemma, we can extract e-root of x from w

which is a e-root of x4∆
2

as 4∆2 is a known value using the extended Euclidean
algorithm on e and 4∆2. As we are in the honest-but-curious model, the signature
s is always correct.

We can prove the following theorem :
Theorem 3. In the random oracle model, the signing protocol described above is
a secure threshold signature scheme (non-forgeable) assuming the standard RSA
signature scheme is secure.
Proof. Similar to [37]. ��

6 Enhancing the Shoup Scheme against Active Adversary

The aim of this section is to revisit the proof of correctness originally designed
by Shoup to cover the case of RSA moduli generated as in the section 4. This
uses a method by which we generate the entire group of squares with few random
elements with high probability.

6.1 Proof of Correctness

Let N be a modulus such that N = pq and p = 2p′ + 1 and q = 2q′ + 1 where
p′ and q′ have no small prime factors and gcd(p − 1, q − 1) = 2. Accordingly
QN is cyclic and there exists a generator g in QN . Thus, the discrete log of any
element si

2 in basis g exists, where si = x2∆di and ∆ = �!. As we will see in
section 6.3, we can denote by v1, . . . , vk a k-tuple of random elements in (QN )k

such that with high probability, this tuple generates the whole group QN of
order M = p′q′, i.e. for each x ∈ QN , there exists (a1, . . . , ak) ∈ [0,M [k such
that x =

∏k
i=1 vi

ai mod N .
Each server i has a k-tuple of verification keys v1,i = v1

di mod N, . . . , vk,i =
vk

di mod N . He computes a signature share, si = x2di∆ mod N , where di is the
ith signature share of d and proves that

logv1
(v1,i) = . . . = logvk

(vk,i) = logx4∆(si2)(= di mod M)

The value si
2 is a square and is an element of QN .

Now, we describe the proof of “correctness” and still let di ∈ [0,M [ be
the secret share of a server, and A and B′ two integers such that log(A) ≥
log(B′Mh) + k2 where B′ and k2 are security parameters and h is the number
of rounds. Finally, k1 is a parameter such that the cheating probability 1/B′h is
< 1/2k1 . Whereas security parameter k1 controls the completeness and statistical
zero-knowledge results, security parameter k2 controls the soundness result. We
present the protocol for one round (h = 1).

The prover chooses a random r in [0, A[. Then, he computes t =
(v′

1, . . . , v
′
k, x

′) = (vr1, . . . , v
r
k, x

4∆r). Let e be the first b′ = log(B′) − 1 bits
of the hash value

e = [H(v1, . . . , vk, x4∆, v1,i, . . . , vk,i, si
2, v′

1, . . . , v
′
k, x

′)]b′
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if we denote by [x]b′ the first b’ bits of x. Next, the prover calculates z where
z = r + edi. The proof is the pair (e, z) ∈ [0, B′[×[0, A[. To check it, the verifier
has to compute whether

e = [H(v1, . . . , vk, x4∆, v1,i, . . . , vk,i, si
2, v1

zv1,i
−e, . . . , vk

zvk,i
−e, x4∆zsi

−2e)]b′

and verify whether 0 ≤ z < A.

6.2 Security Analysis of the Proof of Correctness

Proof of Completeness
Theorem 4. The execution of the protocol between a prover who knows the
secret di and a verifier is successful with overwhelming probability if B′Mh/A is
negligible where h is the number of rounds.

Proof. If the prover knows a secret di ∈ [0,M [ and follows the protocol, he fails
only if some z ≥ A. For any value x ∈ [0,M [ the probability of failure of such
event taken over all possible choices of r is smaller than B′M/A. Consequently
the execution of the proof is successful with probability ≥ (1−B′M

A )h ≥ 1−B′Mh
A .

��
Proof of Soundness. Let us focus on soundness of the interactive proof system.

Lemma 2. If the verifier accepts the proof, with probability ≥ 1/B′+ε where ε is
a non-negligible quantity, then using the prover as a “black-box” it is possible to
compute σ and τ such that |σ| < A and |τ | < B′ such that v1σ = v1,i

τ , . . . , vk
σ =

vk,i
τ , x4∆σ = si

2τ .

Proof. If we rewind the adversary and get two valid proofs for the same commit-
ment t, (e, z) and (e′, z′), we have for u = 1, . . . , k i.e. for all verification keys,
vu

r = vu
zv−e

u,i = vu
z′
v−e′
u,i . So, we obtain vu

σ = vu,i
τ mod N if we set σ = z′ − z

and τ = e−e′. Therefore we can write v1
σ = v1,i

τ , . . . , vk
σ = vk,i

τ , x4∆σ = si
2τ .
��

Theorem 5. (Soundness) Assume that some probabilistic polynomial Turing
machine P̃ is accepted with non-negligible probability. If B′ < B, h × log(B′) =
θ(k1), k = θ(k1/ log(B)) and log(A) is a polynomial in k1 and log(N), we can
prove that x4∆di = si

2 and so si is a correct signature share.

Proof. By the previous lemma we can assume that we have τ and σ such that
vu

σ = vu
diτ for u = 1, . . . , k and x4∆σ = si

2τ .
Then, we can write x4∆ with the set of generators of QN since it is a square :

x4∆ = v1
β1 × . . . × vk

βk .
Consequently if we raise this equation to the power σ, we obtain x4∆σ =

v1
σβ1 × . . . × vk

σβk . But, x4∆σ is equal to si
2τ and v1

σβ1 × . . . × vk
σβk is equal

to (v1β1 × . . . × vk
βk)τdi as vu

σ = vu
diτ for u = 1, . . . , k.

Therefore, si
2τ = (x4∆)τdi with |τ | < B′. We can simplify this equation by

τ if τ is coprime with p′q′. So we obtain x4∆di = si
2 if B′ < B.
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Let π̃(k1) the probability of success of P̃ . If π̃(k1) is non-negligible, there
exists an integer c such that π̃(k1) ≥ 1/k1c for infinitely many values k1. The
probability for P̃ to generate a correct signature share while the vis generate
the group QN is larger than π̃(k1) − 2 × 2

k−1 × 1
Bk−1 according to the result of

the section 6.3. So, if k = θ(k1/ log(B)), for infinitely many values k1, 2 × 2
k−1 ×

1
Bk−1 ≤ 1/3k1c.

Furthermore, for k1 large enough, 1/B′h < 1/3k1c if h × log(B′) = θ(k1). So
by taking ε = π̃(k1)/3 in lemma 2 we conclude that it is possible to obtain (σ, τ)
in polynomial time O(1/ε) = O(k1c). ��
Proof of Statistical Zero-Knowledge
Proof. Furthermore, we can prove that if A is much larger than B′ × N , the
protocol statistically gives no information about the secret. In the random oracle
model where the attacker has a full control of the values returned by the hash
function H, we define the first b′ bits of the value of H at

(v1, . . . , vk, x4∆, v1,i, . . . , vk,i, si
2, v1

zv1,i
−e, . . . , vk

zvk,i
−e, x4∆zsi

−2e)

to be e. With overwhelming probability, the attacker has not yet defined the
random oracle at this point so the adversary A cannot detect the fraud. ��

6.3 Choice of Parameters

In this section we prove that with high probability we generate the entire square
group QN with only few random elements.
Theorem 6. With probability greater than 1−2× 2

k−1 × 1
Bk−1 , a random k-tuple

(v1, . . . , vk) generates QN .
See appendix section 9.3 for a proof of this theorem.

7 Practical Parameters for the Scheme

In the key generation we can test whether p, q, p′ and q′ are divisible by
small primes ≤ B and gcd(p′, q′) = 1. We can assume that B is the first
prime greater than 216. The loss in the key generation phase is a factor 80
on average. Indeed, we have seen in the proof of theorem 2 section 4.4 that
Prp′ [p′ has no small prime factors ≤ B] ≈ 1

eγ ln(B) . If we fix B to 216, we can
assume that Prp′ [p′ has no small prime factors ≤ B] > 1

20 . Therefore, to gener-
ate p and q such that neither p′ nor q′ have small prime factors and such that
gcd(p−1, q−1) = 2, we have to run on average 2× (20+20) = 80 times the first
phase of Boneh-Franklin’s protocol. This factor is not critical as this algorithm
is run only once.

In the proof of correctness, if we want to have a security parameter of 280,
we choose B′ = 216 < B. Hence, we have to choose h = 5 rounds. To generate
the group of squares with probability greater than 1 − 280, we need u = 6
verification keys. Therefore, we need 30 proofs of correctness but is is acceptable
in the applications that we have in mind.
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8 Conclusion

In this paper, we have showed how to avoid safe prime RSA modulus in Shoup’s
proof of robustness such that the proof remains correct. We consider environ-
ments where high security is required such as electronic voting schemes, and
therefore, we need protocols using standard assumptions and we are ready to
pay the price for it.

Basically, we use three different techniques allowing to prove that :

– the group of square is cyclic,
– we generate p and q such that p′ and q′ do not contain small prime factors,

which allows us to generate the group QN and make Shamir Secret Sharing
Scheme secure

– we generate a set of generators of QN by picking at random different gener-
ators in QN .

Finally, we show how to adapt Shoup proof in order to work with different
elements that generate QN instead of a single one.
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9 Appendix

9.1 Robustness of the Distributed Sieving Protocol

To resist against such players, we first run a “sum-to-poly” algorithm as de-
scribed in [16,18]. When the polynomial sharing of p is obtained, one can note
that

∑
j∈S\{0} λS

0,j = 1, where λS
0,j denotes the Lagrange coefficient of the jth

server. Therefore, server i can set its new polynomial share to f(i) − 1 if f(i)
denotes its polynomial share. Indeed, if p = f(0) =

∑
j∈S\{0} λS

0,jf(j), then

p − 1 = f(0) − 1 =
∑

j∈S\{0}
λS
0,jf(j) −

∑
j∈S\{0}

λS
0,j =

∑
j∈S\{0}

λS
0,j(f(j) − 1)

Next, the GCD protocol can also be applied with a polynomial sharing of the
secret value ϕ = p − 1.

9.2 Proof of Lemma 1

Proof. We can note that ϕ(N) = N − p− q + 1 = (N − 1) − (p− 1) − (q− 1). So,

(N − 1) − ϕ(N) = (p − 1) + (q − 1)

Consequently, gcd(N−1, ϕ(N)) = gcd((N−1)−ϕ(N), ϕ(N)) = gcd((p−1)+(q−
1), ϕ(N)). If we note a = p− 1 and b = q − 1, we have to compare gcd(a+ b, ab)
and gcd(a, b). It is easy to see that gcd(a, b)| gcd(a+b, ab), because if f | gcd(a, b),
f |a and f |b, so f |a + b and f |ab.
But let f | gcd(a + b, ab). As,

gcd(a + b, ab) = gcd(a + b, ab − a(a + b)) = gcd(a + b,−a2) = gcd(a + b, a2)

We can assume that f |(a + b) and f |a2. If f is a prime number, f |a and as
f |(a + b), f | gcd(a, b). If f is not a prime number but a power of some prime
number, say f = f ′α, we have f ′α|a2 and α = 2β. Hence, f ′β |a + b and f ′β |a,
so f ′β | gcd(a, b). ��



Fully Distributed Threshold RSA under Standard Assumptions 329

9.3 Proof of Theorem 6

Theorem 5. With probability greater than 1−2× 2
k−1 × 1

Bk−1 , a random k-tuple
(v1, . . . , vk) generates QN .

Let us first define additional notations. If (v1, . . . , vk) is a k-tuple of (QN )k,
we use 〈v1, . . . , vk〉 to denote the subgroup of QN that is generated by the vi’s,
i.e., 〈v1, . . . , vk〉 = {x ∈ QN |∃(λ1, . . . , λk) x =

∏k
i=1 v

λi
i mod N}.

We also denote by ζ(k) the Riemann Zeta function defined by ζ(k) =∑+∞
d=1

1
dk for any integer k ≥ 2. If n = q1

e1 × q2
e2 × . . . × qj

ej , we denote
by ϕk(n) nk × (1 − 1

q1k )(1 − 1
q2k ) . . . (1 − 1

qj
k ), the generalization of the Euler

function in the case of k generators. Finally, if n has no prime factors less than
B, we define ζB(k) has

∑+∞
d=B

1
dk .

To find a generator v of QN , we have to find a v such that v mod p generates
Qp and v mod q generates Qq.

We estimate the probability that x ∈ QN is a generator of QN . The proba-
bility to catch such number depends on the factorization of the order p′ of Qp

and q′. Yet, even if M = p′q′ has no small factors, the probability is to obtain
such generator is not overwhelming. Indeed, if we pick a random element v in
Qp, the probability that v is a generator of Qp is

Pr = Pr
v∈Qp

(〈v〉 = Qp) =
ϕ(p′)
p′ =

∏
pi≥B,pi|p−1

(1 − 1
pi

) ≤ 1 − 1
p1

and if p1 ≤ 2B, we can bound the probability by ≤ 1 − 1
2B . The probability

that B ≤ p1 ≤ 2B is equal to the probability that p′ is divisible by at least one
prime that belongs in [B, 2B]. So, Prp1 [B ≤ p1 ≤ 2B] =

∑
B≤qi≤2B,qiprime

1
qi

≥
1
2B × (π(2B) − π(B)) if we denote by π(x) the number of primes between 2 and
x. If B = 216, with probability ≥ 1/26, Pr ≤ 1

217 . Consequently, we cannot say
that this probability is overwhelming.

However, if we allow to choose several random elements in QN , then the sub-
group 〈v1, . . . , vk〉 is a equal to QN with high probability. A k-tuple (v1, . . . , vk)
is a set of generators of QN if (v1 mod p, . . . , vk mod p) is a set of generators
of Qp and if (v1 mod q, . . . , vk mod q) is a set of generators of Qq. Hence, the
number of k-tuples of (QN )k that generate QN is the number of these k-tuples
viewed as elements of (Qp)k that generate Qp and viewed as elements of (Qq)k

that generate Qq.
There are p′ = p−1

2 elements in Qp. To generate this cyclic subgroup of Zp
∗

(since it is a subgroup of a cyclic group), there are ϕ(p′) such generators.
The analysis made by Poupard and Stern in [31] can be extended in our

context as it is true in general cyclic groups and not only in Zpe
∗. Let us now

present a preliminary lemma.

Lemma 3. The number of k-tuples of (Qp)k that generate Qp is ϕk(p′).

Proof. Let (v1, . . . , vk) be k-tuple of (Qp)k and v be a generator of Qp; for
i = 1, . . . , k, we define αi ∈ Zp′ by the relation vαi = vi mod p. We first notice
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that (v1, . . . , vk) generates Qp if and only if the ideal generated by α1, . . . , αk

in the ring Zp′ is the entire ring. Bezout equality shows that this event occurs
iff gcd(α1, . . . , αk, p

′) = 1.
Now, we count the k-tuples (α1, . . . , αk) ∈ (Qp)k such that gcd(α1, . . . , αk, p

′) =
1. Let

∏t′

i=1 qi
fi the prime factorization of p′. Then, gcd(x,

∏t′

i=1 qi
fi) = 1 ⇐⇒

∀i ≤ t′, gcd(x, qifi) = 1 ⇐⇒ ∀i ≤ t′, gcd(x mod qi
fi , qi

fi) = 1.
Using the Chinese remainder theorem, the problem reduces to count-

ing the number of k-tuples (β1, . . . , βk) of (Zqi
fi )k such that gcd(β1 mod

qi
fi , . . . , βk mod qi

fi , qi
fi) = 1 for i = 1, . . . , t′. The k-tuples that do not

verify this relation for a fixed index i are of the form (qiγ1, . . . , qiγk) where
(γ1, . . . , γk) ∈ Zqi

fi−1
k and there are exactly qi

k(fi−1) such k-tuples.
Finally, the number of k-tuples of (Zp′)k such that gcd(α1, . . . , αk, p

′) = 1 is∏t′

i=1(qi
kfi − qi

k(fi−1)) =
∏t′

i=1 ϕk(qifi) = ϕk(p′) since ϕk is multiplicative. ��

Now, we return back to the proof of the theorem 6. Let us first introduce
a notation : for any integer x, let Sx be the set of the indices i such that pi
is a factor of x. From the previous lemma, we know that the probability for a
k-tuple of (Qp)k to generate Qp is ϕk(p′)

p′k . Lemma 3 shows that pr is equal to
the product

∏
i∈Sp′ 1 − 1

pi
k . The inverse of each term 1 − 1

pi
k can be expanded

in power series : (1 − 1
pi

k )−1 =
∑∞

j=0(1/pi
k)j . The probability pr is a product

of series with positive terms, pr = (
∏

i∈Sp′

∑∞
αi=0

1
pi

αik )−1 so we can distribute

terms and obtain that pr−1 is the sum of 1/dk where d ranges over integers whose
prime factors are among pis, i ∈ Sp′ . This sum is smaller than the unrestricted
sum

∑∞
d=1 1/dk = ζ(k). Finally, we obtain pr > 1/ζ(k).

In our case, neither p′ nor q′ have prime factors less than B, therefore :
1 + ζB(k) = 1 +

∑∞
d=B 1/dk < 1 + 1/Bk +

∫∞
B

dx/xk = 1 + k−1+B
k−1 × 1

Bk . Since
for all x > −1, 1/(1 + x) ≥ 1 − x, 1/(1 + ζB(k)) > 1 − k−1+B

k−1 × 1
Bk .

Therefore, the number of k-tuples of (Qp)k that generate Qp is ϕk(p′) and

Pr(v1,... ,vk)∈(Qp)k{〈v1, . . . , vk〉 = Qp} =
ϕk(p′)

p′k >
1

1 + ζB(k)
> 1 − k + B − 1

k − 1
× 1

Bk

Consequently, with probability greater than 1 − 2 × 2
k−1 × 1

Bk−1 , the k-tuple
(v1, . . . , vk) generates Qp and Qq and therefore QN . For example, with k = 6
and B = 216, this probability is larger than 1 − 1/280.
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