Programing in C

Pierre-Alain FOUQUE

ovr h W DN

Summary

The C Language
Layout of a program
Data Typing

Conditions

Conditional loops while

Programming Language

The processor controls everything, but understands
only the machine language (i. e. sequence of
numbers)

® that designs operation to perform
® specific to each processor

= Not easy to use / not portable (from one machine
to another)

Programming Language :
interface between we and the machine

C Language

Control Structures (if, for, while, ...)
Usage of pointers (to access the memory)

Iterative Programming (the program controls the
changes in the memory)

Recursive Programming (function defined by calling
itself)

Data Typing (restricted to type that can be efficiently
translated into machine language)

a C Program

Program

® include (objects, data predefined)
® types (new types)

® variables (memory allocation)

® function list

Functions

® header (output viewpoint)

® operating mode :instruction list
e simples :termined by « ; »

e composed :simple instructions between « {

5

P »

First program : « hello »

First program : « hello »

inclusions »

First program : « hello »

inclusions

First program : « hello »

inclusions
function-{

First program : « hello »

inclusions

function

First program : « hello »

inclusions

function instruction

First program : « hello »

inclusions

function instruction

First program : « hello »

inclusions

function instruction

«main » : main function

® only this function is called when the program is
launched

=> distribute the tasks

Usage

Usage

® Edite this program

xemacs hello.c &

Usage

® Edite this program

xemacs hello.c &

® Compile this program

gcc -Wall hello.c -o hello

Usage

® Edite this program

xemacs hello.c &

® Compile this program

gcc -Wall hello.c -o hello

® [Execution

./hello

Usage

® Edite this program

xemacs hello. c‘

® Compile this program

gcc -Wall hello.c -o hello

® [Execution

./hello

Usage

® Edite this program

xemacs hello. c‘

® Compile this program
gc hello.c -o hello

® [Execution

./hello

Classical Errors

The main classical errors are :
error in the name of a function
=> the compilater does not know it

forget « ; » at the end of an instruction

use a variable not declared

= the compilator does not know if it is an int, a float
or a string !

no « main » function

The « main » function

« main » : main function
¢ function called when the program is launched
¢ no other function is automatically executed

—> cannhot be missed

Generic Program

Generic Program

Explanation :

s s
A A
/ LI I /

Generic Program

Explanation :

iy %
" m =

Preprocessor :

» inclusions {
» constantes

¢ MmMacros

Generic Program

Explanation :

iy %
" m =

Preprocessor :

» inclusions {
» constantes

¢ MmMacros

Types

Generic Program

Explanation :

iy %
" m =

Preprocessor :

inclusions {
constantes
macros

Types

Global Variables

Functions

Functions

Header

Functions

Header

Functions

Header
Declaration variables

Functions

Header
Declaration variables

Functions

Header
Declaration variables
Instruction simple

Functions

Header
Declaration variables
Instruction simple

Functions

Header
Declaration variables
Instruction simple

Header

Functions

Header
Declaration variables
Instruction simple

Header

Functions

Header
Declaration variables
Instruction simple

Header
Declaration variables

Functions

Header
Declaration variables
Instruction simple

Header
Declaration variables

Functions

Header
Declaration variables
Instruction simple

Header
Declaration variables

— Instructions simples

Memory

The memory stores either
® the program to execute

(sequence of numbers in machine language for
the processor)

® the variables changed by the program

=> storage by bytes or words
(blocks of 8 bits or 32 bits)

Typing

What is the coding of 01010111 !

t
t
t

ne integer 87 (= 64+16+4+2+1)
ne float 0,00390625 (= 2.27)

he character ‘X’

an instruction in machine language

= we need to associate a type for each value

The typing defines the coding

13

Integers : short, int,
long and long long

In practice, according the types and machines, the
integers are coded using 8, 16, 32 or 64 bits : (GCC
under Linux)

char (8 bits) —=+/- 127
short (16 bits) —+/- 32767
int/long(32 bits)— ~ +/-2.10°

long long (64 bits) = ~ +/-9.10'8
unsigned int precises positive integers = we do
not need a sign bit

Representating reals

called floating (real with floating point)

(m,e) m: mantissae and e: exponent

rep.: Mb® where M is the number coded in m
base b=2, or |0 in general

Form normalised: |>M>=1/b

If b=10, M>=0.1 and 3.14 is coded: (0.314,1)

0 cannot be represented in normalized form

15

Floating : f1oat,
double and long double

o float (24 + 8 bits)
Precision 223 Min 10-38 Max 3.1038
e double (53 + || bits)

Precision 23 Min 2.103%98 Max 10308

®¢ long double (64 + |6 bits)
Precision 2-¢4 Min |10-4%3! Max 04932

Declaration and initialization

In a program or a function,
we can declare variables,
then (or simultaneously) initialize them

Declaration and initialization

In a program or a function,
we can declare variables,
then (or simultaneously) initialize them

Declaration and initialization

In a program or a function,
we can declare variables,
then (or simultaneously) initialize them

During the
declaration,
the contain of
the variable is
random !

Operators on humbers

The integers/floats can be manipulated thanks to the
classical following operators :

® a + b :addition
®@ a - Db :soustraction
® a * b :multiplication

® a / b :division
(euclidean division on integers)
(floating division on reals)

® a % b:modulo on integers
(rest of the euclidean division)

18

Printing variables

printf displays on the screen, the variable contain :

%d foran int or long (%$3d) for 3 spaces
(1deal for alignment)

$f fora float or double (%g) (%6.2f)
for 6 spaces, 2 digits after point

Printing variables

printf displays on the screen, the variable contain :

%d foran int or long (%3d) for 3 spaces
(ideal for alignment)

$f fora float or double (%g) (%6.2f)
for 6 spaces, 2 digits after point

Bitstring
® x and y are of type unsigned int
®Xx & y=x AND y
®x | y=xOR Yy
®x "y =x XOR y
work bit by bit.

® x << 8 = shift of 8 bits in the left (corresponds
to the multiplication by 28 modulo 23?)

® x >> 5 =sshift of 5 bits in the right

® ~x = complementto | of x

20

Representation in other bases

® Decimal: Example: 1234
® Octal: First digit is a zero. Example: 0177

® Hexadecimal: begins by 0x or 0X. Ex: 0x1BF and
OXF2A

® To print an integer in hexadecimal form

e int a; printf(“%$x”,a);

21

scanf

work conversely as the printf function
enter a value (keyboard) into a variable

call scanf with a format and a variable which wiill
be modified

int aj;
printf (“Enter a value:\n”);

scanf (“%d” ,&a);

Conditionnal Execution

According the result of a test, we can hope the execution
of an instruction, or not :

Conditionnal Execution

According the result of a test, we can hope the execution
of an instruction, or not :

Conditionnal Execution

According the result of a test, we can hope the execution
of an instruction, or not :

A choice:

Conditionnal Execution

According the result of a test, we can hope the execution
of an instruction, or not :

A choice:

A test ?

The result of a test is an integer :
nul = false
non nul = truth

Operators of test

a==b : equality test
a!=b : difference test
a<b or a>b : strict comparaison

a<=b or a>=b : comparaison large

Test Combinaison

It is possible to combine (negation, conjonction,
disjonction, etc) of tests

® (! (<test>)) :negation of <test>

® ((<testl>) && (<test2>)):
conjonction (<testl1l>AND <test2>)

® ((<testl>) || (<test2>)):
disjonction (<test1> OR <test2>)

Remarks on tests

® Do not hesitate to put parenthesis
® No order is respected at execution time

we have to see that all tests and subtests can be made
so that the program can not loop!

® A single instruction is allowed after the if or the
else

if many instructions depend on the result of a test
= composed instructions « {...} »

Conditional Loops

In C, it is possible to execute an instruction many times :
Loops

® fix number of iterations :
f or (cf. following lesson)

® number of iterations depending on a test : while and
do .. while

Loop while

An instruction is executed while a test is

satisfied :

oul

non

AN

‘instruction>

<

Loop while

An instruction is executed while a test is
satisfied :

-

while <test> non

oul

(instruction>]

l

AN

<

Loop while

An instruction is executed while a test is

satisfied :

while <test>
<lnstruction>

oul

non

AN

‘instruction>

<

Loop while

An instruction is executed while a test is
satisfied :

while <test> non
<lnstruction> |

oul

= instruction can be instructiond |
never executed : l

AN

Loop do .. while

An instruction is executed,
then repeated while a test is satisfied :

Loop do .. while

An instruction is executed,
then repeated while a test is satisfied :

do

Loop do .. while

An instruction is executed,
then repeated while a test is satisfied :

do
<linstruction>

Loop do .. while

An instruction is executed,
then repeated while a test is satisfied :

do
<linstruction>

while <test>

Loop do .. while

An instruction is executed,
then repeated while a test is satisfied :

do R
<instruction>
while <test>

AN

(instruction>

non

oul

Loop do .. while

An instruction is executed,
then repeated while a test is satisfied :

do R
<instruction>
while <test>

AN

(instruction>

=> the instruction is always
executed at least one time

non

oul

Remarks on the loops

® A single instruction is allowed in the loop

® wvhile <test> <instruction>

® do <instruction> while <test>;

if many instructions must be repeated
= composed instructions « {..} »

® The indentation helps to see what is repeated (with
the help of emacs)

Books

Kernigham & Ritchie : Le langage C

Bracquelaire: Méthodologie de la programmation
en C

Delannoy: Le livre du C Premier Langage

Sedgewick : Algorithmes en C

Cormen, Leicerson, Rivest, Stein : Introduction a
I'algorithmique

Knuth : The Art of Computer Programming

31

