
New Generic Algorithms for Hard Knapsacks

Nick Howgrave-Graham1 and Antoine Joux2

1 35 Park St, Arlington, MA 02474
nickhg@gmail.com

2 dga and Université de Versailles Saint-Quentin-en-Yvelines
uvsq prism, 45 avenue des États-Unis, f-78035, Versailles cedex, France

antoine.joux@m4x.org

Abstract. In this paper, we study the complexity of solving hard knap-
sack problems, i.e., knapsacks with a density close to 1 where lattice-
based low density attacks are not an option. For such knapsacks, the cur-
rent state-of-the-art is a 31-year old algorithm by Schroeppel and Shamir
which is based on birthday paradox techniques and yields a running time
of Õ(2n/2) for knapsacks of n elements and uses Õ(2n/4) storage. We
propose here two new algorithms which improve on this bound, finally
lowering the running time down to either Õ(20.385 n) or Õ(20.3113 n) un-
der a reasonable heuristic. We also demonstrate the practicality of these
algorithms with an implementation.

1 Introduction

The 0–1 knapsack problem or subset sum problem is a famous NP-hard problem
which has often been used in the construction of cryptosystems. An instance of
this problem consists of a list of n positive integers (a1, a2, · · · , an) together with
another positive integer S. Given an instance, there exist two forms of knapsack
problems. The first form is the decision knapsack problem, where we need to
decide whether S can be written as:

S =
n∑

i=1

εiai,

with values of εi in {0, 1}. The second form is the computational knapsack prob-
lem where we need to recover a solution ε = (ε1, · · · , εn) if at least one exists.

The decision knapsack problem is NP-complete (see [7]). It is also well-known
that given access to an oracle that solves the decision problem, the computational
problem can be solved using n calls to this oracle. Indeed, assuming that the
original knapsack admits a solution, we can easily obtain the value of εn by
asking to the oracle whether the subknapsack (a1, a2, · · · , an−1) can sum to S.
If so, there exists a solution with εn = 0, otherwise, a solution necessarily has
εn = 1. Repeating this idea, we obtain the bits of ε one at a time.

Knapsack problems were introduced in cryptography by Merkle and Hell-
man [18] in 1978. The basic idea behind the Merkle-Hellman public key cryp-
tosystem is to hide an easy knapsack instance into a hard looking one. The

H. Gilbert (Ed.): EUROCRYPT 2010, LNCS 6110, pp. 235–256, 2010.
c© International Association for Cryptologic Research 2010

236 N. Howgrave-Graham and A. Joux

scheme was broken by Shamir [23] using lattice reduction. After that, many
other knapsack based cryptosystems were also broken using lattice reduction. In
particular, the low-density attacks introduced by Lagarias and Odlyzko [15] and
improved by Coster et al. [4] are a tool of choice for breaking many knapsack
based cryptosystems. The density of a knapsack is defined as:

d =
n

log2(maxi ai)
.

More recently, Impagliazzo and Naor [13] introduced cryptographic schemes
which are as secure as the subset sum problem. They classify knapsack problems
according to their density. On the one hand, when d < 1 a given sum S can
usually be inverted in a unique manner and these knapsacks can be used for
encryption. On the other hand, when d > 1, most sums have many preimages
and the knapsack can be used for hashing purposes. However, for encryption,
the density cannot be too low, since the Lagarias-Odlyzko low-density attack
can solve random knapsack problems with density d < 0.64 given access to an
oracle that solves the shortest vector problem (SVP) in lattices. Of course, since
Ajtai showed in [1] that the SVP is NP-hard for randomized reduction, such
an oracle is not available. However, in practice, low-density attacks have been
shown to work very well when the SVP oracle is replaced by existing lattice re-
duction algorithm such as LLL1 [16] or the BKZ algorithm of Schnorr [20]. The
attack of [4] improves the low density condition to d < 0.94. For high density
knapsacks, with d > 1 there is variation of these lattice-based attacks presented
in [14] that finds collisions in mildly exponential time O(2n/1000) using the same
lattice reduction oracle.

However, for knapsacks with density close to 1, there is no effective lattice-
based approach to solve the knapsack problem. As a consequence, in this case,
we informally speak of hard knapsacks. Note that, it is proved in [13, Propo-
sition 1.2], that density 1 is indeed the hardest case. For hard knapsacks, the
state-of-the-art algorithm is due to Schroeppel and Shamir [21,22] and runs in
time O(n · 2n/2) using O(n · 2n/4) bits of memory. This algorithm has the same
running time as the basic birthday based algorithm on the knapsack problem
introduced by Horowitz and Sahni [10], but much lower memory requirements.
To simplify the notation of the complexities in the sequel, we extensively use the
soft-Oh notation. Namely, Õ(g(n)) is used as a shorthand for O(g(n)·log(g(n))i),
for any fixed value of i. With this notation, the algorithm of Schroeppel and
Shamir runs in time Õ(2n/2) using Õ(2n/4) bits of memory.

Since Wagner presented his generalized birthday algorithm in [25], it is well-
known that when solving problems involving sums of elements from several lists,
it is possible to obtain a much faster algorithm when a single solution out of many
is sought. A similar idea was previously used by Camion and Patarin in [2] to
attack the knapsack based hash function of [5]. In this paper, we introduce two
new algorithms that improve upon the algorithm of Schroeppel and Shamir to
solve knapsack problems. In some sense, our algorithms are a new development
1 LLL stands for Lenstra-Lenstra-Lovász and BKZ for blockwise Korkine-Zolotarev.

New Generic Algorithms for Hard Knapsacks 237

of the generalized birthday algorithm. The main difference is that, instead of
looking for one solution among many, we look for one of the many possible
representations of a given solution.

The paper is organized as follows: In Section 2 we recall some background infor-
mation on knapsacks, in Section 3 we briefly recall the algorithm of Schroeppel–
Shamir and introduce a useful practical variant of this algorithm, in Section 4 we
present our improved algorithms and in Section 5 we describe practical implemen-
tations on a knapsack with n = 96. Section 4 is divided into 3 subsections, in 4.1
we describe the basic idea that underlies our algorithm, in 4.2 we present a simple
algorithm based on this idea and in 4.3 we give a heuristic improvement of this
algorithm in the balanced case. Finally, in Section 6 we present several extensions
and some possible applications of our new algorithms.

2 Background on Knapsacks

2.1 Modular Knapsacks

We speak of a modular knapsack problem when we want to solve:

n∑

i=1

εi ai ≡ S mod M,

where the integer M is the modulus.
Up to polynomial factors, solving modular knapsacks and knapsacks over the

integers are equivalent. Any algorithm that realizes one task can be used to
solve the other. In one direction, given a knapsack problem over the integers
and an algorithm that solves any modular knapsack, it is clear that solving the
problem modulo M = max(S,

∑n
i=1 ai) + 1 yields all integral solutions. In the

other direction, assume that the modular knapsack (a1, · · · , an) with target sum
S mod M is given by representative ai of the classes of modular numbers in the
range [0, M −1]. In this case, it is clear that any sum of at most n such numbers
is in the range [0, nM−1]. As a consequence, if S is also represented in the range
[0, M −1], it suffices to solve n knapsack problems over the integers with targets
S, S + M , . . . , S + (n − 1)M.

2.2 Random Knapsacks

Given two parameters n and D, we define a random knapsack with solution on n
elements with prescribed density D as a knapsack randomly constructed using
the following process:

– Let B(n, D) = �2n/D�.
– Choose each ai (for i from 1 to n) uniformly at random in [1, B(n, D)].
– Uniformly choose a random vector ε in {0, 1}n and let S =

∑n
i=1 εi ai.

238 N. Howgrave-Graham and A. Joux

Note that the computed density d of such a random knapsack differs from the
prescribed density. However, as n tends to infinity, the two become arbitrarily
close with overwhelming probability. In [4], it is shown that there exists a lattice
based algorithm that solves all but an exponentially small fraction of random
knapsacks with solution, when the prescribed density satisfies D < 0.94.

2.3 Unbalanced Knapsacks

The random knapsacks from above may have arbitrary values in [0, n] for the
weight

∑n
i=1 εi of the solution. Yet, most of the time, we expect a weight close

to n/2. For various reasons, it is also useful to consider knapsacks with different
weights. We define an α-unbalanced random knapsack with solution on n elements
given α and the density D as follows:

– Let B(n, D) = �2n/D�.
– Choose each ai (for i from 1 to n) uniformly at random in [1, B(n, D)].
– Let � = �αn� and uniformly choose a random vector ε with exactly � co-

ordinates equal to 1, the rest being 0s, in the set of
(
n
�

)
such vectors. Let

S =
∑n

i=1 εi ai.

Unbalanced knapsacks are natural to consider, since they already appear in
the lattice based algorithms of [15,4], where the value of α greatly impacts the
densities that can be attacked. Moreover, in our algorithms, even when initially
solving regular knapsacks, unbalanced knapsacks may appear in the course of
the computations.

When dealing with balanced knapsacks with exactly half zeros and ones, we
also use the above definition and speak of 1/2-unbalanced knapsacks.

2.4 Complementary Knapsacks

Given a knapsack a1, . . . , an with target sum S, we define its complementary
knapsack to be the knapsack that contains the same elements and has target sum∑n

i=1 ai−S. The solution ε of the original knapsack and ε′ of the complementary
knapsacks are related by:

For all i: εi + ε′i = 1.

Thus, solving either of the two knapsacks also yields the result of the other
knapsack. Moreover, the weight � and �′ are related by � + �′ = n. In particular,
if a knapsack is α-unbalanced, its complementary knapsack is (1−α)-unbalanced.
As a consequence, in any algorithm, we may assume without loss of generality
that � ≤ �n/2� (or that � ≥ �n/2�).

2.5 Asymptotic Values of Binomials

Where knapsacks are considered, binomial coefficients are frequently encoun-
tered, we recall that the binomial coefficient

(
n
�

)
is the number of distinct choices

of � elements within a set of n elements. We have:

New Generic Algorithms for Hard Knapsacks 239

(
n

�

)
=

n!
�! · (n − �)!

.

We often need to obtain asymptotic approximation for binomials of the form(
n

α n

)
(or

(
n

�α n�
)
) for fixed values of α in]0, 1[. This is easily done by using

Stirling’s formula:

n! = (1 + o(1))
√

2πn
(n

e

)n

.

Ignoring polynomial factors in n, we find:
(

n

α n

)
= Õ

((
1

αα · (1 − α)1−α

)n)
.

Many of the algorithms presented in this paper involve complexities of the form
Õ(2c n), where a constant c is obtained by taking the logarithm in basis 2 of
numbers coming from asymptotic estimates of binomials. In this case, to improve
the readability of the complexity, we choose a decimal approximation c0 > c of
c. This would allow us to rewrite the complexity as O(2c0 n) or even o(2c0 n).
However, we prefer to stick to Õ(2c0 n). A typical example is the Õ(20.3113 n)
time complexity of our fastest algorithm, which stands for Õ

((
n

n/4

) · 2−n/2
)

.

2.6 Distribution of Random Knapsack Sums

In order to analyze the behavior of our algorithms, we need to use information
about the distribution of modular sums of the form:

n∑

i=1

aixi (mod M),

for a random knapsack modulo M and for n-tuples (x1, · · · , xn) ∈ B, where B is
an arbitrary set of n-dimensional vectors, with coordinates modulo M . We use
the following important theorem [19, Theorem 3.2]:

Theorem 1. For any set B ⊂ Z
n
M , the identity:

1
Mn

∑

(a1,··· ,an)∈Z
n
M

∑

c∈ZM

(
Pa1,··· ,an(B, c) − 1

M

)2

=
M − 1
M |B|

holds, where Pa1,··· ,an(B, c) denotes the probability that
∑n

i=1 aixi ≡ c (mod M)
for a random (x1, · · · , xn) drawn uniformly from B, i.e.:

Pa1,··· ,an(B, c) =
1
|B|

∣∣∣∣∣

{
(x1, · · · , xn) ∈ B such that

n∑

i=1

aixi ≡ c (mod M)

}∣∣∣∣∣ .

This implies the immediate corollaries:

240 N. Howgrave-Graham and A. Joux

Corollary 1. For any real λ > 0, the fraction of n-tuples (a1, · · · , an) ∈ Z
n
M

for which there exists a c ∈ ZM that satisfies |Pa1,··· ,an(B, c) − 1/M | ≥ λ/M is
at most:

M2

λ2 |B| .
Corollary 2. For any reals λ > 0 and 1 > μ > 0, the fraction of n-tuples
(a1, · · · , an) ∈ Z

n
M for which there exist at least μ M values c ∈ ZM that satisfy

|Pa1,··· ,an(B, c) − 1/M | ≥ λ/M is at most:

M

λ2 μ |B| .

These two corollaries are used when |B| is larger than M . We also need two more
corollaries, one for small values of |B| and one for |B| ≈ M :

Corollary 3. For any reals 1 > μ > 0, if m > 1 denotes M/|B|, the fraction
of n-tuples (a1, · · · , an) ∈ Z

n
M such that less than μ |B| values c ∈ ZM have

Pa1,··· ,an(B, c)
= 0 is at most:
μ

(1 − μ)m

Corollary 4. For any reals λ > 0, the fraction of n-tuples (a1, · · · , an) ∈ Z
n
M

that satisfy:
∑

c∈ZM

Pa1,··· ,an(B, c)2 ≥ M + |B|
λM |B|

is at most λ.

3 The Algorithm of Schroeppel and Shamir

The algorithm of Schroeppel and Shamir was introduced in [21,22]. It allows to
solve a generic integer knapsack problem on n-elements in time Õ(2n/2) using
a memory of size Õ(2n/4). It improves on the birthday algorithm of Horowitz
and Sahni [10] that can be applied on such a knapsack. We first recall this basic
birthday algorithm, which is based on the rewriting of a knapsack solution as an
equality:

�n/2�∑

i=1

εi ai = S −
n∑

i=�n/2�+1

εi ai,

where all the εs are 0 or 1. Thus, to solve the knapsack problem, we construct
the set S(1) containing all possible sums of the first �n/2� elements and S(2)

be the set obtained by subtracting from the target S any of the possible sums
of the last �n/2� elements. Searching for collisions between the two sets, we
discover all the solutions of the knapsack problem. This can be done in time
and memory Õ(2n/2) by fully computing the two sets, sorting them and looking
up for collisions. In [21,22], Schroeppel and Shamir show that, in order to find
these collisions, it is not necessary to store the full sets S(1) and S(2). Instead,
they generate them on the fly using priority queues (based either on heaps or a
Adelson-Velsky and Landis trees), requiring memory Õ(2n/4).

New Generic Algorithms for Hard Knapsacks 241

Algorithm 1. Schroeppel-Shamir algorithm
Require: Knapsack element a1, . . . , an. Knapsack sum S

Let q1 = �n/4�, q2 = �n/2�, q3 = �3n/4�
Create S(1)

L (σ) and S(1)
L (ε): list of all

∑q1
i=1 εi ai and list of ε1···q1 (in the same order)

Create S(1)
R (σ) and S(1)

R (ε): list of all
∑q2

i=q1+1 εi ai and list of εq1+1···q2
Create S(2)

L (σ) and S(2)
L (ε): list of all

∑q3
i=q2+1 εi ai and list of εq2+1···q3

Create S(2)
R (σ) and S(2)

R (ε): list of all
∑n

i=q3+1 εi ai and list of εq3+1···n

Call 4-way merge Algorithm 2 or 3 on (S(1)
L (σ),S(1)

R (σ),S(2)
L (σ),S(2)

R (σ)), n and S.
Store returned set in Sol
for each (i, j, k, l) in Sol do

Concatenate S(1)
L (ε)[i], S(1)

R (ε)[j], S(2)
L (ε)[k] and S(2)

R (ε)[l] into ε
Output: “ε is a solution”

end for

Algorithm 2. Original 4-Way merge routine
Require: Four input lists (S(1)

L ,S(1)
R ,S(2)

L ,S(2)
R), knapsack size n, target sum T

Let S
(1)
L , S

(1)
R , S

(2)
L and S

(2)
R be the sizes of the corresponding arrays.

Create priority queues Q1 and Q2

Sort S(1)
R and S(2)

R in increasing order. Keep track of positions in InitPos1 and
InitPos2
for i from 0 to S

(1)
L do

Insert (i, 0) in Q1 with priority S(1)
L [i] + S(1)

R [0].
end for
for i from 0 to S

(2)
L do

Insert (i, S
(2)
R − 1) in Q2 with priority T − S(2)

L [i]− S(2)
R [S

(2)
R − 1].

end for
Create empty list Sol
while Q1 and Q2 are not empty do

Peek at value q1 of lowest priority element in Q1.
Peek at value q2 of lowest priority element in Q2.
if q1 ≤ q2 then

Get (i, j) from Q1

if j �= S
(1)
R − 1 then

Insert (i, j + 1) in Q1 with priority S(1)
L [i] + S(1)

R [j + 1].
end if

end if
if q1 ≥ q2 then

Get (k, l) from Q2

if l �= 0 then
Insert (k, l − 1) in Q2 with priority T − S(2)

L [k]− S(2)
R [l − 1].

end if
end if
if q1 = q2 then

Add (i, InitPos1[j], k, InitPos2[l]) to Sol
end if

end while
Return list of solutions Sol

242 N. Howgrave-Graham and A. Joux

More precisely, let us define q1 = �n/4�, q2 = �n/2�, q3 = �3 n/4�. We intro-
duce four sets S(1)

L , S(1)
R , S(2)

L and S(2)
R of size O(2n/4) defined as follows:

– S(1)
L is the set of pairs (

∑q1
i=1 εi ai, ε1···q1) with ε1···q1 ∈ {0, 1}q1;

– S(1)
R is the set of (

∑q2
i=q1+1 εi ai, εq1+1···q2) with εq1+1···q2 ∈ {0, 1}q2−q1 ;

– S(2)
L is the set of (

∑q3
i=q2+1 εi ai, εq2+1···q3) with εq2+1···q3 ∈ {0, 1}q3−q2 ;

– S(2)
R is the set of (

∑n
i=q3+1 εi ai, εq3+1···n) with εq3+1···n ∈ {0, 1}n−q3.

With these notations, solving the knapsack problem amounts to finding four
elements σ

(1)
L , σ

(1)
R , σ

(2)
L and σ

(2)
R in the corresponding sets such that S = σ

(1)
L +

σ
(1)
R + σ

(2)
L + σ

(2)
R . We call this a 4-way merge problem.

The algorithm of Schroeppel and Shamir is described in Algorithm 1, using
their original 4-way merge Algorithm 2 as a subroutine. Note that, in Algo-
rithm 1, we describe each set S(i)

X as two lists S(i)
X (σ) and S(i)

X (ε) stored in the
same order.

3.1 A Variation on the Schroeppel and Shamir Algorithm

In practice, the need for priority queues of large size makes the algorithm of
Schroeppel and Shamir harder to implement and to optimize. Indeed, using
large priority queues either introduces an extra factor in the memory usage or
unfriendly cache behavior. As a consequence, we would like to avoid priority
queues altogether. In order to do this, we present a variation on their algorithm,
inspired by an algorithm presented in [3] that solves the problem of finding 4
elements from 4 distinct lists with bitwise sum equal to 0. Note that, from a
theoretical point of view, our variation is not as good as the original algorithm
of Schroeppel and Shamir, because for some exceptional knapsacks, it requires
more memory.

The idea is to choose a modulus M near 2(1/4−ε) n and to remark that the
4-way merge condition implies σ

(1)
L + σ

(1)
R ≡ S − σ

(2)
L − σ

(2)
R (mod M). As a

consequence, for any solution of the knapsack, there exists a value σM , such
that:

σM = (σ(1)
L + σ

(1)
R) mod M = (S − σ

(2)
L − σ

(2)
R) mod M.

Since, we cannot guess the correct value of σM , we simply loop over all possible
values. This gives a new 4-way merge Algorithm 3, which can be used as a
replacement for the original subroutine in Algorithm 1.

Informally, for each test value of σM , Algorithm 3 constructs the set of all
sums σ

(1)
L + σ

(1)
R congruent to σM modulo M . This is done by sorting S(1)

R by
values modulo M . Indeed, in this case, it suffices for each σ

(1)
L in S(1)

L to search
the value σM − σ

(1)
L in S(1)

R . Using this method, we construct the set S(1) of the
birthday paradox algorithm as a disjoint union of smaller sets S(1)(σM), which
are created one at a time within the loop on σM in Algorithm 2. Similarly, we
implicitly construct S(2) as a disjoint union of S(2)(σM), but do not store it,
instead searching for matching values in S(1)(σM).

New Generic Algorithms for Hard Knapsacks 243

Algorithm 3. Modular 4-Way merge routine

Require: Four input lists (S(1)
L ,S(1)

R ,S(2)
L ,S(2)

R), size n, target sum T
Require: Memory margin parameter: ε

Let M be a random modulus in [2(1/4−ε) n, 2 · 2(1/4−ε) n]

Create list S(1)
R (M) containing pairs (S(1)

R [i] mod M, i) where i indexes all of S(1)
R

Create list S(2)
R (M) containing pairs (S(2)

R [i] mod M, i) where i indexes all of S(2)
R

Sort S(1)
R (M) and S(2)

R (M) by values of the left member of each pair
Create empty list Sol
for σM from 0 to M − 1 do

Empty the list S(1) (or create the list if σM = 0)

for i from 1 to size of S(1)
L do

Let σ
(1)
L = S(1)

L [i] and σt = (σM − σ
(1)
L) mod M

Binary search first occurrence of σt in S(1)
R (M)

for each consecutive (σt, j) in S(1)
R (M) do

Add (σ
(1)
L + S(1)

R [j]), (i, j)) to S(1)

end for
end for
Sort list S(1) by values of the left member of each pair
for k from 1 to size of S(2)

L do

Let σ
(2)
L = S(2)

L [k] and σt = (T − σM − σ
(2)
L) mod M

Binary search first occurrence of σt in S(2)
R

for each consecutive (σt, l) in S(2)
R (M) do

Let T ′ = T − σ
(1)
L − S(2)

R [l]
Binary search first occurrence of T ′ in S(1)

for each consecutive (T, (i, j)) in S(1) do
Add (i, j, k, l) to Sol

end for
end for

end for
end for
Return list of solutions Sol

Algorithm 4. Our simple algorithm (Section 4.2)
Require: Knapsack elements a1, . . . , an. Knapsack sum S. Parameter β

Let M be a random prime close to 2β n

Let R1, R2 and R3 be random values modulo M .
Solve the 1/8-unbalanced knapsack modulo M with elements a and target R1.
Solve the 1/8-unbalanced modular knapsack with target R2.
Solve the 1/8-unbalanced modular knapsack with target R3.
Solve the 1/8-unbalanced modular knapsack with target S −R1 −R2 −R3 mod M .
Create the 4 sets of non-modular sums corresponding to the above solutions.
Do a 4-way merge (with early abort and consistency checks) on these 4 sets.
Rewrite the obtained solution as a knapsack solution.

244 N. Howgrave-Graham and A. Joux

Complexity analysis. If we ignore the innermost loop that writes down the
solution set Sol, the running time of the execution of the loop iteration corre-
sponding to σM is Õ(S(1)(σM) + S(2)(σM)), with a polynomial factor in n that
comes from sorting and searching. Summing over all iterations of the loop, we
have a total running time of Õ(S(1) + S(2)) = Õ(2n/2), unless Sol has a size
larger than Õ(2n/2).

Where memory is concerned, storing S(1)
L , S(1)

R , S(2)
L and S(2)

R costs O(2n/4).
However, the memory required to store the partitioned representation of S(1) is
maxσM S(1)(σM). Note that we cannot guarantee that this maximum remains
small. A simple counterexample occurs when all ai values (in the first half) are
multiples of M . Indeed, in that case we find that S(1)(0) has size 2n/2. In general,
we do not expect such a bad behavior, more precisely, we have:

Theorem 2. For any real ε > 0 and modulus M close to 2(1/4−ε) n, for a
fraction at least 1 − 2−4ε n of knapsacks with density D < 4 given by n-tuples
(a1, · · · , an) and target value T , Algorithm 1 using as 4-way merge routine Algo-
rithm 3 finds all of the NSol solutions of the knapsack in time Õ(max(2n/2, NSol))
using memory Õ(max(2(1/4+ε) n, NSol)).

Proof. The time analysis is given above. The bound on the memory use for
almost all knapsacks comes from applying Corollary 1 with λ = 1/2 twice on the
left and right-hand side subknapsacks on n/2 elements, using B = {0, 1}n/2. We
need to use the fact that a random knapsack taken uniformly at random with
n/D-bit numbers is close to a random knapsack modulo M , when D < 4.

A high bit version. Instead of using modular values to partition the sets S(1) and
S(2), another option is to look at the value of the �n/4� higher bits. Depending
on the precise context, this option might be more practical than the modular
version. In the implementation presented in Section 5, we make use of both
versions.

Early abort with multiple solutions. When the number of solutions NSol is large,
and we wish to find a single solution, we can use an early abort strategy. Heuris-
tically , assuming that the σM values corresponding to the many solutions are
well-distributed modulo M , this reduces the heuristic expected running time to
Õ(max(2n/4, 2n/2/NSol)).

3.2 Application to Unbalanced Knapsacks

The basic birthday algorithm, the algorithm of Schroeppel–Shamir and our vari-
ation can also, with some care, be applied to α-unbalanced knapsacks. In this
case, if we let:

Cα =
(
α−α · (1 − α)α−1

)
,

the time complexity is Õ(Cn/2
α) and the memory complexity is Õ(Cn/2

α) for the
basic birthday algorithm, Õ(Cn/4

α) for the algorithm of Schroeppel and Shamir
and Õ(C(1/4+ε) n

α) for our variation.

New Generic Algorithms for Hard Knapsacks 245

Adapting to the unbalanced case. Letting � = �αn�, if we assume that
the solution of the knapsack has ��/2� elements coming from the first half, then
the algorithms are easily adapted. With the basic birthday method, the only
difference with the balanced case is that S(1) now contains all sums of exactly
��/2� elements among the �n/2� first elements and S(2) contains all sums of ��/2�
among the last �n/2� elements. This restriction is important, because allowing
more elements on either side makes the sets S(1) or S(2) too large and prevents us
from reaching the expected complexity bound. With balanced knapsacks, this is
not an issue because

(
n

�n/2�
)

and 2n are within polynomial factors of each other.
However, nothing a priori guarantees that the solution satisfies the above

assumption. If it does, we say, following [24], that we have a splitting family.
When n is even, to obtain such a splitting family, we can use a method attributed
to Coppersmith in [24]. The idea is to run the algorithm n times on n knapsacks
whose target sums are all equal to S and whose elements are rotated copies of
a1, . . . , an. Namely, the elements of the i-th knapsack are a

(i)
j = a(i+j) mod n. To

prove that this works, it suffices to show that a sliding windows of n/2 consecutive
elements intersects the solution S in exactly ��/2� points at least once, see [24]
for details. When n is odd, we instead attempt to solve the two knapsacks on
n − 1 elements a1 to an−1 and targets S and S − an, thus going back to the
even case. Alternatively, it is also possible to use a randomized approach also
due to Coppersmith and described in [24]. In fact, it suffices to randomize the
order of the ai for each new trial and take the first and second halves. Thanks
to Stirling’s formulae, this, on average, only requires O(

√
n) trials.

For applying the algorithm of Schroeppel–Shamir or our variation to unbal-
anced knapsacks, we need to assume that the number of elements in each of
the four quarters is known in advance and is either equal to ��/4� or to ��/4�.
Assuming that n is a multiple of 4, this can be achieved in a deterministic way
by first using a sliding windows to guarantee that the two halves contains ��/2�
or to ��/2� elements, then, inside of each half, we use another sliding window to
balance the number of elements within the corresponding quarter. At most, we
need to try n3/4 configurations. When n is not a multiple of 4, we first guess
the value of ε in (n mod 4) positions and we are back to a knapsack with a num-
ber of elements equal to a multiple of 4. It is also possible to use a randomized
approach, with an expected number of trials O(n3/2).

4 The New Algorithms

4.1 Basic Principle

In this section, we want to solve a generic knapsack problem on n-elements. We
start from the basic knapsack equation:

S =
n∑

i=1

εiai.

As explained in Section 2, by taking the complementary knapsack if required,
we may assume that � =

∑n
i=1 εi ≥ �n/2�.

246 N. Howgrave-Graham and A. Joux

We define the set S��/2� as the set of all partial sums of ��/2� or ��/2� knapsack
elements. Clearly, there exists pairs (σ1, σ2) of elements of S��/2� such that S =
σ1 + σ2. In fact, there exist many such pairs, corresponding to all the possible
decompositions of the set of � elements appearing in S into two subsets of size
≤ ��/2�. The number Nn of such decompositions is given either by the binomial(

�
�/2

)
for even � or by 2

(
�

(�−1)/2

)
for odd �.

The basic idea that underlies all algorithms presented in this paper is to focus
on a small part on S��/2�, in order to discover one of these many solutions. We
start by choosing a prime integer M near Nn and a random element R modulo
M . Heuristically, we find that with some constant probability, there exists a
decomposition of S into σ1 + σ2, such that σ1 ≡ R (mod M) and σ2 ≡ S − R
(mod M). To find such a decomposition, it suffices to construct the two subsets
of S��/2� containing elements respectively congruent to R and S−R modulo M .
Using the asymptotic estimates of binomials, we find that the expected size of
each of these subsets is:

(
n

��/2�
)

M
≈

(
n

��/2�
)

(
�

��/2�
) = Õ(20.3113 n).

The exponent 0.3113 is obtained by approximating the binomial in the worst
case where � ≈ n/2. Once these two subsets, respectively denoted by S(1)

��/2� and

S(2)
��/2� are constructed, we need to find a collision between σ1 and S − σ2, with

σ1 in S(1)
��/2� and σ2 in S(2)

��/2�. Clearly, using a classical sort and match method,

this can be done in time Õ(20.3113 n). As a consequence, assuming that we can
construct the sets S(1)

��/2� and S(2)
��/2� quickly enough ,we can hope to construct

an algorithm with overall complexity Õ(20.3113 n) for solving generic knapsacks,.
The rest of this paper shows how this can be achieved and also tries to minimize
the required amount of memory.

Application to unbalanced knapsacks. The above idea can directly be ap-
plied to unbalanced knapsacks with � = αn elements in the decomposition of S.
This expected size of the subsets of S��/2� can now be approximated by:

(
n

��/2�
)

(
�

��/2�
) = Õ

((
2

αα/2 · (2 − α)(2−α)/2

)n

· 2−αn

)
.

Interestingly, when α < 1/2 we obtain a smaller bound by considering the com-
plementary knapsack. As a consequence, in order to preserve the usual conven-
tion α ≤ 1/2, it is useful to substitute α by 1 − α, we obtain the bound:

Õ
((

(1 − α)(α−1)/2 · (1 + α)−(1+α)/2
)n

· 2αn
)

.

The curve of the logarithm in base 2 of this bound is included in Figure 1.

New Generic Algorithms for Hard Knapsacks 247

4.2 Simple Algorithm

We first present a reasonably simple algorithm, which can achieve several trade-
offs between time and memory. For simplicity, we assume that � =

∑n
i=1 εi =

�n/2�. Should this not be the case, it would suffice to run the algorithm (possibly
in the unbalanced version described below) for all values of � ≤ �n/2�. In such a
sequence of executions, the instance with � = �n/2� dominates the running time
and the total run time remains within the same bound.

In our simple algorithm, instead of considering decompositions of S into two
sub-sums as in the previous section, we now consider decompositions into four
parts and write:

S = σ1 + σ2 + σ3 + σ4,

where each σi belongs to the set S��/4� of all partial sums of either ��/4� or
��/4� knapsack elements. The exact number N of such decompositions varies
depending on the value of � modulo 4, for example:

N =
(

�

�/4, �/4, �/4, �/4

)
when � ≡ 0 (mod 4).

However, in any case, thanks to Stirling’s formula, we find that N = Õ(2n).
We now choose an integer M near 2β n (with 1/4 < β < 1/3) and three

random elements R1, R2 and R3 modulo M . We then search for a decomposition
that satisfies the constraints σ1 ≡ R1 (mod M), σ2 ≡ R2 (mod M), σ3 ≡ R3

(mod M) and σ4 ≡ S−R1−R2−R3 (mod M). Clearly, the fourth condition is a
consequence of the other three and we heuristically expect NM−3 solutions that
satisfy the extra constraints. To make this heuristic expectation precise enough
we need the following generalization to Corollary 2:

Corollary 5. When log2(M) > (3 log2(3)/16)n ≈ 0.2972 n, for any reals λ > 0
and 1 > μ > 0, the fraction of n-tuples (a1, · · · , an) ∈ Z

n
M for which there exist at

least μ M3 values (c1, c2, c3) ∈ ZM that satisfy |Pa1,··· ,an(B, c1, c2, c3)− 1/M3| ≥
λ/M3 is at most:

2M3

λ2 μ |B| ,

where B is the set of decomposition of a given solution as (x(1), x(2), x(3), x(4))
and Pa1,··· ,an(B, c1, c2, c3) denotes the probability of the event:

n∑

i=1

aix
(1)
i ≡ c1 and

n∑

i=1

aix
(2)
i ≡ c2 and

n∑

i=1

aix
(3)
i ≡ c3 (mod M).

Proof. Refer to long version of this paper [12].

Heuristically, we also expect the corollary to hold as long as β > 1/4.
Once we have random values R1, R2 and R3 that match a decomposition of

the solution, we can find the solution as follows: we start by constructing the
four subsets of S��/4� containing elements respectively congruent to R1, R2, R3

248 N. Howgrave-Graham and A. Joux

and S − R1 − R2 − R3 modulo M . We denote these subsets by S(1)
��/4�, S(2)

��/4�,

S(3)
��/4� and S(4)

��/4�. Once this is done, we search for a knapsack solution by doing
a 4-way merge of these sets. This strategy is outlined as Algorithm 4.

Constructing the subsets. To construct each of the subsets S(1)
��/4�, S(2)

��/4�,

S(3)
��/4� and S(4)

��/4�, we use the algorithm of Schroeppel and Shamir. Note that,
since the solution we are searching is a sum of ��/4� or ��/4� elements, we need
to use the algorithm in the unbalanced case, with α = 1/8. Depending on the
value of β, the set of solutions may be quite large. Indeed, the expected number
of solutions is

(
n

�n/8�
) · 2−βn = Õ(2(0.5436−β) n). Since this is bigger than the size

of the subsets S(i)
��/4�, the memory complexity of Algorithm 1 is Õ(2(0.5436−β) n),

while its time complexity is Õ(max(2(0.5436−β) n, 20.272 n)). For the theoretical
analysis, we assume here that we are using the original 4-way merge algorithm
of Schroeppel and Shamir whose complexity is always guaranteed.

Of course, since we are solving modular knapsack instances, we first need
to transform the problems into (polynomially many instances of) integer knap-
sacks as explained in Section 2. In any case, note that the time and memory
requirements of this stage are dominated by the complexity of the next stage.

Recovering the desired solution. Once the subsets S(1)
��/4�, S(2)

��/4�, S(3)
��/4�

and S(4)
��/4� are constructed, it suffices to perform a 4-way merge of these sets

using a slightly modified version of the modular2 4-way merge Algorithm 3. For
this 4-way merge, we use a modulus M ′ coprime to M . We choose M ′ close to(

n
��/4�

)
2−βn ≈ 2(0.5436−β)n.

The changes to Algorithm 3 are the following:

1. Rename the modulus as M ′

2. Replace the “for” loop on the σM ′ value, by a loop where each new value of
σM ′ is randomly selected.

3. At each merge, i.e. insertion in S(1), Sol or (implicit) S(2), add a consistency
check to make sure that the corresponding subset sums do not overlap. If
consistency check fails, skip the insertion.

4. Add an early abort criteria: stop the algorithm at the first insertion in Sol.

At the end of the algorithm, the consistent solution σ1 +σ2+σ3+σ4 = S present
in Sol can be translated into a solution of the knapsack problem.

Complexity analysis (sketch of proof). We have already seen that the
time complexity of the subset construction phase is Õ(max(2(0.5436−β)n, 20.272 n))
using memory Õ(2(0.5436−β) n). To analyze the complexity of the recovery stage,
we need to know the size of the intermediate set of sums S1(σM ′). Note that

2 Here, we cannot use the original 4-way merge, because we do not know how to
analyze its complexity when early abort is used.

New Generic Algorithms for Hard Knapsacks 249

this set contains all choices of ��/2� elements among n that can be written as a
sum σ = σ1 + σ2 satisfying a modular constraints, i.e., σ1 ≡ σM ′ (mod M ′). By
construction, we also have σ1 ≡ R1 + R2 (mod M).

Using the same techniques, we can also show that there exists a constant
τ such that at least τ min(2(1−3β) n, 2(1/2−β) n) decompositions of the original
solutions in two parts with σ1 ≡ R1 + R2 (mod M) are obtained. Let B denotes
this set of accessible decompositions and look at the corresponding sums modulo
M ′ > |B|. Applying Corollary 3 with μ = 1/2, we find that, for all but an
exponentially small fraction of n-tuples (a1, · · · , an), at least |B|/2 different sums
modulo M ′. As a consequence, since the σM ′ values are taken at random, the 4-
way merge requires an expected number of iterations M ′/(2|B|). Moreover, after
n M ′/(2|B|) iterations there is an overwhelming probability to find at least one
such decomposition. Thus, the early abort occurs after Õ(M ′/(2|B|)) iterations.

It remains to analyze the time complexity of each iteration of the loop. It is
dominated by the number of merged pairs that need to be tested for consistency.
For any value of σM ′ the number of pairs is the sum over c of the number of
elements congruent to c modulo M ′ in the first list by the number of elements
congruent to σM ′−c modulo M ′ in the second list. This is a scalar product of two
vectors on M ′ elements. It is smaller than the product of the norms of the two
vectors. We can bound the squared norm using Corollary 4, with λ = 2−εn. We
find that for an exponentially small fraction λ of n-tuples, the number of pairs
tested for consistency per iteration is Õ(2εnM ′). Multiplying by the number of
iterations, we find a total time Õ(2εnM ′2/|B|) = Õ(2(0.0872+β) n) when ε is small
enough.

We should also state that the number of quadruples tested for consistency is
Õ(20.3113 n). Putting everything together, when 1/3 > β > 1/4, we summarize
the overall running time of the algorithm as Õ(max(20.3113 n, 2(0.0872+β)n)) using
Õ(2(0.5436−β)n) units of memory. We recall that, when β ≤ 3 log2(3)/16 the
analysis is only heuristic.

Some possible time-memory trade-offs. We now instantiate this simple
algorithm by choosing values for β. A first option is to minimize the required
amount of memory, this is achieved by taking β arbitrarily close to 1/3 and yields
a running time Õ(20.421 n), using Õ(20.211 n) memory units. A second option is
to look at the smallest value of β for which we can prove the algorithm, i.e.,
β ≈ 0.2972, we have running time Õ(20.385 n), using Õ(20.247 n) memory units. A
third heuristic option is to require the same amount of memory as in Schroeppel–
Shamir, i.e. Õ(2n/4), this occurs for β ≈ 0.2936 and corresponds to a running
time Õ(20.381 n). Finally, we can minimize the running time by taking β close
to 1/4 and obtain an algorithm with time complexity Õ(20.338 n) and memory
complexity Õ(20.294 n).

For the choices β < 1/4, the time complexity becomes Õ(2(0.5872−β)n) and
increases again.

Complexity for unbalanced knapsacks. As in Section 3.1, this algorithm
can be extended to α-unbalanced knapsacks, with α ≤ 1/2. Writing the time
complexity as Õ(2Cαn) and the memory complexity as Õ(2Dαn), we have:

250 N. Howgrave-Graham and A. Joux

Cα = 2 log2

(
4

αα/4 · (4 − α)(4−α)/4

)
− 2α + 2βα and

Dα = log2

(
4

αα/4 · (4 − α)(4−α)/4

)
− 2βα.

As in the balanced case, the parameter β determines the chosen time-memory
trade-off.

Knapsacks with multiple solutions. Note that nothing prevents the above
algorithm from finding a large fraction of the solutions for knapsacks with many
solutions. However, in that case, we need to take some additional precautions. We
need to change the early abort strategy and to remove any duplicate represen-
tation of a given solution. We should remember that, if the number of solutions
becomes too large it can dominate time and memory complexities.

For an application that would require all the solutions of the knapsack, it is
also necessary to increase the running time. The reason is that this algorithm
is probabilistic and that the probability of missing any given solution decreases
exponentially as a function of the running time. Of course, when there is a large
number NSol of solutions, the probability of missing at least one is multiplied
by NSol. Heuristically, to balance this, we increase the running time by a factor
of log(NSol).

4.3 A Better Heuristic Algorithm

Despite the fact that the algorithm from Section 4.2 outperforms the method
of Schroeppel and Shamir, it does not achieve the complexity expected from
Section 4.1. Admittedly, with the choice of β that optimizes speed, it comes
reasonably close. However, in this case, it requires more memory than we would
expect. In order to further reduce the complexity, we propose a heuristic algo-
rithm that more closely follows the basic idea from Section 4.1. More precisely,
we need to write S = σ1 + σ2 and constrain σ1 enough to lower the number of
expected solutions close to 1. Once again, we assume, for simplicity, that n is
even and that we are considering a 1/2-unbalanced knapsack.

We choose a modulus M close to 2γn with γ ≥ 1/2 and thus need to consider
on average 2(γ−1/2)n different random values for σ1 modulo M . For each of
these 2(γ−1/2)n random values, denoted by R, we need to compute the list of all
solutions to the partial knapsack σ1 = R (mod M), the list of all solutions to
σ2 = S − R (mod M) and finally to search for a collision between the integer
values of σ1 and S − σ2.

Clearly, the list of values σ1 (or σ2) can be constructed by solving a modular
knapsack problem involving about n/4 values chosen among n. After trans-
forming the problem into integer knapsack problems, we simply use the al-
gorithm from Section 4.2 in the 1/4-unbalanced case. This can be done us-
ing time Õ(20.2996 n) and memory Õ(20.2123 n), assuming that the number of

New Generic Algorithms for Hard Knapsacks 251

solutions is no bigger than that. Since the number of expected solutions is(
n

n/4

)
/M = Õ(2(0.8113−γ)n), we choose γ between 0.5117 and 0.5990, in order

to balance the number of solutions returned by the subroutine with some com-
promise between its time or memory. Here is a table that shows some achievable
trade-offs:

γ Time exponent Memory exponent Comment
0.5117 0.3113 0.2996 Lowest time
0.5177 0.3173 0.2936 Same memory as Algorithm 4
0.5375 0.3372 0.2737 Same time as Algorithm 4
0.5613 0.3609 1/4 Same memory as Schroeppel-Shamir
0.5990 0.3986 0.2123 Lowest memory

The behavior of this algorithm for α-unbalanced knapsacks is shown on Figure 1.

Complexity using recursion. Finally, we can use this heuristic approach
recursively to slightly reduce the memory requirements. In fact, one level of
recursion is enough. To solve an α-unbalanced knapsack, we cut it in two halves
and solve the resulting (α/2)-unbalanced knapsacks using the above heuristic
method. Thanks to the faster runtime of the subroutine, we can use a different
choice for γ and obtain the lowest runtime with less memory. More precisely, the
memory use for α-unbalanced knapsacks is now equal to the running time of the
heuristic algorithm on (α/2)-unbalanced knapsacks. As a consequence, we can
solve 1/2-unbalanced knapsacks in time Õ(20.3113 n) using Õ(20.2936 n) units of
memory.

5 A Practical Experiment

In order to make sure that our new algorithms perform well in practice, we have
benchmarked their performance by using a typical hard knapsack problem. We
constructed it using 96 random elements of 96 bits each and then built the target
S as the sum of 48 of these elements.

Variation of Schroeppel–Shamir algorithm. Concerning the implementa-
tion of Schroeppel–Shamir algorithm, we need to distinguish between two cases.
Either we are given a good decomposition of the set of indices into four quar-
ters, each containing half zeroes and half ones, or we are not. In the first case,
we can reduce the size of the initial small lists to

(
24
12

)
= 2 704 156. In second

case, two options are possible: we can run the previous approach on randomized
decompositions until a good is found, which requires about 120 executions; or
we can start from small lists of size 224 = 16 777 216.

For the first case, we used the variation of Schroeppel–Shamir presented in
Section 3.1 with a prime modulus M = 2 704 157. Testing the full space of
solutions requires 120×37 = 4 400 days on a single Intel core 2 duo at 2.66 Ghz.
It turns out that, despite higher memory requirements, the second option is the
faster one and would require about 1 500 days on the same machine to enumerate

252 N. Howgrave-Graham and A. Joux

the search space. The memory requirements are either 300 Mbytes of memory
with initial lists of size

(
24
12

)
and 1.8 Gbytes with initial lists of size 224.

Of course, the algorithm may succeed before finishing the full enumeration.

Our simple algorithm. As with the Schroeppel–Shamir algorithm, we need to
distinguish between two cases, depending whether or not a good decomposition
into four balanced quarters is initially known. When it is the case, our implemen-
tation recovers the correct solution in less than an hour on the same computer.
When such a decomposition is not known in advance, we need about 120 ran-
domized decompositions and find a solution in about 5 days. The parameters we
use in the implementation are the following:

– For the main modulus that define the random values R1, R2 and R3, we take
M = 1 253 839.

– For the final merging of the four obtained lists, we use the modulus 2 493 709
and apply consistency checks and early abort.

The memory requirement are approximately 2.6 Gbytes of memory.

Our better heuristic algorithm. In our implementation of the algorithm,
the small lists that occur at the innermost level are so small that we replaced
Schroeppel–Shamir algorithm there by a basic birthday paradox method. Thus,
we no longer need a decomposition of the knapsack into four balanced quarters.
Instead, two balanced halves are enough. This means that when such a decom-
position is not given, we only need to run the algorithm an average of 6.2 times
to find a correct decomposition instead of 120 times. The parameters we use are:

– For the higher level modulus, we choose M = 4 194 319 · 58 711 · 613.
– The innermost birthday paradox method is done modulo 613.
– Assembling the two half-knapsacks is performed modulo 58 711 · 613.

In practice, using such composite moduli saves time and memory. With the
above parameters, our implementation uses about 1.7 Gbytes and runs in ap-
proximately 1.5 hours given a correct decomposition3 into two halves. Without
such a decomposition, we need less than 10 hours to find a solution.

6 Possible Extensions and Applications

The algorithmic techniques presented in this paper can be applied to more than
ordinary knapsacks. We already mentioned modular knapsacks in Section 2, we
now describe a few more:

Approximate knapsack problems. A first problem we can consider is to find
approximate solutions to knapsack problems. More precisely, given a knapsack
a1, . . . , an and a target S, we try to write:

S =
n∑

i=1

εi ai + δ,

3 More precisely, we found 30 copies of the solution in 157 585 seconds on a single core.

New Generic Algorithms for Hard Knapsacks 253

where δ is small, i.e. belongs to the range [−B, B] for a specified bound B. As
the modular knapsack problem, this can be solved by transforming it into a
knapsack problem with several targets. Define a new knapsack b1, . . . , bn where
bi is the closest integer to ai/B and let S′ be the closest integer to S/B. To solve
the original problem, it now suffices to find solutions to the new knapsack, with
targets S′ − �n/2�, . . . , S′ + �n/2�.

Vectorial knapsack problems. Another option is to consider knapsacks whose
elements are vectors of integers and where the target is a vector. Without go-
ing into the details, it is clear that this is not going to be a problem for our
algorithms. In fact, the decomposition into separate components can even make
things easier. Indeed, if the individual components are of the right size, they can
be used as a replacement for the modular criteria that determine whether we
keep or remove partial sums.

Knapsacks with εi in {−1, 0, 1}. In this case, we can apply similar methods.
However, we obtain different bounds, since the number of different representa-
tions of a given solution is no longer the same. For simplicity of presentation, we
assume that n is a multiple of 3 and that the solution contains n/3 values of each
type. A simple birthday approach works by searching for a collision between two
sums of n/3 knapsack elements. It is equal to:

(
n

n/3

)
≈ Õ(20.9183 n).

Note that this is higher than the expected 3n/2. A slightly more complex ap-
proach splits the knapsack in two halves and search for a collision between a left
and right sum, each containing one third each of of 0, 1 and −1. This yields the
expected complexity 3n/2. Using our ideas and taking a collision between two
half-sums each containing two-thirds of 0s and one sixth of each of 1 and −1 of
the n elements, we find a complexity Õ(20.585 n) to find one of the 22n/3 possible
decompositions.

Single solution out of many. When there are many possible solutions to a
knapsack problem, we may wish to combine our idea with the generalized birth-
day algorithm of [25] and find one of the many solutions even faster. However,
this approach is difficult to analyze in general.

Combination of the above and possible applications. In fact, it is even
possible to address combinations of the above. As a consequence, this algorithm
can be a very useful cryptanalytic tool. For example, the NTRU cryptosystem
can be seen as an unbalanced, approximate modular vector knapsack. However,
it has been shown in [11] that it is best to attack this cryptosystem by using a
mix of lattice reduction and knapsack-like algorithms. As a consequence, deriving
new bounds for attacking NTRU would require a complex analysis, which is out
of scope for the present paper. In the same vein, Gentry’s fully homomorphic

254 N. Howgrave-Graham and A. Joux

scheme [8], also needs to be studied with our new algorithm in mind. Another
possible application would be the SWIFFT hash function [17].

Note that, in all cases, our algorithms never affect asymptotic security of a
cryptographic scheme, indeed, an algorithm with complexity 20.3113n remains ex-
ponential. However, depending on the initial designers hypothesis, recommended
practical parameters may need to be increased. For the special case of NTRU,
it can be seen that in [9] that the estimates are conservative enough not to be
affected by our algorithms.

7 Conclusion, Open Problems

In this paper, we have proposed new algorithms to solve the knapsack problem
and other related problems, which improve on the current state of the art. In
particular, for the knapsack problem itself, this improves the 31-year old algo-
rithm of Schroeppel and Shamir and gives a positive answer to the question
posed in the Open Problem Garden [6] about knapsack problems: “Is there an
algorithm that runs in time 2n/3?”. Many interesting related problems are still
open:

– Find a fast deterministic algorithm to solve the knapsack problem. In par-
ticular, such an algorithm could show that a given knapsack does not have
a solution.

– Devise a fast Las Vegas algorithm, i.e., a randomized algorithm that can
prove that a given knapsack has no solution.

– Improve our algorithms by using a full recursive approach.
– Reduce the memory requirements. Surprisingly, general cycle finding tech-

niques do not seem to apply in this case and do not yield a constant memory
algorithm with time Õ(2n/2).

Acknowledgements. We would like to thank Igor Shparlinski for useful dis-
cussions about exponential sums and distributions of knapsack outputs. The
first author also appreciates time spent thinking about this problem at NTRU
Cryptosystems, Inc.

References

1. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reductions
(extended abstract). In: 30th ACM STOC, Dallas, Texas, USA, May 23–26, pp.
10–19. ACM Press, New York (1998)

2. Camion, P., Patarin, J.: The Knapsack hash function proposed at Crypto’89 can
be broken. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 39–53.
Springer, Heidelberg (1991)

3. Chose, P., Joux, A., Mitton, M.: Fast correlation attacks: An algorithmic point of
view. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 209–221.
Springer, Heidelberg (2002)

New Generic Algorithms for Hard Knapsacks 255

4. Coster, M.J., Joux, A., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C.-P., Stern,
J.: Improved low-density subset sum algorithms. Computational Complexity 2,
111–128 (1992)

5. Damg̊ard, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

6. Open problem garden, http://garden.irmacs.sfu.ca
7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. Freeman, San Francisco (1979)
8. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,

M. (ed.) 41st ACM STOC, Bethesda, MD, USA, May 2009, pp. 169–178. ACM
Press, New York (2009)

9. Hirschorn, P.S., Hoffstein, J., Howgrave-Graham, N., Whyte, W.: Choosing NTRU-
Encrypt parameters in light of combined lattice reduction and MITM approaches.
In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009.
LNCS, vol. 5536, pp. 437–455. Springer, Heidelberg (2009)

10. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack
problem. J. Assoc. Comp. Mach. 21(2), 277–292 (1974)

11. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–
169. Springer, Heidelberg (2007)

12. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks,
eprint.iacr.org or www.joux.biz/publications/Knapsacks.pdf

13. Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as
subset sum. Journal of Cryptology 9(4), 199–216 (1996)

14. Joux, A., Granboulan, L.: A practical attack against knapsack based hash functions
(extended abstract). In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950,
pp. 58–66. Springer, Heidelberg (1994)

15. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. J. Assoc.
Comp. Mach. 32(1), 229–246 (1985)

16. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261, 515–534 (1982)

17. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: Swifft: A modest proposal
for fft hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72. Springer,
Heidelberg (2008)

18. Merkle, R., Hellman, M.: Hiding information and signatures in trapdoor knapsacks.
IEEE Trans. Information Theory 24(5), 525–530 (1978)

19. Nguyen, P.Q., Shparlinski, I.E., Stern, J.: Distribution of modular sums and the
security of the server aided exponentiation. Progress in Computer Science and
Applied Logic 20, 331–342 (2001); Final Proceedings of Cryptography and Com-
putational Number Theory workshop, Singapore (1999)

20. Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theoretical Computer Science 53, 201–224 (1987)

21. Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) algorithm for certain
NP-complete problems. In: FOCS, pp. 328–336 (1979)

22. Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) algorithm for certain
NP-complete problems. SIAM Journal on Computing 10(3), 456–464 (1981)

23. Shamir, A.: A polynomial time algorithm for breaking the basic Merkle-Hellman
cryptosystem. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in
Cryptology – CRYPTO 1982, Santa Barbara, CA, USA, pp. 279–288. Plenum
Press, New York (1983)

http://garden.irmacs.sfu.ca
eprint.iacr.org
www.joux.biz/publications/Knapsacks.pdf

256 N. Howgrave-Graham and A. Joux

24. Stinson, D.R.: Some baby-step giant-step algorithms for the low hamming weight
discrete logarithm problem. Math. Comput. 71(237), 379–391 (2002)

25. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

A Graph of Compared Complexities

In the following figure, we present the complexity of the algorithms discussed in
the paper for α-unbalanced knapsacks.

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

C
α

α

Schroeppel–Shamir
β = 1/3 algorithm

β ≈ 0.2972 algorithm
β = 1/4 algorithm

Better heuristic algorithm
Theory

Fig. 1. Curves of time complexity exponent for varying balance factor

	New Generic Algorithms for Hard Knapsacks
	Introduction
	Background on Knapsacks
	Modular Knapsacks
	Random Knapsacks
	Unbalanced Knapsacks
	Complementary Knapsacks
	Asymptotic Values of Binomials
	Distribution of Random Knapsack Sums

	The Algorithm of Schroeppel and Shamir
	A Variation on the Schroeppel and Shamir Algorithm
	Application to Unbalanced Knapsacks

	The New Algorithms
	Basic Principle
	Simple Algorithm
	A Better Heuristic Algorithm

	A Practical Experiment
	Possible Extensions and Applications
	Conclusion, Open Problems
	Graph of Compared Complexities

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

