
Legally Fair Contract Signing Without Keystones
Paper accepted at ACNS 2016 (to appear)

Houda Ferradi, Rémi Géraud, Diana Maimut, , David Naccache,
and David Pointcheval
Ecole normale supérieure, Paris, France
houda.ferradi@ens.fr

Abstract
In two-party computation, achieving both fairness and guaranteed output delivery is well known to be impossible.

In this paper we describe and analyse a new contract signing paradigm concept called legal fairness. This paradigm
is very close to fairness and is realizable. We give a concrete legal fairness protocol based on Schnorr signatures. The
new protocol is provably secure in the random oracle model under the DLP assumption.

Introduction
When mutually distrustful parties wish to compute some joint function of their private inputs, they
require a certain number of security properties to hold for that computation:
• Privacy: Nothing is learnt from the protocol besides the output;
•Correctness: The output is distributed according to the prescribed functionality;
• Independence: One party cannot make their inputs depend on the other parties’ inputs;
•Delivery: An adversary cannot prevent the honest parties from successfully computing the func-
tionality;
• Fairness: If one party receives output then so do all.
Any multi-party computation can be securely computed as long as there is a honest majority. If there
is no such majority, and in particular in the two-party case, it is impossible to achieve both fairness
and guaranteed output delivery.

Objectives
We describe a new contract signing protocol that achieves a new notion of fairness and abuse-freeness.
This protocol is based on the well-known Schnorr signature protocol. The new contract signing protocol
is provably secure in the random oracle model under the hardness assumption of solving the discrete
logarithm problem. This construction can be adapted to other DLP schemes.

Schnorr Signatures
Schnorr digital signatures are an offspring of ElGamal signatures. To generate signature keys select
large primes p, q such that p − 1 mod q = 0, as well as an element g ∈ G of order q in some
multiplicative group G of order p, and a hash function H : {0, 1}∗→ {0, 1}`. The output is a set of
public parameters pp = (p, q, g,G, H). Select at random x $←− Z×q and compute y ← gx. The output
is the couple (sk, pk) where sk = x is kept private, and pk = y is made public.
To sign a message m select a random k $←− Z×q and compute:

r ← gk, e← H(m‖r), s← k − ex mod q
and outputs 〈r, s〉 as the signature of m.
To verify the signature compute e← H(m, r) and check that gsye = r.

Schnorr Co-Signatures
Schnorr’s signatures can be generalized to two signers. This produces co-signatures, i.e. a signature
formed by joining forces between two signers:

Note that during the co-signature protocol, A might decide not to respond to B: In that case, A
would be the only one to have the complete co-signature. This is a breach of fairness insofar as A can
benefit from the co-signature and not B, but the protocol is abuse-free: A cannot use the co-signature
as a proof that B, and B alone, committed to m. This is what we seek to fix with a new
notion called "legal fairness"

Legal Fairness
The main idea builds on the following observation: Every signature exchange protocol is plagued by
the possibility that the last step of the protocol is not performed. Indeed, it is in the interest of a
malicious party to get the other party’s signature without revealing its own. As a result, the best one
can hope for is that a trusted third party can eventually restore fairness.
To avoid this destiny, the proposed paradigm, called Legal Fairness, does not proceed by sending
A’s signature to B and vice versa. Instead, we construct a joint signature, or co-signature, of both A
and B. By design, there are no signatures to steal — and stopping the protocol early does not give
the stopper a decisive advantage.

How Does It Work?
We now address a subtle weakness in the protocol described in the previous section, which is not
captured by the fairness property per se and that we refer to as the existence of “proofs of involvment”.
Such proofs are not valid co-signatures, and would not normally be accepted by verifiers, but they
nevertheless are valid evidence establishing that one party committed to a message. In a legally fair
context, it may happen that such evidence is enough for one party to win a trial against the other —
who lacks both the co-signature, and a proof of involvment.
To enforce fairness on the co-signature protocol, we ask that the equivalent of a keystone is transmitted

first; so that in case of dispute, the aggrieved party has a legal recourse. First we define the notion of
an authorized signatory credential:
definition[Authorized signatory credential] The data field

ΓAlice,Bob = {Alice,Bob, kA, σxA(gkA‖Alice‖Bob)}
is called an authorized signatory credential given by Alice to Bob, where σxA is some publicly known
auxiliary signature algorithm using Alice’s private key xA as a signing key.
Any party who gets ΓAlice,Bob can check its validity, and releasing ΓAlice,Bob is by convention functionally

equivalent to Alice giving her private key xA to Bob. A valid signature by Bob on a message m
exhibited with a valid ΓAlice,Bob is legally defined as encompassing the meaning (V) of Alice’s signature
on m:

{ΓAlice,Bob, signature by Bob on m}V signature by Alice on m
Second, the co-signature protocol is modified by requesting that Alice provide t = σxA(gkA‖Alice‖Bob)
to Bob. Bob stores this in a local non-volatile memory L along with sB. For all practical purposes, L
can be simply regarded as Bob’s hard disk. Together, t and sB act as a keystone enabling Bob (or a
verifier, e.g. a court of law) to reconstruct ΓAlice,Bob if Alice exhibits a (fraudulent) signature binding
Bob alone with his co-signing public key.
Therefore, should Alice try to exhibit a signature of Bob alone on a message they both agreed upon

(which is known as a fraud), the court would be able to identify Alice as the fraudster. The resulting
protocol is:

And the corresponding dispute resolution algorithm is:


