
KaSim & KaSa reference manual
(release 3.90)

Pierre Boutillier, Jérôme Feret, Jean Krivine1 and Lý Kim Quyên
KappaLanguage.org

1corresponding author: jean.krivine@irif.fr

http://www.kappalanguage.org

K
a

S
p mipa

2

Contents

1 Introduction 7
1.1 Preamble . 7
1.2 The KaSim engine . 8
1.3 The KaSa static analyser . 9
1.4 Support . 9

2 Installation 11
2.1 Using precompiled binaries . 11
2.2 Obtaining the sources . 11
2.3 Compilation . 12
2.4 Compilation of KaSa graphical interface . 12

3 The kappa language 15
3.1 General structure . 15
3.2 Agent and token signatures . 15
3.3 Sited-graph pattern: Kappa expression . 16

3.3.1 Graph syntax . 17
3.3.2 Pattern syntax . 17
3.3.3 Link type . 18

3.4 Rules . 18
3.4.1 Pure rules . 19
3.4.2 Hybrid rules . 21
3.4.3 Rates . 21
3.4.4 Ambiguous molecularity . 22

3.5 Variables . 24
3.6 Initial conditions . 26

4 The command line 29
4.1 General usage . 29
4.2 Main options . 29

3

CONTENTS

K
a

S
p mipa

4.3 Advanced options . 30
4.4 Example . 30

5 A simple model 33
5.1 ABC.ka . 33
5.2 Some runs . 34

6 Advanced concepts 37
6.1 Perturbation language . 37

6.1.1 Adding or deleting agents during a simulation 39
6.1.2 Using snapshots to define a new initial state 39
6.1.3 Changing the value of a token . 41
6.1.4 Causality analysis . 41
6.1.5 Flux maps . 42
6.1.6 Updating kinetic rates on the fly . 44
6.1.7 Combining several effects in a single perturbation 44
6.1.8 Printing values during a simulation 45
6.1.9 Add an entry in the output data . 45

6.2 Implicit signature . 45
6.3 Simulation packages . 46
6.4 Simulation parameters configuration . 46

7 The KaSa static analyser 49
7.1 General usage . 49
7.2 Graphical interface . 53

7.2.1 Launching the interface . 53
7.2.2 The areas of interests . 53
7.2.3 The sub-tab 0_Actions . 54
7.2.4 The sub-tab 1_Output . 55

7.3 Reachability analysis . 56
7.4 Local traces . 64
7.5 Contact map . 67
7.6 Influence map . 68

8 Frequently asked questions 73

4

List of Tables

3.1 Agent signatureexpression . 16
3.2 Kappa expressions . 17
3.3 Rate expressions . 18
3.4 Token expressions . 19
3.5 Example of kinetic rates. 22
3.6 Algebraic expressions . 25
3.7 Symbol usable in algebraic expressions . 25

4.1 Command line: main options . 30
4.2 Command line: advanced options . 30

6.1 Perturbation expressions . 38
6.2 User defined parameters . 47

5

LIST OF TABLES

K
a

S
p mipa

6

Chapter 1

Introduction

K
a

S
p mipa

1.1 Preamble

This manual describes the usage of KaSim and KaSa, the latest implementation of Kappa,
one member of the growing family of rule-based languages. Rule-based modelling has at-
tracted recent attention in developing biological models that are concise, comprehensible,
easily extensible, and allows one to deal with the combinatorial complexity of multi-state
and multi-component biological molecules. Although this manual contains a self-contained
description of Kappa, it is not intended as a tutorial on rule-based modeling.

To get an idea of how Kappa is used in a modeling context, the reader can consult the
following note Agile modelling of cellular signalling (SOS’08). A longer article, expound-
ing on causal analysis is also available: Rule-based modelling of cellular signalling (CON-
CUR’07). See also this tutorial: Modelling epigenetic information maintenance: a Kappa
tutorial (CAV’09).

7

http://www.pps.univ-paris-diderot.fr/~danos/pdf/eov.pdf
http://www.pps.univ-paris-diderot.fr/~danos/pdf/ka-fix.pdf
http://www.pps.univ-paris-diderot.fr/~danos/pdf/ka-fix.pdf
http://www.pps.univ-paris-diderot.fr/~danos/pdf/mytdg.pdf
http://www.pps.univ-paris-diderot.fr/~danos/pdf/mytdg.pdf

1.2. THE KASIM ENGINE

K
a

S
p mipa

1.2 The KaSim engine

KaSim is an open source stochastic simulator of rule-based models [7, 6, 8] written in Kappa.
The Kappa language describes site graphs and their local transformations. KaSim takes one
or several Kappa files as input and generates stochastic trajectories of various observables.
KaSim implements Danos et al ’s implicit state simulation algorithm [4] which adapts Gille-
spie’s algorithm [13, 14] to rule-based models.

A simulation event corresponds to the application of a rewriting rule, contained in the
Kappa files, to the current graph (also called a mixture). At each step, the next event is
selected with a probability which is proportional to the rate of the rule it is an event of. If
there are no events, that is to say if none of the rules apply to the current state of the system,
one has a deadlock. Note that a given rule will in general apply in many different ways;
one says it has many instances. The activity of a rule is the number of its instances in the
current mixture multiplied by its rate. The probability that the next event is associated to
a given rule is therefore proportional to the activity of the rule. Rule activities are updated
at each step (see Fig. 1.1). Importantly, the cost of a simulation event is bounded by a
constant that is independent of the size of the graph it is applied to [4].

Figure 1.1: The event loop

Note that KaSim can only render curves in the svg format. However, data outputs given in
a text format can be displayed using any standard plotting software such as gnuplot.

8

http://www.gnuplot.info/

CHAPTER 1. INTRODUCTION

K
a

S
p mipa

1.3 The KaSa static analyser

KaSa is an open source static analyser tool of rule-based models [7, 6, 8] written in Kappa.
KaSa takes one or several Kappa files as input and some command line options to toggle
on/off some specific static analysis. Currently, KaSa can compute the contact map and the
influence map. It can perform reachability analysis [10, 5] as well. Other analyses including
model reduction [11, 3, 1] will come soon.

A graphical interface is proposed to navigate through the various options and utilities of
KaSa. The compilation of this interface requires labltk and, in particular, tk-dev.

1.4 Support

- Kappa language tutorials and downloads: http://kappalanguage.org

- Bug reports should be posted on github: https://github.com/Kappa-Dev/KaSim/
issues

- Questions and answers on the kappa-user mailing list: http://groups.google.com/
group/kappa-users

- Want to contribute to the project? jean.krivine@irif.fr

9

https://forge.ocamlcore.org/projects/labltk/
http://www.tcl.tk/
http://kappalanguage.org
https://github.com/Kappa-Dev/KaSim/issues
https://github.com/Kappa-Dev/KaSim/issues
http://groups.google.com/group/kappa-users
http://groups.google.com/group/kappa-users

1.4. SUPPORT

K
a

S
p mipa

10

Chapter 2

Installation

2.1 Using precompiled binaries

The easiest way to use KaSim and KaSa is to use pre-compiled versions available in the re-
lease section on the github repository (https://github.com/Kappa-Dev/KaSim/releases).
Download the version that corresponds to your operating system (Windows, Linux or Mac
OSX) and rename the downloaded file into KaSim and KaSa. Note that on Mac OSX or
Linux, it might be necessary to give executable permissions to KaSim and KaSa. This can
be done using the shell commands: chmod u+x KaSim and chmod u+x KaSa

To test whether your program does work, simply type ./KaSim --version on a terminal,
from the directory that contains the binaries. If the version is displayed it means that
the binaries are indeed compatible with your OS. Otherwise you may need to compile
KaSim from the sources (see next Section).

2.2 Obtaining the sources

To obtain KaSim/KaSa you can either use pre-compiled binaries (see previous section) or
compile the sources for your architecture by yourself.

To do so, download the source code from https://github.com/Kappa-Dev/KaSim, make
sure you have a recent OCaml compiler (KaSim/KaSa currently requires Ocaml 4.02.3 to
compile) as well as ocamlbuild, findlib and the yojson library installed.

You can check if it is the case from a terminal window by typing first ocamlfind ocamlopt
-v. If it fails or prints a version number too old, then you need to install Ocaml Native

11

https://github.com/Kappa-Dev/KaSim/releases
https://github.com/Kappa-Dev/KaSim

2.3. COMPILATION

K
a

S
p mipa

compiler that can be downloaded from http://caml.inria.fr/download.en.html and/or
findlib available at http://projects.camlcity.org/projects/findlib.html.

Then, type ocamlfind query yojson. The answer should be a path. If it is not, install
yojson using a package manager.

Ocamlbuild is hosted on https://github.com/ocaml/ocamlbuild.

2.3 Compilation

Once OCaml is safely installed, untar KaSim archive and compile following these few
steps:

$ tar xzvf kasim.tar.gz -d Kappa

$ cd Kappa

$ make bin/KaSim

$ make bin/KaSa

At the end of these steps you should see, in the bin directory of the Kappa directory, an
executable file named KaSim. In order to check the compilation went fine, simply type
bin/KaSim - -version.

If the tool ocamlbuild is not in your path, you may set the variable OCAMLBINPATH to
point to the location of the compiler by doing make OCAMLBINPATH=’the_correct_dir’
bin/KaSim.

2.4 Compilation of KaSa graphical interface

The graphical interface of KaSa requires tk-dev and labltk. By default, the graphical in-
terface is not compiled. The compilation of this interface can be toggled on by using the
following command: make USE_TK=1 bin/KaSa

Common compilation errors are the following:

1. The following error:

/usr/bin/ld: cannot find -ltk
collect2: error: ld returned 1 exit status
File "caml_startup", line 1:
Error: Error during linking
Command exited with code 2.

12

http://caml.inria.fr/download.en.html
http://projects.camlcity.org/projects/findlib.html
https://github.com/ocaml/ocamlbuild
http://www.tcl.tk/
https://forge.ocamlcore.org/projects/labltk/

CHAPTER 2. INSTALLATION

K
a

S
p mipa

occurs when the module tk-dev is not installed.

2. The following error:

File "_none_", line 1:
Error: Cannot find file jpflib.cmxa
Command exited with code 2.

occurs when ocaml cannot link the labltk library.

Please document the variable LABLTKLIBREP in the Makefile.

13

http://www.tcl.tk/

2.4. COMPILATION OF KASA GRAPHICAL INTERFACE

K
a

S
p mipa

14

Chapter 3

The kappa language

3.1 General structure

A model is represented in Kappa by a set of Kappa File. We use KF to denote the union
of the files that are given as input (to either KaSim or KaSa).

Each line of the KF is interpreted as a declaration except if the line ends by the ' \'
character. Therefore, in order to write a declaration on several lines, ends every by the last
of the lines with a \.

Declarations can be: agent and token signatures (Sec. 3.2), rules (Sec. 3.4), variables
(Sec. 3.5), initial conditions (Sec. 3.6), perturbations (Sec. 6.1) and parameter configurations
(Sec. 6.4).

The KF’s structure is quite flexible. Neither dividing into several sub-files nor the order
of declarations matters (to the exception of variable declarations, see Section 3.5 for de-
tails).

Comments can be used either by inserting the marker # that tells KaSim to ignore the rest
of the line or by putting any text between the delimiters /* and */. The combined use of
\ and # is an alternative way to write comments in the middle of a declaration.

3.2 Agent and token signatures

In Kappa there are two entities that can be used for representing biological elements:
agents and tokens. Agents are used to represent complex molecules that may bind to other
molecules on specific sites. Tokens are typically used to represent small particles such as

15

3.3. SITED-GRAPH PATTERN: KAPPA EXPRESSION

K
a

S
p mipa

ions, ATP, etc. Tokens cannot bind to each other, they can only appear or disappear. In a
given model, agents always have a discrete number of instances while tokens may have a
continuous concentration.

In order to use agents or tokens in a model, one needs to declare them first. Agent signatures
constitute a form of typing information about the agents that are used in the model. It
contains information about the name and number of interaction sites the agent has, and
about their possible internal states. A signature is declared in the KF by the following
line:

%agent: signature_expression

according to the grammar given Table 3.1 where terminal symbols are written in (blue)
typed font, and ε stands for the empty list. An identifier Id can be any string generated by
a regular expression of the type [a-z A-Z][a-z A-Z 0-9 _ − +]∗.

Table 3.1: Agent signatureexpression
signature_expression ::= Id(sig)
sig ::= Id internal_state_list, sig | ε
internal_state_list ::= ~Id internal_state_list | ε

For instance the line:

1 %agent: A(x,y~u~p,z ~0~1~2) # Signature of agent A

will declare an agent A with 3 (interaction) sites x,y and z with the site y possessing two
internal states u and p (for instance for the unphosphorylated and phosphorylated forms
of y) and the site z having three possible states 0, 1 and 2. Note that internal states values
are treated as untyped symbols by KaSim, so choosing a character or an integer as internal
state is purely a matter of convention.

Token signatures are declared using a statement of the form:

1 %token: ca+ # Signature of calcium token

3.3 Sited-graph pattern: Kappa expression

The state of the system is represented in Kappa as a sited graph: a graph were edges
specifies a site of the node they use. You must think as sites as resources. At most one
edge of the graph can use a site of a node (representing an agent in our case). We call this
concept the rigidity of Kappa.

16

CHAPTER 3. THE KAPPA LANGUAGE

K
a

S
p mipa

3.3.1 Graph syntax

The ascii syntax we use to represent sited graphs follows the skeletons (describe formaly in
fig 3.2):

• we write the type of the agent and then its interface (the comma separeted list of the
state of its sites) between parenthesis.

• When the site is free (is not a member of a edge) you just write its name to represent
its state. If it has a internal state, you write it after a ’~’. For example, the graph
TODO is written A(x,y~p,z~0)

• When a site is part of an edge, you assign an integer identifier n to this edge
and you specify the appartenance of the site to this edge by writing site_name!n.
The graph TODO can be reprensented as A(x!23,y~u!4,z~1), A(x!4,y~u!954,z~1),
A(x!95,y~u!234,z~1).

Remark Each link identifier appears exactly twice of course. this is a consequence
of the regidity of Kappa.

3.3.2 Pattern syntax

Kappa strength is to describe transformations by only mentionning (and storing) the rel-
evant part of the subgraph required for that transfor;ation to be possible. It plays a key
role in resisting combinatorial explosion when writing models. We use the don’t care, don’t
write principle. If a transformation occurs independently of the state of a site of an agent,
don’t mention it in the pattern to match. The pattern A(x,z) represents an agent of type
A whose sites x and z are free but the sites y and z can be in any internal state and the
site y can be linked or not to anything.

If the link state of a site does not matter but the internal state does, an ’?’ has to be added
after the site name (and internal state). An agent A whose sites x and z are free, y is in
state u and z in state 2 is written A(x,y~u?4,z~2).

Table 3.2: Kappa expressions
kappa_expression ::= agent_expression , kappa_expression | ε
agent_expression ::= Id(interface)
interface ::= Id internal_state link_state , interface | ε
internal_state ::= ε | ~Id
link_state ::= ε | !n | !_ | ? | !Id.Id

17

3.4. RULES

K
a

S
p mipa

3.3.3 Link type

In standard kappa, in order to require a site to be bound for an interaction to occur, one
may use the semi-link construct !_ which does not specify who the partner of the bond is.
For instance in the variable: %var: \var{ab}~|A(x!_),B(y!_)| will count the number of
As and Bs connected to someone, including the limit case A(x!1),B(y!1). It is sometimes
convenient to specify the type of the semi-link, in order to restrict the choice of the binding
partner. For instance the variable: %var: \var{ab}~|A(x!y.B),B(y!x.A)|! will count the
number of As whose site x is connected to a site y of B, plus the number of Bs whose site y
is connected to a site x of A. Note that this still includes the case A(x!1),B(y!1).

Remark Transformations on semi-links and links type indiuce side effects (effect on un-
mention agents/unmentionned site of agent) and can even don’t make sense at all. What
would mean to remove the link to A but not the link to B in the example above? Be carefull
when you use them.

3.4 Rules

Once agents are declared, one may add to the KF the rules that describe their dynamics.
A pure rule looks like:

'my rule' kappa_expression → kappa_expression @ rate

where 'my rule' can be any name. This rule name can be used to refer to the rule which
follows immediately. A rule can be decomposed into a left hand side (LHS), a right hand
side (RHS) kappa expressions, and a rate expression. One may also declare a bi-directional
rule using the convention:

'bi-rule' kappa_expression ↔ kappa_expression @ rate+,rate−

Note that the above declaration is equivalent to writing, in addition of 'my-rule', another
rule named 'my rule_op' which swaps left and right hand sides, and has rate rate−.

Rate expressions are given by the grammar in Table 3.3. Algebraic expressions are described
later in Table 3.6 (but can be thought of for now as positive real numbers).

Table 3.3: Rate expressions
rate_expression ::= algebraic_expression

| algebraic_expression {algebraic_expression:algebraic_expression}

18

CHAPTER 3. THE KAPPA LANGUAGE

K
a

S
p mipa

If pure rules induce reactions between agents, it is possible to mix agents and tokens in
hybrid rules (which may also be bi-directional). A hybrid rule has the following form:

kappa_expression | token_expression → kappa_expression | token_expression @ rate

Token expressions are also given by the grammar in Table 3.4.

Table 3.4: Token expressions
token_expression ::= algebraic_expression:token_name

| token_expression + token_expression

token_name ::= Id

3.4.1 Pure rules

A simple rule

With the signature of A defined in the previous section, the line

1 ’A␣dimerization ’ A(x),A(y~p) -> A(x!1),A(y~p!1) @ ’gamma’

declares a dimerization rule between two instances of agent A provided the second is phos-
phorylated (say that is here the meaning of p) on site y. Note that the bond between both
As is denoted by the identifier !1 which uses an arbitrary integer (!0 would denote the
same bond). Note also the fact that site z of A is not mentioned in the expression which
means that it has no influence on the triggering of this rule. This is the don’t care don’t
write convention (DCDW) .

Adding and deleting agents

Sticking with A’s signature, the rule

1 ’budding␣A’ A(z) -> A(z!1),A(x!1) @ ’gamma’

indicates that an agent A free on site z, no matter what its internal state is, may beget a
new copy of A bound to it via site x. Note that in the RHS, the interface of the new copy is
not completely described. Following the DCDW convention, KaSim will then assume that
the sites that are not mentioned are created in the default state, ie they appear free of any
bond and their internal state (if any) is the first of the list shown in the signature (here
state u for y and 0 for z).

19

3.4. RULES

K
a

S
p mipa

Importantly, KaSim respects the longest prefix convention to determine which agent in the
RHS stems from an agent in the LHS. In a word, from a rule of the form a1, . . . , an →
b1, . . . , bk, with ais and bjs being agents, one computes the largest i ≤ n, k such that the
agents a1, . . . , ai are pairwise consistent with b1, . . . , bi, ie the ajs and bjs have the same
name and the same sites. In which case we say that for all j ≤ i, aj is preserved by the
transition and for all j > i, aj is deleted by the transition and bj is created by the transition.
This convention allows us to write a deletion rule as:

1 ’deleting␣A’ A(x!1),A(z!1)} -> A(x) @ ’gamma’

which will remove the A agent in the mixture that will match the second occurrence of A in
this rule. Note that the rule:

1 ’weird’ A(x!1),A(z!1) -> A(z) @ ’gamma’

will delete both As and create a new one with a free z site.

Side effects

It may happen that the application of a rule has some side effects on agents that are not
mentioned explicitly in the rule. Consider for instance the previous rule:

1 ’deleting␣A’ A(x!1),A(z!1)} -> A(x) @ ’gamma’

The A in the graph that is matched to the second occurrence of A in the LHS will be deleted
by the rule. As a consequence all its sites will disappear together with the bonds that were
pointing to them. For instance, when applied to the graph

G =A(x!1,y~p,z~2),A(x!2,y~u,z~0!1),C(t!2)

the above rule will result in a new graph G′ = A(x!1,y~p,z~2),C(t) where the site t of C
is now free as side effect.

Wildcard symbols for link state ? (for bound or not), !_ (for bound to someone), may also
induce side effects when they are not preserved in the RHS of a rule, as in

1 ’Disconnect␣A’ A(x!_)} -> \ttt{A(x) @ ’gamma’

or

1 ’Force␣bind␣A’ A(x?)} -> A(x!1),C(t!1) @ ’gamma’

Both these rule will cause KaSim to raise a warning at rule compilation time.

20

CHAPTER 3. THE KAPPA LANGUAGE

K
a

S
p mipa

3.4.2 Hybrid rules

Using KaSim hybrid rules, one may declare that an action has effects on the concentration
of some particles of the system. For instance a rule may consume atp, calcium ions etc. It
would be a waste of memory and time to use discrete agents to represent such particles.
Instead one may declare tokens using declarations of the form:

1 %token: atp
2 %token: adp

One may then use these tokens in conjunction with a classical rule using the hybrid for-
mat:

1 ’hybrid␣rule’ S(x~u!1),K(y!1) | 0.1 :atp -> S(x~p),K(y) | 0.1
:adp @ ’k’

When applied, the above rule will consume 0.1 atp token and produce 0.1 adp token. Note
that as specified by the grammar given Table 3.4, the number of consumed (and produced)
tokens can be given by a sum of the form:

lhs | a1:t1 + ... + an:tn → rhs | a′1:t
′
1 + ... + a′k:t

′
k @ r

where each ai, a
′
i is an arbitrary algebraic expression (see Table 3.6) and each ti, t

′
i is a

declared token. In the above hybrid rule, calling ni, n
′
i the evaluation of ai and a′i, the

concentration of token ti will decrease from ni and the concentration of token t′i will increase
from n′i. Importantly, the activity of a hybrid rule like the above one is still defined by
|lhs |*r, where |lhs | is the number of embeddings of the lhs of the rule in the mixture,
and does not take into account the concentration of the tokens it mentions. As we will
see in the next section, it is however possible to make its rate explicitly depend on the
concentrations of the tokens using a variable rate.

3.4.3 Rates

As said earlier, Kappa rules are equipped with one or two kinetic rate(s). A rate is a
real number, or an algebraic expression evaluated as such, called the individual-based or
stochastic rate constant , it is the rate at which the corresponding rule is applied per instance
of the rule. Its dimension is the inverse of a time [T−1].

The stochastic rate is related to the concentration-based rate constant k of the rule of
interest by the following relation:

k = γ(A V)(a−1) (3.1)

21

3.4. RULES

K
a

S
p mipa

where V is the volume where the model is considered, A = 6.022 · 1023 is Avogadro’ s
number, a ≥ 0 is the arity of the rule (ie 2 for a bimolecular rule).

In a modeling context, the constant k is typically expressed using molars M := moles l−1

(or variants thereof such as µM , nM), and seconds or minutes. If we choose molars and
seconds, k’ s unit is M 1−as−1, as follows from the relation above.

Concentration-based rates are usually favored for measurements and/or deterministic mod-
els, so it is useful to know how to convert them into individual-based ones used by KaSim.
Here are typical volumes used in modeling:

• Mammalian cell: V = 2.25 10−12l (1l = 10−3m3), and AV = 1.35 1012.

A concentration of 1M in a mammalian cell volume corresponds to 1.35 1012 molecules;
1nM ≈ 1350 molecules per cell.

• Yeast cell (haploid): V = 4 10−14l, and AV = 2.4 1010.

A concentration of 1M in a yeast cell volume corresponds to 2.4 1010 molecules;
1nM ≈ 24 molecules per cell. The volume is doubled in a diploid cell.

• E. Coli cell: V = 10−15l, and AV = 108.

A concentration of 1M in a yeast cell volume corresponds to 108 molecules; 10nM ≈ 1
molecule per cell.

The table below lists typical ranges for deterministic rate constants and their stochastic
counterparts assuming a mammalian cell volume.

Table 3.5: Example of kinetic rates.
process k γ

general binding 107 − 109 10−5 − 10−3

general unbinding 10−3 − 10−1 10−3 − 10−1

dephosphorylation 1 1
phosphorylation 0.1 0.1
receptor dimerization 2 106 1.6 10−6

receptor dissociation 1.6 10−1 1.6 10−1

3.4.4 Ambiguous molecularity

It is considered malpractice to use a Kappa rule of the form A(x),B(y)→ . . . @ γ in a
model where this rule could be applied in a context where A and B are sometimes already
connected and sometimes disconnected. Indeed, this would lead to an inconsistency in the

22

CHAPTER 3. THE KAPPA LANGUAGE

K
a

S
p mipa

definition of the kinetic rate γ which should have a volume dependency in the former case
and no volume dependency in the latter (see Section 3.4.3).

This sort of ambiguity should be resolved, if possible, by refining the ambiguous rule into
cases that are either exclusively unary or binary. Each refinement having a kinetic rate that
is consistent with its molecularity. Note that in practice, for models with a large number of
agents, it is sufficient to assume that the rule A(x),B(y)→ . . . @ γ will have only binary
instances. In this case it suffices to consider the approximate model:

1 ’assumed␣binary␣AB’ A(x),B(y) -> ... @ ’ga_2’
2 ’unary␣AB’ A(x,c!1),C(a!1,b!2),B(y,c!2) -> ... @ ’k_1’

There are however systems where even enumerating unary cases becomes impossible or the
approximation on binary instances is wrong. As an alternative, one should use the kappa
notation for ambiguous rules:

'my rule' kappa_expression → kappa_expression @ γ2{k1}

which will tell KaSim to apply the above rule with a rate γ2 for binary instances and a rate
k1 for unary instances. The obtained model will behave exactly as a model in which the
ambiguous rule has been replaced by unambiguous refinements. However the usage of such
rule slowdowns simulation in a significant manner depending on various parameters (such
as the presence of large polymers in the model). We give below an example of a model
utilizing binary/unary rates for rules1.

1 %agent: A(b,c)
2 %agent: B(a,c)
3 %agent: C(b,a)
4 ##
5 %var: ’V’ 1
6 %var: ’k1’ INF
7 %var: ’k2’ 1.0E-4/’V’
8 %var: ’k_off’ 0.1
9 ##

10 ’a.b’ A(b),B(a) -> A(b!1),B(a!1) @ ’k2’{’k1’}
11 ’a.c’ A(c),C(a) -> A(c!1),C(a!1) @ ’k2’{’k1’}
12 ’b.c’ B(c),C(b) -> B(c!1),C(b!1) @ ’k2’{’k1’}
13 ##
14 ’a..b’ A(b!a.B) -> A(b) @ ’k_off’
15 ’a..c’ A(c!a.C) -> A(c) @ ’k_off’
16 ’b..c’ B(c!b.C) -> B(c) @ ’k_off’
17 ##

1This model is available in the source repository models/poly.ka.

23

3.5. VARIABLES

K
a

S
p mipa

18 %var: ’n’ 1000
19 ##
20 %init: ’n’ A(),B(),C()
21 %mod: [E] = 10000 do $STOP "snap.dot"

Notice at lines 10-12 the use of binary/unary notation for rules. As a result binding between
freely floating agents will occur at rate 'k2' while binding between agents that are part
of the same complex will occur at rate 'k1'. Line 21 contains a perturbation that requires
KaSim to stop the simulation after 10,000 events and output the list of molecular species
present in the final mixture as a dot file (see Section 6.1) and that we give Figure 3.1.

Figure 3.1: Final mixtureobtained after 10,000 events of simulation of the poly.ka model.
The infinite rate for cycle closure allows one to obtain a large number of triangles.

For rules with unary rates, one can also specify an horizon. For example in the rule

1 ’a.b’ A(b),B(a) -> A(b!1),B(a!1) @ ’k_1’\{’k_2’:5\}

the unary rate is applied only when the agents A and B are at an horizon 5 (or closer), of
each other. Horizon is an algebraic expression but during simulation, it is always truncated
to a positive integer. This feature can change in the future.

3.5 Variables

In the KF it is also possible to declare variables with the declaration:

%var: 'var_name' (algebraic_expression)

where var_name can be any string and algebraic_expression are defined Table 3.6 (available
symbols for variable, constants and operators are given Table 3.7).

For instance the declarations

24

CHAPTER 3. THE KAPPA LANGUAGE

K
a

S
p mipa

Table 3.6: Algebraic expressions
algebraic_expression ::= x ∈ R | variable

| algebraic_expression binary_op algebraic_expression
| unary_op (algebraic_expression)

Table 3.7: Symbol usable in algebraic expressions
variable Interpretation

[E] the total number of (productive) simulation events
since the beginning of the simulation

[E-] the total number of null events
[Emax] the max (productive) event limit as set by -l (in -u event mode).

Note that if unset Emax=∞
[T] the bio-time of the simulation
[Tsim] the cpu-time since the beginning of the simulation
[Tmax] the max (bio)-time limit as set by the option -l.

Note that if unset Tmax=∞
[pp] the number of requested plotting interval set by the option -p.
'v' the value of variable 'v' (declared using the %var: statement)
|t| the concentration of token t
|kappa_expression | number of occurences of the pattern kappa_expression
inf symbol for ∞

unary/binary_op Interpretation

[f] usual mathematical functions and constants
with f ∈ {log,exp,sin,cos,tan,sqrt,pi}

[int] the floor function x ∈ R 7→ bxc ∈ Z
+,-,*,/,^ basic mathematical operators (infix notation)
[mod] the modulo operator (infix notation)
[max] the maximum of two values
[min] the minimum of two values

25

3.6. INITIAL CONDITIONS

K
a

S
p mipa

1 %var: ’homodimer ’ |A(x!1),A(x!1)|
2 %var: ’aa’ ’homodimer ’/2

define 2 variables, the first one tracking the number of embeddings of A(x!1),A(x!1) in
the graph over time, while the second divides this value by 2: the number of automorphisms
in A(x!1),A(x!1). Note that variables that are used in the expression of another variable
must be declared beforehand.

It is also possible to use algebraic expressions as kinetic rates as in

1 %var: ’k_on’ 1.0E-6 # per molecule per second
2 ’ab’ A(x),A(x) -> A(x!1),A(x!1) @ ’k_on’/2

KaSim may output values of variables in the data file (see option -p in Chapter 4) using
plot do:

1 %plot: ’var_name ’

One may use the shortcut:

%obs: 'var_name' algebraic_expression

to declare a variable and at the same time require it to be outputted in the data file.

3.6 Initial conditions

The initial mixture to which rules in the KF will be applied are declared as

%init: algebraic_expression kappa_expression

or

%init: token_name <- algebraic_expression

where algebraic_expression is evaluated before initialization of the simulation (hence all
token and kappa expression values in the expression are evaluated to 0). This will add to the
initial state of the model mult copies of the graph described by the kappa expression. Again
the DCDW convention allows us not to write the complete interface of added agents (the
remaining sites will be completed according to the agent’s signature). For instance:

1 %var: ’n’ 1000
2 %init: ’n’ A(),A(y\intstate p
3 %init: ca2+ <- 0.39 #mM

26

CHAPTER 3. THE KAPPA LANGUAGE

K
a

S
p mipa

will add 1000 instances of A in its default state A(x,y~u,z~0), 1000 instances of A in state
A(x,y~p,z~0) and a concentration of 0.39 mM of calcium ions. Recall that the concentration
of calcium can be observed during simulation using |ca2+|. As any other declaration, %init
can be used multiple times, and agents will add up to the initial state.

27

3.6. INITIAL CONDITIONS

K
a

S
p mipa

28

Chapter 4

The command line

4.1 General usage

From a terminal window, KaSim can be invoked by typing

$ KaSim file_1 ... file_n [option]

where file_i are the input Kappa files containing the rules, initial conditions and observ-
ables (see Chapter 3). Tables 4.1 and 4.2 summarize all the options that can be given to the
simulator. Basically, one specifies an upper bound either in simulated or bio-time (arbitrary
time unit), or in number of events. Note that bio-time is computed using Gillespie's formula
for time advance (see Fig. 1.1) and should not be confused with CPU-time (it's not even
proportional). In doubt, we recommend using a bound in number of events since the cost
of one event is bounded (in CPU time) by a constant, so the CPU-time used for simulating
n events is roughly k times lower than that used for simulating k × n events.

4.2 Main options

Table 4.1 summarizes the main options that are accessible through the command line.
Options that expects an argument are preceded by a single dash, options that do not need
any argument start with a double dash.

Two key options are the plot period -p (how often you want a line in the data file) and the
limit -l of simulation. These quantities can expressed in simulated time (the default) or in
number of event (using -u event).

29

4.3. ADVANCED OPTIONS

K
a

S
p mipa

Table 4.1: Command line: main options
Argument Description
-u unit unit of options (time/event)
-l max Terminates simulation after max ≥ 0 unit
-initial min starts the simulation at min unit (data outputs convienience only)
-p x plot a line in the data file every x unit
-o file Set the name of data file to file

Use the extension to determine the format (’.tsv’, ’.svg’ or comma separeted value else)
-i file Interpret file as an input filename

(for compatibility with KaSim<= 3 and filenames starting by -)
-d dir Output any produced file to the directory dir

4.3 Advanced options

Table 4.2 summarizes the advanced options that are accessible through the command
line.

Table 4.2: Command line: advanced options
Argument Description
-seed n Seeds the pseudo-random number generator n > 0
-rescale r Multiply each initial quantity by r
-make-sim sim_file makes a simulation package out of the input kappa files
-load-sim sim_file use simulation package sim_file as input
--gluttony simulation mode that is memory intensive

but that speeds up simulation time
-mode batch Set non interactive mode (never halt waiting for an user

action but assume default (data loosing) answer)
-mode interactive Launch the toplevel just after model initialisation

4.4 Example

The command

$ KaSim model.ka -u event -l 1000000 -p 1000 -o model.out

will generate a file model.out containing the trajectories of the observables defined in the
kappa file model.ka. A measure will be taken every 1000 events in file model.out. The
command

30

CHAPTER 4. THE COMMAND LINE

K
a

S
p mipa

$ KaSim init.ka rules.ka obs.ka mod.ka -l 1.5 -p 0.0015

will generate a file data.csv (default name) containing 1000 data points of a simulation
of 1.5 (arbitrary) time units of the model. Note that the input Kappa file is split in four
files containing, for instance, the initial conditions, init.ka, the rule set, rules.ka, the
observables, obs.ka, and the perturbations, pert.ka (see Chapter 3 for details).

31

4.4. EXAMPLE

K
a

S
p mipa

32

Chapter 5

A simple model

We describe below the content of a simple Kappa model and give examples of some typical
run1.

5.1 ABC.ka

1 #### Signatures
2 %agent: A(x,c) # Declaration of agent A
3 %agent: B(x) # Declaration of B
4 %agent: C(x1~u~p,x2~u~p) # Declaration of C with 2 modifiable

sites
5 #### Rules
6 ’a.b’ A(x),B(x) -> A(x!1),B(x!1) @ ’on_rate ’ #A binds B
7 ’a..b’ A(x!1),B(x!1) -> A(x),B(x) @ ’off_rate ’ #AB dissociation
8 ’ab.c’ A(x!_,c),C(x1~u) -> A(x!_,c!2),C(x1~u!2) @ ’on_rate ’ #

AB binds C
9 ’mod␣x1’ C(x1~u!1),A(c!1) -> C(x1~p),A(c) @ ’mod_rate ’ #ABC

modifies x1
10 ’a.c’ A(x,c),C(x1~p,x2~u) -> A(x,c!1),C(x1~p,x2~u!1) @ ’on_rate

’ #A binds C on x2
11 ’mod␣x2’ A(x,c!1),C(x1~p,x2~u!1) -> A(x,c),C(x1~p,x2~p) @

mod_rate #A modifies x2
12 #### Variables
13 %var: ’on_rate ’ 1.0E-4 # per molecule per second

1The corresponding kappa file is included in the distribution of KaSim, in the directory models/

33

5.2. SOME RUNS

K
a

S
p mipa

14 %var: ’off_rate ’ 0.1 # per second
15 %var: ’mod_rate ’ 1 # per second
16 %obs: ’AB’ |A(x!x.B)|
17 %obs: ’Cuu’ |C(x1~u,x2~u)|
18 %obs: ’Cpu’ |C(x1~p,x2~u)|
19 %obs: ’Cpp’ |C(x1~p,x2~p)|
20 #### Initial conditions
21 %init: 1000 A(),B()
22 %init: 10000 C()

Line 1-4 of this KF contains signature declarations. Agents of type C have 2 sites x1 and
x2 whose internal state may be u(nphosphorylated) or p(hosphorylated). Recall that the
default state of these sites is u (the first one). Line 8, rule 'ab.c' binds an A connected to
someone on site x (link type !_) to a C. Note that the only rule that binds an agent to x
of A is 'a.b' at line 6. Hence the use of !_ is a commodity and the rule could be replaced
by

1 ’alt_ab.c’ A(x!1,c),B(x!1),C(x1~u) -> ...

There are two main points to notice about this model: A can modify both sites of C once
it is bound to them. However, only an A bound to a B can connect on x1 and only a free
A can connect on x2. Note also that x2 is available for connection only when x1 is already
modified.

5.2 Some runs

We try first a coarse simulation of 100, 000 events (10 times the number of agents in the
initial system).

$ KaSim ABC.ka -u event -l 100000 -p 1000 -o abc.csv

Plotting the content of the abc.csv file one notices that nothing of significant interest
happen to the observables after 250s. So we can now specify a meaningful time limit by
running

$ KaSim ABC.ka -l 250 -p 0.25 -o abc.out

which produces the data points whose rendering is given in Fig. 5.1. We will use this
model as a running example for the next chapter, in order to illustrate various advanced
concepts.

34

CHAPTER 5. A SIMPLE MODEL

K
a

S
p mipa

Figure 5.1: Simulation of the ABC model: population of unmodified Cs (observable Cuu in
red) drops rapidly and is replaced, in a first step by simply modified Cs (observable Cpu
in blue) which are in turn replaced by doubly modified Cs (observable Cpp in red). Note
that the population of AB complexes (observable AB in black) stabilizes slightly below 400
individuals after about 20s.

35

5.2. SOME RUNS

K
a

S
p mipa

36

Chapter 6

Advanced concepts

6.1 Perturbation language

It is possible to use variables of the model as precondition for triggering a perturbation of
the simulation. Note that, by default, a perturbation is applied whenever its pre-condition is
satisfied and then discarded. Such perturbation is called "one shot" . It is however possible
to re-apply the same perturbation each time its pre-condition is satisfied and until a certain
condition is met, using the repeat ... until constructors.

Basic perturbations are obtained using the declaration :

%mod: boolean_expression do effect_list

and may be applied repeatedly using:

%mod: repeat boolean_expression do effect_list until boolean_expression

where boolean_expression and effect_list are defined by the grammar given Table 6.1 (the
operator rel can be any usual binary relation in {<,=, >} and algebraic expressions are
defined Table 3.6).

The boolean expression is used as a precondition that determines when the perturbation
will be triggered, for instance a user writes

1 %mod: ([T]>10) && (’v1’ /’v2’) > 1 do ...

to indicate she wishes to trigger a perturbation whenever the simulation time has passed
10 time units and the ratio of variables v1 over v2 is above 1. Recall that the perturbations
are "one shot" interventions on the simulation. Possible interventions are described in the
following sections using examples.

37

6.1. PERTURBATION LANGUAGE

K
a

S
p mipa

Table 6.1: Perturbation expressions
perturbation_expression ::= %mod: perturbation

| %mod: repeat perturbation until boolean_expression

perturbation ::= boolean_expression do effect_list

boolean_expression ::= algebraic_expression rel algebraic_expression
| (boolean_expression || boolean_expression)
| (boolean_expression && boolean_expression)
| [not] boolean_expression
| [true] | [false]

effect_list ::= effect ; effect_list | effect

effect ::= $ADD algebraic_expression agent_expression
| $DEL algebraic_expression agent_expression
| token_name <- algebraic_expression
| $SNAPSHOT string_expression
| $STOP string_expression
| $FLUX string_expression boolean
| $TRACK 'var_name' boolean
| $UPDATE 'var_name' algebraic_expression
| $PLOTENTRY
| $PRINT <string_expression>
| $PRINTF string_expression <string_expression>

string_expression ::= ε | "string" . string_expression
| algebraic_expression . string_expression

boolean ::= [true] | [false]

38

CHAPTER 6. ADVANCED CONCEPTS

K
a

S
p mipa

Note on time dependent preconditions:
Consider a perturbation of the form:

%mod: f(t)=x do . . .

where f(t) is an algebraic expression dependent on time and x an arbitrary algebraic ex-
pression. Having in mind the simulation algorithm implemented by KaSim, at the beginning
of an event loop, both f(t) and x will be evaluated. It is very unlikely (in general with a
probability equal to 0) that both values coincide. Currently KaSim is not equipped with
a solver able to detect that in the past of the current state, there was a t that made the
precondition hold, unless the equation is trivial to solve. Therefore the only time dependent
precondition with an equality test that is allowed in KaSim has to be of the form [T] =n with
n ∈ N. For instance: %mod: [T]=10 do $STOP will interrupt the simulation after exactly 10
time units.

6.1.1 Adding or deleting agents during a simulation

Continuing with the ABC model, the perturbation effect: $ADD n C(x1~p) will add n ≥ 0
instances of C with x1 already in state p (and the rest of its interface in the default state
as specified line 4 of ABC.ka). Also the perturbation effect: $DEL inf B(x!_) will remove
all Bs connected to some agent from the mixture.

There are various ways one can use perturbations to study more deeply a given kappa model.
A basic illustration is the use of a simple perturbation to let a system equilibrate before
starting a real simulation. For instance, as can be seen from the curve given in Fig. 5.1, the
number of AB complexes is arbitrarily set to 0 in the initial state (all As are disconnected
from Bs in the initial mixture). In order to avoid this, one can modify the kappa file the
following way: we set the initial concentration of C to 0 by deleting line 22. Now we introduce
Cs after 25 t.u using the perturbation: %mod: [T]=25 do $ADD 10000 C()

The modified kappa file is available in the source repository, in the model/ directory (file
abc-pert.ka). Running again a simulation (a bit longer) by entering in the command
line:

$ KaSim ABC-pert.ka -l 300 -p 0.3 -o abc2.out

one obtains the curve given in Fig. 6.1.

6.1.2 Using snapshots to define a new initial state

In the previous example, we let the system evolve for some time without its main reactant
C in order to let other reactants go to a less arbitrary initial state. One may object that

39

6.1. PERTURBATION LANGUAGE

K
a

S
p mipa

Figure 6.1: Simulation of the ABC model with a perturbation: for t<25s, only 'a.b' and
'a..b' rules may apply. This enables the concentration of 'AB' complexes to go to steady
state, before introducing fresh Cs at t=25s.

this way of proceeding is CPU-time consuming if one has to do this at each simulation.
An alternative is to use the $SNAPSHOT primitive that allows a user to export a snapshot
of the mixture at a given time point as a new (piece of) kappa file. For instance, the dec-
laration: %mod: [E-]/([E]+[E-])>0.9 do $SNAPSHOT "prefix" will ask KaSim to export
the mixture the first time the percentage of null events reaches 90%. The exported file will
be named prefix_n.ka where n is the event number at which the snapshot was taken.
One may also use a string_expression to construct any prefix using local variables. Note
that one may omit to define a prefix and simply type: %mod: [E-]/([E]+[E-])>0.9 do
$SNAPSHOT in which case the default prefix snap.ka will be used for naming snapshots.

If the name already exists a counter will be appended at the end of the file to prevent
overwriting. Snapshots can be performed multiple times, for instance every 1000 events,
using the declaration:

1 %mod: repeat ([E] [mod] 1000)=0 do $SNAPSHOT "abc.ka" until [
false]

which results in KaSim producing a snapshot every 1000 (productive) events until the
simulation ends. The perturbation $STOP "final_state.ka" will terminate the simulation
whenever its precondition is satisfied and produce a snapshot of the last mixture. Note that
instead of producing kappa files, one may use snapshot perturbations to produce an image

40

CHAPTER 6. ADVANCED CONCEPTS

K
a

S
p mipa

of the mixture in the dot/html format using the parameter by specifying the extention in
the name skeleton (%mod: [E-]/([E]+[E-])>0.9 do $SNAPSHOT ‘‘snap.dot).

6.1.3 Changing the value of a token

The concentration of any token can be reset on the fly using a perturbation. For instance
the declaration: %mod: repeat (|a|<100 do a <- |a|*2)until [false] will double the
concentration of token a each time it gets below 100.

6.1.4 Causality analysis

In our ABC example, adding the instruction: %mod: [true] do $TRACK ’Cpp’[true] will
ask KaSim to turn on causality analysis for the observable 'Cpp' since the beginning of the
simulation, and display the causal explanation of every new occurrence of 'Cpp', until the
end of the simulation. The explanation, that we call a causal flow , is a set of rule application
ordered by causality and displayed as a graph using dot format. In this graph, an edge r−→
r' between two rule applications r and 'r' indicates that the first rule application has used,
in the simulation, some sites that were modified by the application of the former. We show
Fig. 6.2 an example of such causal flow.

Figure 6.2: Causal flow for the observable 'Cpp' of the ABC model. Plain arrows represent
causal dependency, dotted arrows show asymmetric conflict between rule occurrences. Here
the 'ab.c' rule has to occur before the 'a.b' rule. Red observable indicate that the last
rule allowed one to observe a new instance of 'Cpp'.

Causality analysis of the observable Cpp can be turned off at any time using a declaration
of the form: %mod: [T]>25 do $TRACK ’Cpp’[false]

41

6.1. PERTURBATION LANGUAGE

K
a

S
p mipa

Each time KaSim detects a new occurrence of the observable that is being tracked, it will
dump it’s causal past as a graph using the dot format (see Fig. 6.2 above). The name
of the file in which the causal flow is stored can be set using the %def instruction (see
Section 6.4).

Compressing causal flows.

In general pure causal flows will contain a lot of information that modelers may not wish
to consider. Indeed in classical flows, causality (represented by an edge between to rule
applications in the graph) is purely local. Therefore a sequence a→ b→ c only implies that
an instance of rule a caused an instance of rule b which in turn created an instance of the
observable c. However it does not imply that a was "necessary" for c to occur (for instance c
might have been possible before a but not after, and b would be simply re-enabling c). It is
possible to tell KaSim to retain only events that are more strongly related to the observable
using two compression techniques (see Ref. [2] for formal details). Intuitively, in a weakly
compressed causal flow one has the additional property that if an event e is a (possibly
indirect) cause of the observable, then preventing e from occurring would have prevented
the rest of the causal flow to occur (ie it is not possible to reconstruct a computation
trace containing the observable with the events that remain in the causal flow). A strongly
compressed causal flow enjoys the same property with an additional level of compression
obtained by considering different instances of the same rule to be indistinguishable. Note
that causal flow compressions may be memory and computation demanding. For large
systems it may be safer to start with weak compressions only.

The type of compression can be set using the %def instruction (see Section 6.4). For instance:
%def: "displayCompression" "none" "weak" "strong" will ask KaSim to output 3 ver-
sions of each computed causal flow, with all possible degrees of compressions. Each causal
flow is outputted into a file [filename][Type]_n.dot where filename is the default name
for causal flows which can be redefined using the parameter cflowFileName, Type is the type
of compression (either nothing or Strongly, or Weakly) and n is the identifier of the causal
flow. For each compression type a summary file, named [filename][Type]Summary.dat,
is also produced. It allows to map each compressed causal flow to the identifier of its un-
compressed version (row #id), together with the production time T and event number E
at which the observable was produced. It also contains information about the size of the
causal flow.

6.1.5 Flux maps

The flux map is a powerful observation that tracks, on the fly, the influence that rule applica-
tions have on each others. It is dynamically generated and tracks effective impacts (positive

42

CHAPTER 6. ADVANCED CONCEPTS

K
a

S
p mipa

Figure 6.3: Flux map of the abc.ka model, taken from t=0 to t=20 time units. The A
releasing rules a..b and mod x2 are contributing very little to the activity of a.c which is
a sign of an excess of free As in the system at this time interval.

43

6.1. PERTURBATION LANGUAGE

K
a

S
p mipa

or negative) a every rule application. The flux map can be computed using declarations of
the form:

1 %mod: [true] do $FLUX "flux.dot" [true]
2 %mod: [T]>20 do $FLUX "flux.dot" [false]

The resulting flux map is a graph where a positive edge between rules r and s (in green) in-
dicates an overall positive contribution of r over s. Said otherwise, the sum of r applications
increased the activity of s. Conversely, a negative edge (in red) will indicate that r had an
overall negative impact on the activity of s. Note that the importance of the flux between
two rules can be observed by looking at the label on the edges that indicate the overall
activity transfer (positive or negative) between the rules. The above declaration produce a
flux map that is shown Fig. 6.3. Note that flux may vary during time, therefore the time
or event limit of the simulation is of importance and will likely change the aspect of the
produced map.

6.1.6 Updating kinetic rates on the fly

Any variable between simple quotes can be updated during a simulation using a declaration
of the form: %mod: ’Cpp’> 500 do $UPDATE ’k_on’0.0

This perturbation will be applied whenever the observable 'Cpp' will become greater than
500. Its effect will be to set the on rate of all binding rules to 0. Note that according to
the grammar given Table 6.1, one may use any algebraic expression as the new value of
the variable. For instance: %mod: ’Cpp’> 500 do $UPDATE ’k_on’’k_on’/100 will cause
the on rate of all rules to decrease a hunderd fold. Note that it is possible to override the
kinetic rate of a specific rule: in our ABC example, the declaration: %mod: ’Cpp’> 500 do
$UPDATE ’a.b’inf will set the kinetic rate of rule 'a.b' to infinity.

6.1.7 Combining several effects in a single perturbation

As an example, consider the computation of causal flows between t = 10 and t = 20 using
the declarations:

1 %mod: [T]>10 do $TRACK ’Cpp’ [true]
2 %mod: [T]>20 do $TRACK ’Cpp’ [false]

The above declaration will ask KaSim to analyze each new occurrence of 'Cpp' in that time
interval. If n new instances took place, then KaSim will have to compute n causal flows.
One may want to bound the number of computed flows to a certain value, say 10. One may
do so using the combination of perturbations and variables given below:

44

CHAPTER 6. ADVANCED CONCEPTS

K
a

S
p mipa

1 %var: ’x’ 0
2 %mod: [T]>10 do ($TRACK ’Cpp’ [true] ; $UPDATE ’x’ ’Cpp’)
3 %mod: [T]>20 || (’x’ > 0 && ’Cpp’ - ’x’ > 9) do $TRACK ’Cpp’ [

false]

The first line is a declaration of an x variable that is initially set to 0. Note that the
second line is a perturbation that contains two simultaneous effects, the first one triggering
causality analysis and the second one updating the value of variable x to the current value
of variable 'Cpp'. The last line stops causality analysis whenever time is greater than 20
or when 10 new observables have been found (the difference between the current value of
'Cpp' and x.

6.1.8 Printing values during a simulation

The effect $PRINT <string_expression > enables one to output values during a computa-
tion to standard output, or to a specific file when using $PRINTF. For instance:

1 %mod: repeat \
2 |A|<0 do $PRINTF "token_ ".[E].". dat" <"Token A is: " . |A| . "

at time =". [T]>\
3 until [false]

will ask KaSim to output the value of token A in a file "token_n.dat" which changes at each
new productive event, each time its value gets below 0.

6.1.9 Add an entry in the output data

The effect $PLOTENTRY outputs a line with the current value of observables in the data
file. For example, %mod: repeat [E] [mod] 10 = 0 do $PLOTENTRY until [false] will
store the value of observables every 10 productive events.

6.2 Implicit signature

KaSim permits users in a hurry to avoid writing agent signatures explicitly using the option
- -implicit-signature of the command line. The signature is then deduced using infor-
mation gathered in the KF. Note that it is not recommended to use the DCDW convention
for introduced agents in conjunction with the - -implicit-signature option unless the
default state of all sites is mentioned in the %init declarations or in the rules that create
agents.

45

6.3. SIMULATION PACKAGES

K
a

S
p mipa

6.3 Simulation packages

The simulation algorithm that is implemented in KaSim requires an initialization phase
whose complexity is proportional to R ∗G where R is the cardinal of the rule set and G the
size of the initial mixture. Thus for large systems, initialization may take a while. Whenever
a user wishes to run several simulations of the same kappa model, it is possible to skip this
initialization phase by creating a simulation package. For instance:

KaSim abc.ka -l n -make-sim abc.kasim

will generate a standard simulation of the abc.ka model, but in addition, will create the
simulation package abc.kasim (.kasim extension is not mandatory). This package is a bi-
nary file, ie not human readable, that can be used as input of a new simulation using the
command:

KaSim -load-sim abc.kasim -l k

Note that this simulation is now run for k time units instead of n. Importantly, simulation
packages can only be given as input to the same KaSim that produced it. As a consequence,
recompiling the code, or obtaining different binaries, will cause the simulation package to
become useless.

6.4 Simulation parameters configuration

In the KF (usually in a dedicated file) one may use expressions of the form:

%def: "parameter_name" "parameter_value"

where tunable parameters are described table 6.2 (default values are given first in the
possible values column).

46

CHAPTER 6. ADVANCED CONCEPTS

K
a

S
p mipa

Table 6.2: User defined parameters
parameter possible values description
Causality analysis
"displayCompression" any combination of type of compression

"none", "strong", "weak"
"cflowFileName" "cflow", any string file name prefix for causal flows
"dotCflows" "no", "html" generate causal flows in html

"yes", "dot" generate causal flows in dot
"json" generate causal flows in json

Pretty printing
"colorDot" "no", "yes" use colors in dot format files
"progressBarSymbol" "#" or any character symbol for the progress bar
"progressBarSize" "60" or any integer length of the progress bar

Simulation options
"dumpIfDeadlocked" "no","yes" Snapshot when simulation

is stalled
"maxConsecutiveClash" "2" or any integer number of consecutive clashes

before giving up
square approximation

"storeUnaryHorizon" "true", "false" Record distance between connected components
when unary rule applies

47

6.4. SIMULATION PARAMETERS CONFIGURATION

K
a

S
p mipa

48

Chapter 7

The KaSa static analyser

7.1 General usage

From a terminal window, KaSa can be invoked by typing

$ KaSa file_1 ... file_n [option]

where file_i are the input Kappa files containing the rules, initial conditions and observ-
ables (see Chapter 3).

All the options are summarised as follows:

General options
--help Verbose help
-h Short help

--version Show version number
--gui GUI to select
--(no-)expert Expert mode (more options)

0_Actions
--do-all

launch everything
--reset-all

launch nothing
--(no-)compute-contact-map (default: enabled)

compute the contact map
--(no-)compute-influence-map (default: enabled)

compute the influence map

49

7.1. GENERAL USAGE

K
a

S
p mipa

--(no-)compute-ODE-flow-of-information (default: disabled)
Compute an approximation of the flow of information in the ODE
semantics

--(no-)compute-stochastic-flow-of-information (default: disabled)
Compute an approximation of the flow of information in the stochastic
semantics

--(no-)compute-reachability-analysis (default: enabled)
Compute an approximation of the states of agent sites

--(no-)views-domain (default: enabled)
enable local views analysis

--(no-)double-bonds-domain (default: enabled)
enable double bonds analysis

--(no-)sites-accross-bonds-domain (default: enabled)
enable the analysis of the relation amond the states of sites in
connected agents

--(no-)compute-local-traces (default: disabled)
Compute the local traces of interesting parts of agent interfaces

1_Output
--output-directory <value>

Default repository for outputs
--output-contact-map-directory <name> (default: output)

put the contact map file in this directory
--output-influence-map-directory <name> (default: output)

put the influence map file in this directory
--output-local-traces-directory <name> (default: output)

put the files about local traces in this directory
--output-log-directory <name> (default: output)

put the log files in this directory
--contact-map-format DOT (default: DOT)

Tune the output format for the contact map
--influence-map-format DOT | HTML (default: DOT)

Tune the output format for the influence map
--local-traces-format DOT | HTML (default: DOT)

Tune the output format for the local transition systems
--output-contact-map <name> (default: contact)

file name for the contact map output
--output-influence-map <name> (default: influence)

file name for the influence map

2_Reachability_analysis

50

CHAPTER 7. THE KASA STATIC ANALYSER

K
a

S
p mipa

--(no-)compute-reachability-analysis (default: enabled)
Compute an approximation of the states of agent sites

--enable-every-domain
enable every abstract domain

--disable-every-domain
disable every abstract domain

--contact-map-domain static | dynamic (default: dynamic)
contact map domain is used to over-approximate side-effects

--(no-)views-domain (default: enabled)
enable local views analysis

--(no-)double-bonds-domain (default: enabled)
enable double bonds analysis

--(no-)sites-accross-bonds-domain (default: enabled)
enable the analysis of the relation amond the states of sites in
connected agents

--verbosity-level-for-reachability-analysis Mute | Low | Medium | High |
Full (default: Low)

Tune the verbosity level for the reachability analysis
--output-mode-for-reachability-analysis raw | kappa | english (default: kappa)

post-process relation and output the result in the chosen format

3_Trace_analysis
--(no-)compute-local-traces (default: disabled)

Compute the local traces of interesting parts of agent interfaces
--(no-)show-rule-names-in-local-traces (default: enabled)

Annotate each transition with the name of the rules in trace
abstraction

--(no-)use-macrotransitions-in-local-traces (default: disabled)
Use macrotransitions to get a compact trace up to change of the
interleaving order of commuting microtransitions

--(no-)ignore-trivial-losanges (default: disabled)
Do not use macrotransitions for simplifying trivial losanges

--output-local-traces-directory <name> (default: output)
put the files about local traces in this directory

--local-traces-format DOT | HTML (default: DOT)
Tune the output format for the local transition systems

4_Contact_map
--(no-)compute-contact-map (default: enabled)

compute the contact map
--output-contact-map-directory <name> (default: output)

51

7.1. GENERAL USAGE

K
a

S
p mipa

put the contact map file in this directory
--contact-map-format DOT (default: DOT)

Tune the output format for the contact map
--contact-map-accuracy-level Low | High (default: Low)

Tune the accuracy level of the contact map
--(no-)pure-contact (default: disabled)

show in the contact map only the sites with a binding state
--output-contact-map <name> (default: contact)

file name for the contact map output

5_Influence_map
--(no-)compute-influence-map (default: enabled)

compute the influence map
--influence-map-accuracy-level Low | Medium (default: Medium)

Tune the accuracy level of the influence map
--output-influence-map-directory <name> (default: output)

put the influence map file in this directory
--influence-map-format DOT | HTML (default: DOT)

Tune the output format for the influence map
--output-influence-map <name> (default: influence)

file name for the influence map

6_FLow_of_information
--(no-)compute-ODE-flow-of-information (default: disabled)

Compute an approximation of the flow of information in the ODE
semantics

--(no-)compute-stochastic-flow-of-information (default: disabled)
Compute an approximation of the flow of information in the stochastic
semantics

7_Debugging_info
--output-log-directory <name> (default: output)

put the log files in this directory
--(no-)debugging-mode (default: disabled)

dump debugging information
--(no-)unsafe-mode (default: enabled)

Exceptions are gathered at the end of the computation, instead of
halting it

(57 options)

52

CHAPTER 7. THE KASA STATIC ANALYSER

K
a

S
p mipa

Orders in option matter, since they can be used to toggle on/off some functionalities or
to assign a value to some environment variables. The options are interpreted from left to
right.

More options are available in the OCaml file KaSa_rep/config/config.ml and can be
tuned before compilation.

7.2 Graphical interface

7.2.1 Launching the interface

The graphical interface can be launched by typing

$ KaSa

without any option.

Figure 7.1: KaSa graphical interface - sub-tab 0_Actions

7.2.2 The areas of interests

There are five different areas of importance in the graphical interface:

53

7.2. GRAPHICAL INTERFACE

K
a

S
p mipa

1. On the top left of the window, a button allows for the selection between the Normal
and the Expert mode (other modes may be available if activated at compilation). In
expert modes, more options are available in the graphical interface.

2. On the top center/right, some button allows for the selection of the tab. There are
currently six sub-tabs available: 0_Actions, 1_Output, 2_Reachability_analysis,
3_Trace_analysis, 4_Contact_map, 5_Influence_map.

3. Center: The options of the selected sub-tab are displayed and can be tuned.

Contextual help is provided when the mouse is hovered over an element.

The interface will store the options that are checked or filled and the order in which
they have been selected. When launched, the analysis interprets these options in the
order they have been entered.

Some options appear in several sub-tabs. They denote the same option and share the
same value.

4. File selector: The file selector can be used to upload as many kappa files as desired.
The button ’Clear’ can be used to reset the selection of files.

5. Bottom: Some buttons are available. The button ’Quit’ can be used to leave the
interface. The button ’Reset to default’ tune all the options to their default value.
The button ’Import options’ can be used to restore the value of the options as saved
during a previous session of the graphical interfaces. The button ’Save options’ can
be used to save the value of the options for a further session. The button ’Launch
analyze’ launch KaSa with the current options.

Importantly, options are saved automatically under various occasions. Thus, it is
possible to restore the value of the options before the last reset, before the last quit,
or before the last analysis.

7.2.3 The sub-tab 0_Actions

The sub-tab 0_Actions (see Fig. 7.1) contains the main actions which can be performed.

• The button –do-all activates all the functionalities.

• The button –reset-all inactivates all the functionalities.

• The option –compute-contact-map can be used to (des)activate the computation of
the contact map.

• The option –compute-influence-map can be used to (des)activate the computation
of the influence map.

54

CHAPTER 7. THE KASA STATIC ANALYSER

K
a

S
p mipa

• The option –compute-reachability-analysis can be used to (des)activate the com-
putation of the reachability analysis.

• The option –compute-local-traces can be used to (des)activate the computation of
the trace analysis.

7.2.4 The sub-tab 1_Output

Figure 7.2: KaSa graphical interface - sub-tab 1_output

The sub-tab 1_Ouput (see Fig. 7.2) contains the names of the output files.

• The field –output-directory can be used to set the repository where output file are
written. KaSa will create this repository, if it does not exist.

• The field –output-contact-map-directory can be used to set the reporitory where
the output file for the contact map is written, if a contact map is requested. KaSa will
create this repository, if it does not exist.

• The field –output-influence-map-directory can be used to set the reporitory where
the output file for the influence map is written, if an influence map is requested.
KaSa will create this repository, if it does not exist.

• The field –output-local-traces-directory can be used to set the reporitory where
the output file for the result of trace analysis is written, if this analysis is requested.
KaSa will create this repository, if it does not exist.

55

7.3. REACHABILITY ANALYSIS

K
a

S
p mipa

• The field –output-contact-map contains the name of the file for the contact map.

• The field –output-influence-map contains the name of the file for the influence map.

When a file already exists, it is overwritten without any warning.

7.3 Reachability analysis

Figure 7.3: KaSa graphical interface - sub-tab 2_Reachability_analysis

Reachability analysis aimed at detecting statically properties about the bio-molecular species
that can be formed in a model. Knowing whether, or not, a given bio-molecular species,
can be formed in a model is an undecidable problem [15]. Thus, our analysis is approxi-
mate. Indeed, it computes an over-approximation of the set of the bio-molecular species
that can be reached from the initial state of the model, by applying an unbounded number
of computation steps. As formalized in [5, ?], the abstraction consists in:

1. firstly, ignoring the number of occurrences of bio-molecular species (we assume that
whenever a bio-molecular species can be formed, then it can be formed as many time
as it could be necessary),

2. secondly, abstracting a bio-molecular species by the set of its properties.

The classes of properties of interest are encoded in so called abstract domains, which can be
independently enabled/disabled. The whole analysis can be understood as a mutual recur-

56

CHAPTER 7. THE KASA STATIC ANALYSER

K
a

S
p mipa

sion between smaller analyses (one per abstract domain), that communicates information
between each other at each step of the analysis. We took the same scheme of collaboration
between abstract domains as in [?].

As an example, we consider the following model:

1 %agent: E(x)
2 %agent: R(x,c,cr,n)
3

4 %init: 1 E()
5 %init: 1 R()
6

7 ’E.R’ E(x),R(x) -> E(x!1),R(x!1) @1
8 ’E/R’ E(x!1),R(x!1,c) -> E(x),R(x,c) @1
9 ’R.R’ R(x!_,c),R(x!_,c) -> R(x!_,c!1),R(x!_,c!1) @1

10 ’R/R’ R(c!1,cr,n),R(c!1,cr,n) -> R(c,cr,n),R(c,cr,n) @1
11 ’R.int’ R(c!1,cr,n),R(c!1,cr,n) -> R(c!1,cr!2,n),R(c!1,cr,n !2)

@1
12 ’R/int’ R(cr!1),R(n!1) -> R(cr),R(n) @1
13 ’obs’ R(x,c,cr!_,n!_) -> R(x,c,cr,n) @1

Typing the following instruction:

KaSa reachability.ka --reset-all --compute-reachability-analysis

will perform the reachability analysis on the model reachability.ka.

We obtain the following result:

Kappa Static Analyzer (DomainBased-2343-gec98fbf) (with Tk
interface)
Analysis launched at 2016/12/02 09:42:09 (GMT+1) on
dhcp195.dmi.ens.fr
Parsing ../kappa/reachability.ka...
done
Compiling...
Reachability analysis...

--
* There are some non applyable rules
--
rule 6: obs will never be applied.
--
every agent may occur in the model

57

7.3. REACHABILITY ANALYSIS

K
a

S
p mipa

--
* Non relational properties:
--
E() => [E(x) v E(x!R.x)]
R() => [R(c) v R(c!R.c)]
R() => [R(n) v R(n!R.cr)]
R() => [R(cr) v R(cr!R.n)]
R() => [R(x) v R(x!E.x)]

--
* Relational properties:
--
R() =>

[
R(c,cr,n,x!E.x)

v R(c!R.c,cr!R.n,n,x!E.x)
v R(c!R.c,cr,n,x!E.x)
v R(c!R.c,cr,n!R.cr,x!E.x)
v R(c,cr,n,x)

]
--
* Properties in connected agents
--
R(c!1),R(c!1) =>
[

R(c!1,cr!R.n),R(c!1,cr)
v R(c!1,cr),R(c!1,cr)
v R(c!1,cr),R(c!1,cr!R.n)
]
R(c!1),R(c!1) =>
[

R(c!1,cr!R.n),R(c!1,n!R.cr)
v R(c!1,cr),R(c!1,n)
]
R(c!1),R(c!1) =>
[

R(c!1,n!R.cr),R(c!1,n)
v R(c!1,n),R(c!1,n)
v R(c!1,n),R(c!1,n!R.cr)
]

58

CHAPTER 7. THE KASA STATIC ANALYSER

K
a

S
p mipa

--
* Properties of pairs of bonds
--
R(c!R.c,cr!R.n) => R(c!1,cr!2),R(c!1,n!2)
R(c!R.c,n!R.cr) => R(c!1,n!2),R(c!1,cr!2)
execution finished without any exception

This result is displayed in the standard output, and it is made of six parts.

The first two parts provide an enumeration of dead rules and dead agents. The next parts
display what we call refinement lemmas. A refinement lemma is made of a precondition (on
the left of the implication symbol) that is a site graph, and a postcondition (on the right of
the implication symbol) that is a list of site graphs. Each site graph in the post-condition
is a refinement of the precondition (the position of agent matters: the n-th agent in the
precondition corresponds to the n-th agent in each site graph in the postcondition, but site
graphs in a postcondition may have more agents than the site graph in the corresponding
precondition). The meaning of a refinement lemma is that every embedding between its
precondition into a reachable state can be refined/extended into an embedding from one
site graph in its postcondition into the same reachable state. This way, a refinement lemma
provides an enumeration of all the potential contexts for the precondition.

We now detail the six different parts:

• Detection of dead rules. A rule is called dead, if there is no trace starting from the
initial state in which this rule is applied. The analysis reports the list of the rules it
has detected to be dead. Due to the over-approximation, it may happen that a dead
rule is not discovered by the analysis. Yet, every rule that is reported as dead, is dead
indeed.

In our example, we notice that the rule ‘obs’ can never be trigered.

• Detection of dead agents. An agent is called dead, if there is no trace starting from
the initial state with at least one state in which this agent occurs. The analysis reports
the list of the agents it has detected to be dead. Due to the over-approximation, it
may happen that a dead agent is not discovered by the analysis. Yet, every agent that
is reported as dead, is dead indeed.

In our example, there are no dead agent.

• Non-relational properties. The analysis detects for each kind of site, the set of
states this site can take. Due to the over-approximation, the analysis reports a super-
set of the set of the potential states. Yet, we are sure that a given site only take states
within this set.

In our example, the site cr of R may be free, or bound to the site n of an agent R.

59

7.3. REACHABILITY ANALYSIS

K
a

S
p mipa

Kappa Static Analyzer (DomainBased-2343-gec98fbf) (with Tk
interface)
Analysis launched at 2016/12/02 09:42:09 (GMT+1) on
dhcp195.dmi.ens.fr
Parsing ../kappa/reachability.ka...
done
Compiling...
Reachability analysis...
execution finished without any exception

Figure 7.4: Reachability analysis of the model reachbility.ka with verbosity level “Mute”.

• Relational properties. The analysis detects some relationships among the states
of packs of sites within each agent, hence capturing potential valuations for local
views [10, 5]. Due to the over-approximation of the analysis, the analysis may fail
in discovering a relationship. But each relationship that is found by the analysis, is
satisfied.

In our example, the states of the sites c, cr, n, and x of R are entangled with a
relational property (othewise, we would have 52 elements in the post-condition).

• Properties in connected agent. When two agents are connected, there may be a
relation among the states of theirs respective sites. This abstraction [12] collects for
each kind of bonds, the relation between the state of one site in the first agent and
the state of one site in the second agent. Due to the over-approximation, the analysis
reports a super-set of the set of the potential pairs of states.

This abstraction aimed at capturing information about protein transportation. It is
quite common to model the location of a protein as the internal state of a fictitious
site. With such an encoding, it might be important to ensure that two connected
proteins, are always located in the same location. This abstraction focuses on this
kind of properties.

• Properties of pairs of bonds.

It might be interesting to know whether a protein can be bound to another protein
twice simultaneously, and whether a protein can be bound to two instances of a same
protein simultaneously. This abstraction [12] captures this kind of constraint. It can
be used to prove that some proteins do not polymerize.

In our example, when a R has its sites cr and c bound, they are necessarily bound to
the same instance of R. The same statement holds for the sites cr and n.

Now we describe the options that are available on this sub-tab.

60

CHAPTER 7. THE KASA STATIC ANALYSER

K
a

S
p mipa

Applying rule 6: obs:
the precondition is not satisfied yet

Figure 7.5: Reachability analysis: one rule that cannot be applied yet, according to the
bio-molecular species already constructed.

Applying rule 0: E.R:
the precondition is satisfied

Figure 7.6: Reachability analysis: one rule successfully applied

The option --compute-reachability-analysis can be used to switch on/off then reach-
ability analysis.

The option --enable-every-domain can be used to switch on every abstract domain,
whereas the option --disable-every-domain can be used to switch off every abstract
domain.

The option --contact-map-domain impacts the way side-effects are handled with during
the analysis. In static mode, we consider that every bond that occurs syntactically in
initial state, in the rhs of a rule, or in a introduction directive of a perturbation, may be
released by side-effects. In dynamic mode, only the bond that has been encountered so far
during the analysis are considered.

The option --views-domain can be used to switch on/off the views domains that combine
the non-relational analysis and the relational analysis.

The option --double-bonds-domain can be used to switch on/off the analysis of potential
double bonds between between proteins.

The option --site-accross-bonds-domain can be used to switch on/off the analysis of
the relations among the states of the sites in connected proteins.

It is possible to get more details about the computation of the analysis by tuning the
verbosity level of the view analysis:

• With the option --verbosity-level-for-reachability-analysis Mute, nothing is
displayed. Even the result of the analysis is omitted (eg. see Fig. 7.4).

• With the option --verbosity-level-for-reachability-analysis Low, only the re-
sult of the analysis is displayed (by default).

• With the option --verbosity-level-for-reachability-analysis Medium, the anal-
ysis also describes which rules are applied and in which order.

When trying to apply a rule, the analysis may detect that the rule cannot be applied

61

7.3. REACHABILITY ANALYSIS

K
a

S
p mipa

Views in initial state:

E(x!free)
--
Views in initial state:

R(x!free,c!free,cr!free,n!free)

Figure 7.7: Reachability analysis: extensional description of initial states.

Applying rule 0: E.R:
the precondition is satisfied

rule 0: E.R is applied for the first time

Updating the views for E(x!)

E(x!R@x)

Updating the views for R(x!,c!,cr!,n!)

R(x!E@x,c!free,cr!free,n!free)

Figure 7.8: Reachability analysis: extensional description of the new patterns created when
applying a rule.

yet because the precondition is not satisfied at the current state of the iteration
(eg. see Fig. 7.5). Otherwise, the analysis can apply the rule and update the state of
the iteration accordingly (eg. see Fig. 7.6).

• With the option --verbosity-level-for-reachability-analysis High, the anal-
ysis also describes which patterns are discovered.

In particular, at the beginning of the iteration, the analysis prompts the patterns of
interest that occur in initial state (eg. see Fig. 7.7). Then, each time a rule is applied
successfully, the analysis shows which new patterns have been discovered (eg. see
Fig. 7.8).

• When new patterns are discovered, then, it is necessary to apply again any rule that
may operate over these patterns.

62

CHAPTER 7. THE KASA STATIC ANALYSER

K
a

S
p mipa

Applying rule 0: E.R:
the precondition is satisfied

rule 0: E.R is applied for the first time
(rule 1: E/R) should be investigated

(rule 1: E/R) should be investigated

Updating the views for E(x!)

E(x!R@x)

Updating the views for R(x!,c!,cr!,n!)

R(x!E@x,c!free,cr!free,n!free)

Update information about potential sites accross domain

R(c!1,x!E.x),R(c!1,x!E.x)

(rule 0: E.R) should be investigated

Figure 7.9: Reachability analysis: discovering new patterns force the analysis to apply some
rules again, until reaching a fix-point.

With the option --verbosity-level-for-reachability-analysis Full, the anal-
ysis also describes which rules are awaken by the discovery of a new pattern (see
Fig. 7.9).

The option --output-mode-for-reachability-analysis can be used to tune the output
of the analysis. The default mode is kappa. In mode, raw, patterns of interest are displayed
extensionally. In mode, english, properties of interest are explained in English. The op-
tion --use-natural-language can be used to switch on/off the translation of properties
in natural language: when the option is disabled, each relationship is described in exten-
sion.

63

7.4. LOCAL TRACES

K
a

S
p mipa

Figure 7.10: KaSa graphical interface - sub-tab 3_Trace_analysis

7.4 Local traces

Trace analysis is a refinement of reachability analysis that additionaly explains how one
agent can go from a given view to another one, following a path that we call a local trace.
Thus the set of the local traces for a given agent can be described as a transition system
among the views for a given agent: in this transition system, the nodes are local views;
introduction arrows correspond to either initial states, or creation rules; transitions denote
a potential conformation change of an agent, from one local views to another one, due to
the application of a given rule.

We consider the following example:

1 %init: 1 P()
2 %init: 1 K()
3

4 ’a1+’ P(a1~u) -> P(a1~p) @1
5 ’b1+’ P(a1~p,b1~u) -> P(a1~p,b1~p) @1
6 ’a1-’ P(a1~p,b1~u) -> P(a1~u,b1~u) @1
7 ’b1-’ P(b1~p,g) -> P(b1~u,g) @1
8 ’a2+’ P(tab:siga2~u) -> P(a2~p) @1
9 ’a2-’ P(a2~p,g) -> P(a2~u,g) @1

10 ’b2+’ P(a2~p,b2~u) -> P(a2~p,b2~p) @1

64

CHAPTER 7. THE KASA STATIC ANALYSER

K
a

S
p mipa

11 ’b2-’ P(b2~p,g) -> P(b2~u,g) @1
12 ’P.K’ P(a1~p,a2~p,b1~p,b2~p,g),K(x) -> P(a1~p,a2~p,b1~p,b2~

p,g!1),K(x!1) @1
13 ’P/K’ P(a1~p,a2~p,b1~p,b2~p,g!1),K(x!1) -> P(a1~p,a2~p,b1~

p,b2~p,g),K(x) @1

Typing the following instruction:

KaSa protein2x2.ka --reset-all --compute-local-traces

will perform the trace analysis on the model protein2x2ka, and produce two dot format
files Agent_trace_K_x^.dot and Agent_trace.P.a1_.a2_.b1_.b2_.g^.dot. The output
repository can be changed thanks to the command line options –output-directory and
–output-local-trace-directory. Moreover, file names is made of the prefix Agent_trace,
followed by the kind of protein and the list of the sites of interest (the symbol ‘^’ denotes
a binding state, and the symbol ‘_’ an internal state).

The transition system that describes the local traces for the agents of kind P is descrided in
Figure 7.11. We notice that the nodes of this transition system are labelled with the states
of the sites of P . The internal state of a site x is denoted as x∼u (meaning that the site x
has state u, whereas the binding state of a site x is denoted as x!free, when the site is free,
and as x!K@x when the site x is bound to the site x of a given agent of kind K.

Figure 7.11: Local traces for the protein2x2.ka model defined in Section 7.4

We notice that the transition system that is given in Fig. 7.11 contains too many nodes.
We can coarse-grain this transition system thanks to the following option:

–use-macrotransitions-in-local-traces.

Typing the following instruction:

65

7.4. LOCAL TRACES

K
a

S
p mipa

KaSa protein2x2.ka --reset-all --compute-local-traces
--use-macrotransitions-in-local-traces

will perform the trace analysis on the model protein2x2ka, and produce two dot format files
Agent_trace_K_x^.dot and Agent_trace.P.a1_.a2_.b1_.b2_.g^.dot. The name of the
output repository can be changed thanks to the command line options –output-directory
and –output-local-trace-directory. This time, the files describe a coarse-graining of
the corresponding transition systems.

For instance, the coarse-grained transition system for the local traces of the proteins of
kind P , is given in Figure 7.12. This coarse-grained transition system is a compact implicit
encoding of the transition system in Figure 7.11. It is obtained by exploiting the fact that
locally, the behavior of the pair of states a1 and b1 is independent from the behavior of the
pair of states a2 and b2, until these four sites are phosphorylated, so that the site g can get
bound.

More formally, in that transition system, some states are microstates (in a microstate, the
state of each site is documented); some others are macrostates: (in a macrostate, the states
of only a subset of site is documented). Thus a macrostate v] can be seen intensionally as
a part of a local view, but also extensionnaly as the set γ(v]) of the local views they are a
subpart of. A microstate v can be described by any sequence (v]i) of macrostates prodiding
that the intersection

⋂
γ(v]i) of the extensional denotation γ(v]i) of these macrostates v]i ,

is equal to the singleton {v}; moreover a transition between two microstates v and v′ can
be described by any transition between one macro state v] and another one v′], provided
that there exists a sequence of macrostate (v]i) such that the sequence (v], (v]i)) denotes the
microstate v and the sequence (v′], (v]i)) denotes the microstate v′.

Figure 7.12: Local traces for the protein2x2.ka model defined in Section 7.4

Such coarse-grained transition system can be geometrically interpreted as a simplicial com-
plex [9].

As a microstate could be decomposed into several sequences of macrostates (including
the trivial sequence containing only the microstate itself), the system may jump sponta-

66

CHAPTER 7. THE KASA STATIC ANALYSER

K
a

S
p mipa

neously (by using a ε transition) from one representation to another representation. This
corresponds to the intersection between several simplexes in the corresponding simplificial
complex.

Although the semantics of a coarse-grainged transition system is fully defined by its la-
belled transitions, it is useful to annotate the graph by some information about the relation
between the denotation of each macrostate. By default, we use hypertlinks to relate each
macrostate v (including each microstate) to the set of its immediate subparts v′. In such a
hyperlink, v is connected via a dotted arrow, whereas each immediate subpart is connected
via a dashed arrow.

More options are available in expert mode, but they are not documented yet.

7.5 Contact map

Figure 7.13: KaSa graphical interface - sub-tab 4_Contact_map

The contact map of a model is an object that may help modelers checking the consistency
of the rule set they use. The contact map is statically computed and does not depend on
kinetic rates nor initial conditions.

Typing the following instruction:

KaSa abc.ka –reset-all –compute-contact-map

67

7.6. INFLUENCE MAP

K
a

S
p mipa

will produce a dot format file named contact.dot. The name of the output file and
the directory can be changed to the command line options –output-contact-map and
–output-directory. The directory is assumed to exist. The file will be overwritten if it
exists. All the options related to the computation of the contact map can be accessed on
the sub-tab 4_Contact_map of the graphical interface (see Fig. 7.15).

The contact map summarises the different types of agent, their interface and the potential
binding between sites. It is an over approximation, thus if the contact map indicates a
potential bond, it does not mean that it is always possible to reach a state in which two
sites of these kinds are bound, but if the contact map indicates no bond between two sites,
it means that it is NOT possible to reach a state in which two sites of these kinds are bound
together.

The contact map for the abc.ka model defined in Chapter 5 is given in Figure 7.14. On this
map, we notice that there are three kinds of agent, namely A, B, and C. Agents of kind
A have two sites x and c, that bear no internal state (they appear in yellow only), agents
of kind B have one site x, that bears no internal state (they appear in yellow only), and
agents of kind C have two sites x1 and x2 with both a binding state and an internal state
(they appear both in yellow and in green). We notice that when a site can bear both an
internal state and a binding state, they are considered as two different sites in the contact
map. Additionally, the contact map indicates that sites x of the agents of kind A can be
bound to the site x of an agent of kind B and that sites c of the agents of kind A can be
bound to the agents of kind C either on the site x1, or on the site x2.

Figure 7.14: Contact Map for the abc.ka model defined in Chapter 5

7.6 Influence map

The influence map of a model is an object that may help modelers checking the consistency
of the rule set they use.

68

CHAPTER 7. THE KASA STATIC ANALYSER

K
a

S
p mipa

Typing the following instruction:

KaSa abc.ka –reset-all –compute-influence-map

will produce a dot format file named influence.dot. The name of the output file and
the directory can be changed to the command line options –output-influence-map and
–output-directory. The directory is assumed to exist. The file will be overwritten if it
exists. All the options related to the computation of the influence map can be accessed on
the sub-tab 4_Influence_map of the graphical interface (see Fig. 7.15).

Figure 7.15: KaSa graphical interface - sub-tab 5_Influence_map

Unlike the flux map, the influence map is statically computed and does not depend on
kinetic rates nor initial conditions. It describes how rules may potentially influence each
other during a simulation. KaSa will produce a dot format file containing the influence
relation over all rules and observables of the model. The produced graph visualised using
a circular rendering1 is given in Figure 7.16. Observables are represented as circular nodes
and rules as rectangular nodes. The labels of the nodes are either the label of the rule
or of the observable (if available), otherwise it is made of a unique identifier allocated by
KaSa followed by the kappa definition of the rule/observable. Edges are decorated with the
list of embeddings (separated by a semi-colon) allowing the identification of agents in both
rules's right hand sides/left hand sides. More precisely, for positive influences, the notation
[i→ j] denotes a pair of embeddings from the agent number i of the origin's right hand side
and from the agent number j of the target's left hand side and the notation [i?→ j] denotes

1One may use for instance the circo program that is part of the graphviz suite.

69

7.6. INFLUENCE MAP

K
a

S
p mipa

a pair of embeddings from an agent attached to the agent number i of the origin's left hand
side, which have been freed by side effect and from the agent number j of the target's
left hand side; for negative influences, the notation [i → j] denotes a pair of embeddings
from the agent number i of the origin's left hand side and from the agent number j of the
target's left hand side and the notation [i? → j] denotes a pair of embeddings from an
agent attached to the agent number i of the origin's left hand side, which have been freed
by side effect and from the agent number j of the target's left hand side; Observables have
no influence, but they can be influenced by rules, if the rule can increase or decrease their
value.

More formally, consider the rules r : L→ R and s : L′ → R′. One wishes to know whether
it is possible that the application of rule r over a graph G creates a new instance of rule s
(which is called a positive influence and that is described by green arrows in the influence
map), or destroy a previous instance of rule s (which is called negative influence and that
is described by red arrows in the influence map). In Fig. 7.17, we illustrate the construction
of positive influences due to overlap of the left hand side of a rule and the right hand side
of another rule on some sites that are modified by the former one.

The current implementation has the following limitations:

• Currently, only observables that are defined as patterns are taken into account.

• Not atomic observables which are defined as algebraic expressions are not taken into
account yet. The observables are ignored.

• The influence map does not take into account indirect influences due to perturbations
(which could arises when the application of a rule triggers a perturbation which would
create some agents or increase/decrease the value of some variables).

• Token are not taken into yet. They are currently ignored.

• Positive/negative influence of time is not taken into account either.

Lastly, KaSa computes an over-approximation of the influence map. They may show an
influence despite the fact that there can be no actual one. But if it shows no influence it
means that either there are NO such influence, or that we are in a case that is not covered
yet as itemised previously.

70

CHAPTER 7. THE KASA STATIC ANALYSER

K
a

S
p mipa

Figure 7.16: The influence map of the abc.ka model defined in Chapter 5. Edge labels
denote embeddings with the convention that the notation [i → j], in a positive influence,
denotes a pair of embeddings from the agent number i of the origin's right hand side and
from the agent number j of the target's left hand side; the notation [i → j], in negative
influence, denotes a pair of embeddings from the agent number i of the origin's left hand
side and from the agent number j of the target's left hand side; the notation [i? → j],
whatever the influence is positive of negative, denotes a pair of embeddings from an agent
attached to the agent number i of the origin's left hand side, which have been freed by side
effect and from the agent number j of the target's left hand side.

71

7.6. INFLUENCE MAP

K
a

S
p mipa

Figure 7.17: Computation of the influence of the top rule on the rule below: the right hand
side of the first rules embeds in a common term with the left hand side of the second rule.
It results that the first rule has a positive influence on the second.

72

Chapter 8

Frequently asked questions

Simulation hangs after a while

If the progress bar seems stalled, it does not necessarily mean that the simulation is blocked.
In particular when a simulation is triggered with a time limit (-l option of the command
line) it might only indicate that the bio clock is stalled while computation events still occur.
Recall that the average (bio) time one has to wait in order to apply a rule is 1/A, where A
is the sum of all the rule activities (which is equal to the number of instances that a rule
has, times its kinetic rate). Whenever the number of occurrences of a rule grows too fast (if
new agents are created during the simulation for instance), or if the kinetic rate of a rule is
defined by a function that grows rapidly, the average time increment might tend to 0 and
if it remains so for a while, it will block the progress bar whose advance is proportional to
the bio time [T].

In order to make sure that KaSim is not incorrectly blocked you may wish to plot the event
clock against time clock using the observable %obs: 'events' [E] or run the simulation
using an event limit (-e option of the command line) instead of a time limit.

What do null events mean, why do I have any?

Null events is a way for KaSim to compensate for some over approximation it is doing, in
order deal with large simulations more efficiently. They usually do not impact significantly
the performances of the simulator, unless the model contains rules using the special notation
to deal with ambiguous molecularity (see Section 3.4.4). With pure Kappa rules, the ratio
r of null event over productive ones (that you can track using the observable %obs: 'r'
[E-]/[E]) should tend to 0 when models have a lot of agents.

73

K
a

S
p mipa

No data points are generated

Make sure you have %obs or %plot instructions in your KF. Also make sure to use a
reasonable value for the -p option in the command line to tell KaSim how often you wish
to have points on your curves.

Too many instances of an observable

The value of a kappa expression E is equal to the number of embeddings it has in the
current mixture M . Embeddings are maps from agents in E to agents in M . If E has sym-
metries then every permutation of E will be counted as a new embedding. For instance let
E =A(x!1),A(x!1) and let M =A(x!1,y~p),A(x!1,y~u). KaSim will count two instances
of E in M : the one mapping the first A of E to the first A of M and the one mapping the
first A of E to the second A of M .

The computed influence map is incorrect, it misses some acti-
vation or has too much of them

The influence map computed by KaSim contains relations that are computed on side effect
free rules only. It is likely that a missing activation is due to a side effect that is not taken
into account. If the influence map shows an activation between rule r and s that is never
possible with a given model, just remember that activation computation implies that there
exists a context in which applying rule r will create a new instance of rule s. This context
might simply never be realized with the given rules or initial conditions.

Value nan in the data file at the end of the simulation

The value nan means "Not a Number". It is generated when a plotted variable is infinite.
Make sure this variable is not divided by zero at some point.

74

Bibliography

[1] Ferdinanda Camporesi and Jérôme Feret. Formal reduction of rule-based models. In
Postproceedings of the Twenty-seventh Conference on the Mathematical Foundations of
Programming Semantics, MFPS XXVII, volume 276C of Electonic Notes in Theoretical
Computer Science, pages 31–61, Pittsburg, USA, 25–28 May 2011. Elsevier Science
Publishers.

[2] Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer, Jonathan Hayman,
Jean Krivine, Chris Thompson-Walsh, and Glynn Winskel. Graphs, rewriting and
pathway reconstruction for rule-based models. In Schloss Dagstuhl Leibniz-Zentrum
fuer Informatik, editor, FSTTCS 2012 - IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, volume 18 of LIPIcs, pages
276–288, 2012.

[3] Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer, and Jean Krivine.
Abstracting the differential semantics of rule-based models: exact and automated model
reduction. In Jean-Pierre Jouannaud, editor, Proceedings of the Twenty-Fifth Annual
IEEE Symposium on Logic in Computer Science, LICS ’2010, volume 0, pages 362–381,
Edinburgh, UK, 11–14 July 2010. IEEE Computer Society.

[4] Vincent Danos, Jérôme Feret, Walter Fontana, and Jean Krivine. Scalable simulation of
cellular signaling networks. In Proc. APLAS’07, volume 4807 of LNCS, pages 139–157,
2007.

[5] Vincent Danos, Jérôme Feret, Walter Fontana, and Jean Krivine. Abstract interpre-
tation of cellular signalling networks. In Francesco Logozzo, Doron A. Peled, and
Lenore D. Zuck, editors, Proceedings of the Ninth International Conference on Veri-
fication, Model Checking and Abstract Interpretation, VMCAI ’2008, volume 4905 of
Lecture Notes in Computer Science, pages 83–97, San Francisco, USA, 7–9 January
2008. Springer, Berlin, Germany.

[6] Vincent Danos, Jérôme Feret, Walter Fontanta, Russ Harmer, and Jean Krivine. Rule
based modeling of biological signaling. In Luís Caires and Vasco Thudichum Vas-

75

BIBLIOGRAPHY

K
a

S
p mipa

concelos, editors, Proceedings of CONCUR 2007, volume 4703 of LNCS, pages 17–41.
Springer, 2007.

[7] Vincent Danos and Cosimo Laneve. Formal molecular biology. Theoretical Computer
Science, 325, 2004.

[8] James R. Faeder, Mickael L. Blinov, and William S. Hlavacek. Rule based modeling
of biochemical networks. Complexity, pages 22–41, 2005.

[9] Lisbeth Fajstrup, Eric Goubault, and Martin Raußen. Detecting deadlocks in concur-
rent systems. In Proc. CONCUR ’98, volume 1466 of LNCS, 1998.

[10] Jérôme Feret. Reachability analysis of biological signalling pathways by abstract in-
terpretation. In T.E. Simos, editor, Proceedings of the International Conference of
Computational Methods in Sciences and Engineering, ICCMSE ’2007, Corfu, Greece,
number 963.(2) in American Institute of Physics Conference Proceedings, pages 619–
622, Corfu, Greece, 25–30 September 2007. American Institute of Physics.

[11] Jérôme Feret, Vincent Danos, Jean Krivine, Russ Harmer, and Walter Fontana. In-
ternal coarse-graining of molecular systems. Proceedings of the National Academy of
Sciences of the United States of America, April 3 2009.

[12] Jérôme Feret and Kim Quyên Lý. Reachability analysis via orthogonal sets of pat-
terns. In Seventeenth International Workshop on Static Analysis and Systems Biology
(SASB’16), ENTCS. elsevier. to appear.

[13] Daniel T. Gillespie. A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. Journal of Computational Physics, 22(4):403–
434, 1976.

[14] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal
of Physical Chemistry, 81(25):2340–2361, 1977.

[15] Peter Kreyßig. Chemical Organisation Theory Beyond Classical Models: Discrete Dy-
namics and Rule-based Models. PhD thesis, 2015.

76

Index

activity, 8, 21, 44
agent signature, 15, 16, 19, 26, 34
agents, 15
algebraic expression, 18
algebraic expression, 21, 26, 37, 44

bi-directional rule, 18
boolean expression, 38

causal flow, 41, 42
causality, 41
comments, 15

data file, 26, 74
declaration, 15, 18, 21, 24, 27, 34, 37, 40, 41,

44, 45
default state, 19
don’t care don’t write, 17, 19, 26

effect, 37, 39
embedding, 74
event, 8, 25

flux map, 42

graph, 8

hybrid rules, 19, 21

influence map, 74
initial condition, 15, 26
internal state, 16

kappa expressions, 18
kappa file, 15, 16, 18, 24, 26, 34, 45, 46, 74

kinetic rate, 21, 26
deterministic rate constant, 21
stochastic rate constant, 21

left hand side, 18
link type, 18
longest prefix convention, 20

mixture, 8, 20, 24, 26, 39–41, 46, 74

null event, 25, 73

perturbation, 15, 37
one shot, 37

precondition, 37
pure rule, 18, 19

rate, 8, 18
right hand side, 18
rule, 15, 18

semi-link, 18
side effect, 20
signature, 34
simulation package, 46
strong compression, 42

tokens, 15

variable, 15, 21, 24, 37

weak compression, 42

77

	Introduction
	Preamble
	The KaSim engine
	The KaSa static analyser
	Support

	Installation
	Using precompiled binaries
	Obtaining the sources
	Compilation
	Compilation of KaSa graphical interface

	The kappa language
	General structure
	Agent and token signatures
	Sited-graph pattern: Kappa expression
	Graph syntax
	Pattern syntax
	Link type

	Rules
	Pure rules
	Hybrid rules
	Rates
	Ambiguous molecularity

	Variables
	Initial conditions

	The command line
	General usage
	Main options
	Advanced options
	Example

	A simple model
	ABC.ka
	Some runs

	Advanced concepts
	Perturbation language
	Adding or deleting agents during a simulation
	Using snapshots to define a new initial state
	Changing the value of a token
	Causality analysis
	Flux maps
	Updating kinetic rates on the fly
	Combining several effects in a single perturbation
	Printing values during a simulation
	Add an entry in the output data

	Implicit signature
	Simulation packages
	Simulation parameters configuration

	The KaSa static analyser
	General usage
	Graphical interface
	Launching the interface
	The areas of interests
	The sub-tab 0_Actions
	The sub-tab 1_Output

	Reachability analysis
	Local traces
	Contact map
	Influence map

	Frequently asked questions

