
the Stukalin example
(DNA walker)

1. a tale of two engines

- ring assembly (combat small rings)

- symmetric motors

- directional

- challenge: mean velocity > individual one

2. interested in replacing/scaling micro-CTMC to SDEs ...
3. detailed balance
4. translational invariance

PRL 2005 – Stukalin et al.

Coupling of Two Motor Proteins: A New Motor Can Move Faster

Evgeny B. Stukalin, Hubert Phillips III, and Anatoly B. Kolomeisky
Department of Chemistry, Rice University, Houston, Texas 77005 USA

(Received 19 February 2005; published 13 June 2005)

We study the effect of a coupling between two motor domains in highly processive motor protein
complexes. A simple stochastic discrete model, in which the two parts of the protein molecule interact
through some energy potential, is presented. The exact analytical solutions for the dynamic properties of
the combined motor species, such as the velocity and dispersion, are derived in terms of the properties of
free individual motor domains and the interaction potential. It is shown that the coupling between the
motor domains can create a more efficient motor protein that can move faster than individual particles.
The results are applied to analyze the motion of RecBCD helicase molecules.

DOI: 10.1103/PhysRevLett.94.238101 PACS numbers: 87.15.La

Motor proteins are enzyme molecules that are respon-
sible for generation of forces and molecular transport in
biological systems [1,2]. They move along polar molecular
tracks such as cytoskeletal filaments and DNA molecules,
and the motion is powered by energy released from a
hydrolysis of adenosine triposphate (ATP) molecules or
related compounds. However, the mechanisms of the
chemical energy transformation into the mechanical work
are not fully understood [1].

Crystal structures of motor proteins reveal that they can
be viewed as complex systems consisting of many domains
[1,3]. It is assumed that the complexity of motor proteins
appeared during the evolution as a way to perform simul-
taneously many functions. A good example is a RecBCD
enzyme that belongs to a class of helicase motor proteins
[4]. It processes DNA ends resulting from the double-
strand breaks [3]. This protein unwinds the DNA molecule
into two separate strands, and then it digests them by
moving at the same time along the DNA [5–8]. RecBCD
is a heterotrimer made of three proteins: RecB, RecC, and
RecD [9]. Two subunits, RecB and RecD domains, have
helicase activities, consume ATP, and act on 30- or 50-ended
DNA strands, respectively [7,8,10]. Meanwhile, the third
subunit (RecC) has no ATPase activity, and it functions as a
clamp preventing the dissociation of the enzyme complex
from the track [11]. Recent experiments provided data on
DNA unwinding rates by RecBCD and the active subunits
RecB and RecD at the single-molecule level [5,7,12,13].
Surprisingly, the speed of the protein complex is signifi-
cantly faster than the unwinding rates of individual sub-
units [7]. These observations raise the general question
important for all biological systems: How is the interaction
between different subunits optimized to produce highly
efficient multifunctional biological molecules? The work
presented here aims to address this issue by developing a
stochastic model of the motion of motor proteins consist-
ing of two interacting subunits.

We assume that the motor protein complex consists of
two particles, as shown in Fig. 1. Each subunit can move
only along its own one-dimensional track that corresponds
to the motion of RecB and RecD domains on the separate

DNA strands. The position of the particle A on the upper
lattice is given by the integer l, while m specifies the
position of the lower domain B. Because of the link be-
tween the motor subunits only the limited number of the
molecular configurations has to be considered. In the sim-
plest description, we assume that 3 configurations are
possible; i.e., 0 ! jl"mj ! 1 (see Fig. 1). Our approach
is related to the theoretical model of helicase motion
proposed in Ref. [14], where the DNA unwinding is viewed
as a result of interaction between the helicase and DNA
fork, while we discuss the effect of the internal coupling of
the subunits on the motion of proteins.

b)

a)

c)

a1u

wb2

wa1 ua2

wb1 b2u

wa2

ub1

ε > 0

ε = 0

ε > 0

ss ds

ss ds

ss ds

FIG. 1. Schematic view of a motor protein with two domains.
Transition rates uai and wai with i # 1; 2 describe the motion of
the domain A (small circles), while for the second particle B
(large circles) the transitions rates are ubi and wbi. Only three
configurations are allowed: (a) (l"1;l) with the energy of inter-
action ">0, (b) (l; l) with "#0, and (c) (l$1;l) with " > 0.

PRL 94, 238101 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
17 JUNE 2005

0031-9007=05=94(23)=238101(4)$23.00 238101-1 © 2005 The American Physical Society

Notes on PRL 94 238101
VD

January 29, 2014

Abstract
We develop the following ideas around the bimotor model presented in Ref. [2]:

- generalize this model to deal with offsets of up to k, and multi-engines
- use this new model to infer parameters instead of the simple MC/negative binomial one
- present the model as an (interesting) example of energy-based methods (see Notes eb.tex to deal
with non-linear energy expressions);
- find some scaling limit of the (generalized) model wrt as a 2d OU process;
- use this model as an interesting example of fragmentation, with the spectacular feature of being
able to derive the mean velocity (of the centre of mass) of the bimotor
- understand the noise/dispersion on the velocity also as an algorithm and extend fragmentation to
incorporate noise

This leads to the conclusion that one can write more elaborate/accurate models without losing
(too much) on the analysis side thanks to our tools; the either/either logic of modelling is defeated1

1 Basic model
The state space is Z2 but x, y 2 S reachable iff |x � y| 1. (We will relax this later, and consider
|x� y| k; also will consider finite cyclic versions Z2

n

.)
The TS looks like this:

x, x+ 1

x� 1, x x, x

ub2/wb2

OO

wb1/ub1

✏✏

wa1/ua1

oo ua2/wa2// x+ 1, x

x, x� 1

Convention: a, b refer to which motor is doing the moving; 1, 2 to the left/right orientation seen from
central states x, x; u for moving right, w for moving left. It would be better to have u for getting off
x, x and w = u? for getting to x, x (a convention I am using later at some point).

Note that the rates are invariant by translation along the (1, 1) vector.

1.1 detailed balance
We begin by examining the conditions under which we have detailed balance. (Incidentally, it is
irrelevant that dB holds in the application, considering that the real motors spend ATP.)

1Either your model is in anyway faithful to the referent and you won’t understand anything the model says, or it is simple
enough that you can understand it, but then it tells you nothing of the referent.

1

There is only one type of cycle (a small square) which one can take in two directions:

x, x+ 1

ua1 // x+ 1, x+ 1

wb1

✏✏
x, x

ub2

OO

x+ 1, x
wa2

oo

x, x+ 1

oo wa1
x+ 1, x+ 1OO

ub1

x, x
✏✏

wb2

x+ 1, x//
ua2

To assign consistently an energy we need (eqvly, a Kolmogorov condition, obtained by equating the
product of the rates in both directions):

log(w
b2/ub2) + log(w

a1/ua1) = log(w
a2/ua2) + log(w

b1/ub1) (1)

Set for i = a, b:
u
i1/wi1 = (u

i

/w
i

) �
u
i2/wi2 = (u

i

/w
i

) ��1

Where � = e�✏. This gives:
log(u

a1/wa1) = �✏+ log(u
a

/w
a

)

log(w
a2/ua2) = �✏� log(u

a

/w
a

)

log(u
b1/wb1) = �✏+ log(u

b

/w
b

)

log(w
b2/ub2) = �✏� log(u

b

/w
b

)

Which in terms of the constraint above is:

�✏� log(u
b

/w
b

)� �✏� log(u
a

/w
a

) = �✏� log(u
a

/w
a

)� �✏� log(u
b

/w
b

)

Which is true indeed. So we have detailed balance. Note also that this assigment is the most general
as it needs 7 parameters (�✏, u

a

/w
a

, u
b

/w
b

are each just one parameter).R: u
i

/w
i

are the ratios for ✏ = 0.
However the assigment is translation-invariant (Noether’s theorem?) only if:

⌧ := log(u
b

/w
b

) + log(u
a

/w
a

) = 0 (2)

In general, H(x+1, x+1)�H(x) = �⌧ , and the sign of ⌧ will determine the global energy lanscape
and direction of motion: if ⌧ > 0, the process will climb up the diagonal (to check!).

We can visualize the energy landscape seen from a diagonal state:

�✏� log(u
b

/w
b

)

�✏+ log(u
a

/w
a

) •

OO

✏✏

oo // �✏� log(u
a

/w
a

)

�✏+ log(u
b

/w
b

)

If ⌧ ⇠ 0, and both summands (of opposite signs) are of the order of �✏ in absolute value, then the
system will move in a very assymetric crab-like way (the same motor will almost always move first);
|| log(u

a

/w
a

)|� | log(u
b

/w
b

)|| measures the assymetry of the system (indeed, it is zero if the motors
are identical).

Eventually, we will set ✏ > 0 expressing the fact that motors prefer to stay together.
Note that if the state space is cyclic, we need translation invariance, as dB implies it; unless we

do not care about dB. But if we use a cyclic TS for convenience, then we still have an energy in the
acyclic cover!

2

There is only one type of cycle (a small square) which one can take in two directions:

x, x+ 1

ua1 // x+ 1, x+ 1

wb1

✏✏
x, x

ub2

OO

x+ 1, x
wa2

oo

x, x+ 1

oo wa1
x+ 1, x+ 1OO

ub1

x, x
✏✏

wb2

x+ 1, x//
ua2

To assign consistently an energy we need (eqvly, a Kolmogorov condition, obtained by equating the
product of the rates in both directions):

log(w
b2/ub2) + log(w

a1/ua1) = log(w
a2/ua2) + log(w

b1/ub1) (1)

Set for i = a, b:
u
i1/wi1 = (u

i

/w
i

) �
u
i2/wi2 = (u

i

/w
i

) ��1

Where � = e�✏. This gives:
log(u

a1/wa1) = �✏+ log(u
a

/w
a

)

log(w
a2/ua2) = �✏� log(u

a

/w
a

)

log(u
b1/wb1) = �✏+ log(u

b

/w
b

)

log(w
b2/ub2) = �✏� log(u

b

/w
b

)

Which in terms of the constraint above is:

�✏� log(u
b

/w
b

)� �✏� log(u
a

/w
a

) = �✏� log(u
a

/w
a

)� �✏� log(u
b

/w
b

)

Which is true indeed. So we have detailed balance. Note also that this assigment is the most general
as it needs 7 parameters (�✏, u

a

/w
a

, u
b

/w
b

are each just one parameter).R: u
i

/w
i

are the ratios for ✏ = 0.
However the assigment is translation-invariant (Noether’s theorem?) only if:

⌧ := log(u
b

/w
b

) + log(u
a

/w
a

) = 0 (2)

In general, H(x+1, x+1)�H(x) = �⌧ , and the sign of ⌧ will determine the global energy lanscape
and direction of motion: if ⌧ > 0, the process will climb up the diagonal (to check!).

We can visualize the energy landscape seen from a diagonal state:

�✏� log(u
b

/w
b

)

�✏+ log(u
a

/w
a

) •

OO

✏✏

oo // �✏� log(u
a

/w
a

)

�✏+ log(u
b

/w
b

)

If ⌧ ⇠ 0, and both summands (of opposite signs) are of the order of �✏ in absolute value, then the
system will move in a very assymetric crab-like way (the same motor will almost always move first);
|| log(u

a

/w
a

)|� | log(u
b

/w
b

)|| measures the assymetry of the system (indeed, it is zero if the motors
are identical).

Eventually, we will set ✏ > 0 expressing the fact that motors prefer to stay together.
Note that if the state space is cyclic, we need translation invariance, as dB implies it; unless we

do not care about dB. But if we use a cyclic TS for convenience, then we still have an energy in the
acyclic cover!

2

There is only one type of cycle (a small square) which one can take in two directions:

x, x+ 1

ua1 // x+ 1, x+ 1

wb1

✏✏
x, x

ub2

OO

x+ 1, x
wa2

oo

x, x+ 1

oo wa1
x+ 1, x+ 1OO

ub1

x, x
✏✏

wb2

x+ 1, x//
ua2

To assign consistently an energy we need (eqvly, a Kolmogorov condition, obtained by equating the
product of the rates in both directions):

log(w
b2/ub2) + log(w

a1/ua1) = log(w
a2/ua2) + log(w

b1/ub1) (1)

Set for i = a, b:
u
i1/wi1 = (u

i

/w
i

) �
u
i2/wi2 = (u

i

/w
i

) ��1

Where � = e�✏. This gives:
log(u

a1/wa1) = �✏+ log(u
a

/w
a

)

log(w
a2/ua2) = �✏� log(u

a

/w
a

)

log(u
b1/wb1) = �✏+ log(u

b

/w
b

)

log(w
b2/ub2) = �✏� log(u

b

/w
b

)

Which in terms of the constraint above is:

�✏� log(u
b

/w
b

)� �✏� log(u
a

/w
a

) = �✏� log(u
a

/w
a

)� �✏� log(u
b

/w
b

)

Which is true indeed. So we have detailed balance. Note also that this assigment is the most general
as it needs 7 parameters (�✏, u

a

/w
a

, u
b

/w
b

are each just one parameter).R: u
i

/w
i

are the ratios for ✏ = 0.
However the assigment is translation-invariant (Noether’s theorem?) only if:

⌧ := log(u
b

/w
b

) + log(u
a

/w
a

) = 0 (2)

In general, H(x+1, x+1)�H(x) = �⌧ , and the sign of ⌧ will determine the global energy lanscape
and direction of motion: if ⌧ > 0, the process will climb up the diagonal (to check!).

We can visualize the energy landscape seen from a diagonal state:

�✏� log(u
b

/w
b

)

�✏+ log(u
a

/w
a

) •

OO

✏✏

oo // �✏� log(u
a

/w
a

)

�✏+ log(u
b

/w
b

)

If ⌧ ⇠ 0, and both summands (of opposite signs) are of the order of �✏ in absolute value, then the
system will move in a very assymetric crab-like way (the same motor will almost always move first);
|| log(u

a

/w
a

)|� | log(u
b

/w
b

)|| measures the assymetry of the system (indeed, it is zero if the motors
are identical).

Eventually, we will set ✏ > 0 expressing the fact that motors prefer to stay together.
Note that if the state space is cyclic, we need translation invariance, as dB implies it; unless we

do not care about dB. But if we use a cyclic TS for convenience, then we still have an energy in the
acyclic cover!

2

There is only one type of cycle (a small square) which one can take in two directions:

x, x+ 1

ua1 // x+ 1, x+ 1

wb1

✏✏
x, x

ub2

OO

x+ 1, x
wa2

oo

x, x+ 1

oo wa1
x+ 1, x+ 1OO

ub1

x, x
✏✏

wb2

x+ 1, x//
ua2

To assign consistently an energy we need (eqvly, a Kolmogorov condition, obtained by equating the
product of the rates in both directions):

log(w
b2/ub2) + log(w

a1/ua1) = log(w
a2/ua2) + log(w

b1/ub1) (1)

Set for i = a, b:
u
i1/wi1 = (u

i

/w
i

) �
u
i2/wi2 = (u

i

/w
i

) ��1

Where � = e�✏. This gives:
log(u

a1/wa1) = �✏+ log(u
a

/w
a

)

log(w
a2/ua2) = �✏� log(u

a

/w
a

)

log(u
b1/wb1) = �✏+ log(u

b

/w
b

)

log(w
b2/ub2) = �✏� log(u

b

/w
b

)

Which in terms of the constraint above is:

�✏� log(u
b

/w
b

)� �✏� log(u
a

/w
a

) = �✏� log(u
a

/w
a

)� �✏� log(u
b

/w
b

)

Which is true indeed. So we have detailed balance. Note also that this assigment is the most general
as it needs 7 parameters (�✏, u

a

/w
a

, u
b

/w
b

are each just one parameter).R: u
i

/w
i

are the ratios for ✏ = 0.
However the assigment is translation-invariant (Noether’s theorem?) only if:

⌧ := log(u
b

/w
b

) + log(u
a

/w
a

) = 0 (2)

In general, H(x+1, x+1)�H(x) = �⌧ , and the sign of ⌧ will determine the global energy lanscape
and direction of motion: if ⌧ > 0, the process will climb up the diagonal (to check!).

We can visualize the energy landscape seen from a diagonal state:

�✏� log(u
b

/w
b

)

�✏+ log(u
a

/w
a

) •

OO

✏✏

oo // �✏� log(u
a

/w
a

)

�✏+ log(u
b

/w
b

)

If ⌧ ⇠ 0, and both summands (of opposite signs) are of the order of �✏ in absolute value, then the
system will move in a very assymetric crab-like way (the same motor will almost always move first);
|| log(u

a

/w
a

)|� | log(u
b

/w
b

)|| measures the assymetry of the system (indeed, it is zero if the motors
are identical).

Eventually, we will set ✏ > 0 expressing the fact that motors prefer to stay together.
Note that if the state space is cyclic, we need translation invariance, as dB implies it; unless we

do not care about dB. But if we use a cyclic TS for convenience, then we still have an energy in the
acyclic cover!

2

There is only one type of cycle (a small square) which one can take in two directions:

x, x+ 1

ua1 // x+ 1, x+ 1

wb1

✏✏
x, x

ub2

OO

x+ 1, x
wa2

oo

x, x+ 1

oo wa1
x+ 1, x+ 1OO

ub1

x, x
✏✏

wb2

x+ 1, x//
ua2

To assign consistently an energy we need (eqvly, a Kolmogorov condition, obtained by equating the
product of the rates in both directions):

log(w
b2/ub2) + log(w

a1/ua1) = log(w
a2/ua2) + log(w

b1/ub1) (1)

Set for i = a, b:
u
i1/wi1 = (u

i

/w
i

) �
u
i2/wi2 = (u

i

/w
i

) ��1

Where � = e�✏. This gives:
log(u

a1/wa1) = �✏+ log(u
a

/w
a

)

log(w
a2/ua2) = �✏� log(u

a

/w
a

)

log(u
b1/wb1) = �✏+ log(u

b

/w
b

)

log(w
b2/ub2) = �✏� log(u

b

/w
b

)

Which in terms of the constraint above is:

�✏� log(u
b

/w
b

)� �✏� log(u
a

/w
a

) = �✏� log(u
a

/w
a

)� �✏� log(u
b

/w
b

)

Which is true indeed. So we have detailed balance. Note also that this assigment is the most general
as it needs 7 parameters (�✏, u

a

/w
a

, u
b

/w
b

are each just one parameter).R: u
i

/w
i

are the ratios for ✏ = 0.
However the assigment is translation-invariant (Noether’s theorem?) only if:

⌧ := log(u
b

/w
b

) + log(u
a

/w
a

) = 0 (2)

In general, H(x+1, x+1)�H(x) = �⌧ , and the sign of ⌧ will determine the global energy lanscape
and direction of motion: if ⌧ > 0, the process will climb up the diagonal (to check!).

We can visualize the energy landscape seen from a diagonal state:

�✏� log(u
b

/w
b

)

�✏+ log(u
a

/w
a

) •

OO

✏✏

oo // �✏� log(u
a

/w
a

)

�✏+ log(u
b

/w
b

)

If ⌧ ⇠ 0, and both summands (of opposite signs) are of the order of �✏ in absolute value, then the
system will move in a very assymetric crab-like way (the same motor will almost always move first);
|| log(u

a

/w
a

)|� | log(u
b

/w
b

)|| measures the assymetry of the system (indeed, it is zero if the motors
are identical).

Eventually, we will set ✏ > 0 expressing the fact that motors prefer to stay together.
Note that if the state space is cyclic, we need translation invariance, as dB implies it; unless we

do not care about dB. But if we use a cyclic TS for convenience, then we still have an energy in the
acyclic cover!

2

There is only one type of cycle (a small square) which one can take in two directions:

x, x+ 1

ua1 // x+ 1, x+ 1

wb1

✏✏
x, x

ub2

OO

x+ 1, x
wa2

oo

x, x+ 1

oo wa1
x+ 1, x+ 1OO

ub1

x, x
✏✏

wb2

x+ 1, x//
ua2

To assign consistently an energy we need (eqvly, a Kolmogorov condition, obtained by equating the
product of the rates in both directions):

log(w
b2/ub2) + log(w

a1/ua1) = log(w
a2/ua2) + log(w

b1/ub1) (1)

Set for i = a, b:
u
i1/wi1 = (u

i

/w
i

) �
u
i2/wi2 = (u

i

/w
i

) ��1

Where � = e�✏. This gives:
log(u

a1/wa1) = �✏+ log(u
a

/w
a

)

log(w
a2/ua2) = �✏� log(u

a

/w
a

)

log(u
b1/wb1) = �✏+ log(u

b

/w
b

)

log(w
b2/ub2) = �✏� log(u

b

/w
b

)

Which in terms of the constraint above is:

�✏� log(u
b

/w
b

)� �✏� log(u
a

/w
a

) = �✏� log(u
a

/w
a

)� �✏� log(u
b

/w
b

)

Which is true indeed. So we have detailed balance. Note also that this assigment is the most general
as it needs 7 parameters (�✏, u

a

/w
a

, u
b

/w
b

are each just one parameter).R: u
i

/w
i

are the ratios for ✏ = 0.
However the assigment is translation-invariant (Noether’s theorem?) only if:

⌧ := log(u
b

/w
b

) + log(u
a

/w
a

) = 0 (2)

In general, H(x+1, x+1)�H(x) = �⌧ , and the sign of ⌧ will determine the global energy lanscape
and direction of motion: if ⌧ > 0, the process will climb up the diagonal (to check!).

We can visualize the energy landscape seen from a diagonal state:

�✏� log(u
b

/w
b

)

�✏+ log(u
a

/w
a

) •

OO

✏✏

oo // �✏� log(u
a

/w
a

)

�✏+ log(u
b

/w
b

)

If ⌧ ⇠ 0, and both summands (of opposite signs) are of the order of �✏ in absolute value, then the
system will move in a very assymetric crab-like way (the same motor will almost always move first);
|| log(u

a

/w
a

)|� | log(u
b

/w
b

)|| measures the assymetry of the system (indeed, it is zero if the motors
are identical).

Eventually, we will set ✏ > 0 expressing the fact that motors prefer to stay together.
Note that if the state space is cyclic, we need translation invariance, as dB implies it; unless we

do not care about dB. But if we use a cyclic TS for convenience, then we still have an energy in the
acyclic cover!

2

There is only one type of cycle (a small square) which one can take in two directions:

x, x+ 1

ua1 // x+ 1, x+ 1

wb1

✏✏
x, x

ub2

OO

x+ 1, x
wa2

oo

x, x+ 1

oo wa1
x+ 1, x+ 1OO

ub1

x, x
✏✏

wb2

x+ 1, x//
ua2

To assign consistently an energy we need (eqvly, a Kolmogorov condition, obtained by equating the
product of the rates in both directions):

log(w
b2/ub2) + log(w

a1/ua1) = log(w
a2/ua2) + log(w

b1/ub1) (1)

Set for i = a, b:
u
i1/wi1 = (u

i

/w
i

) �
u
i2/wi2 = (u

i

/w
i

) ��1

Where � = e�✏. This gives:
log(u

a1/wa1) = �✏+ log(u
a

/w
a

)

log(w
a2/ua2) = �✏� log(u

a

/w
a

)

log(u
b1/wb1) = �✏+ log(u

b

/w
b

)

log(w
b2/ub2) = �✏� log(u

b

/w
b

)

Which in terms of the constraint above is:

�✏� log(u
b

/w
b

)� �✏� log(u
a

/w
a

) = �✏� log(u
a

/w
a

)� �✏� log(u
b

/w
b

)

Which is true indeed. So we have detailed balance. Note also that this assigment is the most general
as it needs 7 parameters (�✏, u

a

/w
a

, u
b

/w
b

are each just one parameter).R: u
i

/w
i

are the ratios for ✏ = 0.
However the assigment is translation-invariant (Noether’s theorem?) only if:

⌧ := log(u
b

/w
b

) + log(u
a

/w
a

) = 0 (2)

In general, H(x+1, x+1)�H(x) = �⌧ , and the sign of ⌧ will determine the global energy lanscape
and direction of motion: if ⌧ > 0, the process will climb up the diagonal (to check!).

We can visualize the energy landscape seen from a diagonal state:

�✏� log(u
b

/w
b

)

�✏+ log(u
a

/w
a

) •

OO

✏✏

oo // �✏� log(u
a

/w
a

)

�✏+ log(u
b

/w
b

)

If ⌧ ⇠ 0, and both summands (of opposite signs) are of the order of �✏ in absolute value, then the
system will move in a very assymetric crab-like way (the same motor will almost always move first);
|| log(u

a

/w
a

)|� | log(u
b

/w
b

)|| measures the assymetry of the system (indeed, it is zero if the motors
are identical).

Eventually, we will set ✏ > 0 expressing the fact that motors prefer to stay together.
Note that if the state space is cyclic, we need translation invariance, as dB implies it; unless we

do not care about dB. But if we use a cyclic TS for convenience, then we still have an energy in the
acyclic cover!

2

There is only one type of cycle (a small square) which one can take in two directions:

x, x+ 1

ua1 // x+ 1, x+ 1

wb1

✏✏
x, x

ub2

OO

x+ 1, x
wa2

oo

x, x+ 1

oo wa1
x+ 1, x+ 1OO

ub1

x, x
✏✏

wb2

x+ 1, x//
ua2

To assign consistently an energy we need (eqvly, a Kolmogorov condition, obtained by equating the
product of the rates in both directions):

log(w
b2/ub2) + log(w

a1/ua1) = log(w
a2/ua2) + log(w

b1/ub1) (1)

Set for i = a, b:
u
i1/wi1 = (u

i

/w
i

) �
u
i2/wi2 = (u

i

/w
i

) ��1

Where � = e�✏. This gives:
log(u

a1/wa1) = �✏+ log(u
a

/w
a

)

log(w
a2/ua2) = �✏� log(u

a

/w
a

)

log(u
b1/wb1) = �✏+ log(u

b

/w
b

)

log(w
b2/ub2) = �✏� log(u

b

/w
b

)

Which in terms of the constraint above is:

�✏� log(u
b

/w
b

)� �✏� log(u
a

/w
a

) = �✏� log(u
a

/w
a

)� �✏� log(u
b

/w
b

)

Which is true indeed. So we have detailed balance. Note also that this assigment is the most general
as it needs 7 parameters (�✏, u

a

/w
a

, u
b

/w
b

are each just one parameter).R: u
i

/w
i

are the ratios for ✏ = 0.
However the assigment is translation-invariant (Noether’s theorem?) only if:

⌧ := log(u
b

/w
b

) + log(u
a

/w
a

) = 0 (2)

In general, H(x+1, x+1)�H(x) = �⌧ , and the sign of ⌧ will determine the global energy lanscape
and direction of motion: if ⌧ > 0, the process will climb up the diagonal (to check!).

We can visualize the energy landscape seen from a diagonal state:

�✏� log(u
b

/w
b

)

�✏+ log(u
a

/w
a

) •

OO

✏✏

oo // �✏� log(u
a

/w
a

)

�✏+ log(u
b

/w
b

)

If ⌧ ⇠ 0, and both summands (of opposite signs) are of the order of �✏ in absolute value, then the
system will move in a very assymetric crab-like way (the same motor will almost always move first);
|| log(u

a

/w
a

)|� | log(u
b

/w
b

)|| measures the assymetry of the system (indeed, it is zero if the motors
are identical).

Eventually, we will set ✏ > 0 expressing the fact that motors prefer to stay together.
Note that if the state space is cyclic, we need translation invariance, as dB implies it; unless we

do not care about dB. But if we use a cyclic TS for convenience, then we still have an energy in the
acyclic cover!

2

kF,E

kB,C

kF,C

kB,E

Fig. 3: Stukalin model of a walking DNA bimotor.

A Example: Two-legged DNA walker

In this section we show how to use our approach to develop the MFA of an
example from statistical physics [28]. To define our model it is most natural to
use typed graphs to which our MFA method trivially extends. Let T be some
graph with VT and ET sets of node and edge types, respectively. Then any
morphism f : G ! T assigns types from VT and ET to the nodes and edges,
respectively, of G. This is illustrated in Fig. 1b, where nodes and edges of the
domain (the left-hand graph) are assigned colors corresponding to unique nodes
and edges of the codomain (the right-hand graph). The collection of morphisms
{fi : Gi ! T}i2I with common codomain T are the objects of the slice category
of typed graphsGrph/T , with morphisms � : fi ! fj (i, j 2 I) being morphisms
in Grph that preserve types, that is, fi = fj ��. All the properties of graphs
presented thus far carry over straightforwardly to typed graphs.

The model describes the behavior of a protein complex walking the DNA
double helix. The walker contains two special proteins – the legs – each binding a
di↵erent DNA strand. The legs are able to move along the strands independently,
with the restriction that they can be at most m DNA segments apart.

Following Ref. [28] we are interested in computing the velocity at which
a two-legged walker moves across the double helix when m = 1. All possible
transitions can be compactly represented by the four rules shown in Fig. 3,
where the gray node represents the walker and white nodes are DNA segments.
The directionality of the DNA double helix is represented transparently by the
directionality of the edge that binds two consecutive DNA segments. The rules
have been labeled by two subscripts: the first tells us if the leg that changes
position is moving forward (F) or backward (B), while the second states whether
the distance between the two legs is being extended (E) or compressed (C).

The combined mean velocity of all two-legged walkers in the system can be
computed from the rates at which the walkers move forward and backward and
the expected numbers of moving walkers:

Ep
dx

dt
=

1

2
(kF,E Ep([G1]) + kF,C Ep([G2])� kB,E Ep([G3])� kB,C Ep([G2])) ,

where x represents the position of the center of mass of the motor on the DNA
chain, and G1, G2 and G3 are defined as follows:

G1 := G2 := G3 :=

Incidentally, if there is only a single motor in the system, the combined veloc-
ity is just the velocity of that motor. In that case, the observables [Gi](X(t))

16

PRL 2005 – Stukalin et al.

d

dt
= kF,E �kB,C �kF,C +kB,E

d

dt
= �kF,E +kB,C +kF,C �kB,E

d

dt
= kF,E �kB,C �kF,C + . . .

d

dt
= �kF,E +kB,C +kF,C � . . .

d

dt
= . . .

Finally, if we assume the DNA chain to be infinite or circular, we can avoid
boundary conditions and replace the left and right-hand observables below by
the simpler observable in the middle.

= =

By doing so, we obtain the following finite GREG that describes the expected
dynamics of our model, from which the ODE for the mean velocity can be
obtained as well:

d

dt
= kF,E �kB,C �kF,C +kB,E

d

dt
= �kF,E +kB,C +kF,C �kB,E

B Definitions and properties of selected (co-)limits

Algebraic graph rewriting heavily relies on certain category-theoretical limits
and colimits. We give definitions of the relevant (co-)limits here along with some
of their basic properties. Among these, (final) pullback complements are prob-
ably the least widely known, and we refer the interested reader to [9,4] for a
more thorough treatment. For a general introduction to category theory, we
recommend [2] as one of many excellent text books on the subject.

Q

P Y

X Z

g2

g1

u

p1

p2 f2

f1

(24)

Z X

Y P

Q

f1

f2 i2 g2

i1

g1

u

(25)

P

X Y

W Z

Q

f 0
1

g0
1

p

f1
g1 f2

g2
u

g0
2

(26)

18

no- or cyclic-boundary invariants

minimal gluings/minimal unions

Fig. 4: The poset of minimal gluings of G2 and G1.

are Bernoulli-distributed random variables, and the expectations Ep([Gi]) cor-
respond to the probabilities of finding the motor in the configuration Gi at any
given time. Thus by constructing the GREGs for these observables, we can com-
pute the mean velocity of a single motor in the system. The remainder of this
section is dedicated to deriving these GREGs.

To apply our construction, we need to find all possible minimal gluings of
these three observables and the left and right-hand sides of each rule. For ex-
ample, Fig. 4 shows the tips of the minimal gluings of G2 and the LHS of the
forward-extension rule. The tips are partially ordered by the (non-monic) graph
morphisms among them.

If we suppose that our state contains only walkers with two legs, then thirteen
of the minimal gluings in Fig. 4 are unreachable, because no rule can create addi-
tional legs. If we further suppose the backbone to be simple and non-branching,
we eliminate another three gluings. Finally, if we follow Ref. [28] and suppose
that there is only one motor, the remaining four gluings are eliminated. We can
reduce the number of equations in the GREG by removing terms corresponding
to such “unreachable” observables:

17

d

dt
= kF,E �kB,C �kF,C +kB,E

d

dt
= �kF,E +kB,C +kF,C �kB,E

d

dt
= kF,E �kB,C �kF,C + . . .

d

dt
= �kF,E +kB,C +kF,C � . . .

d

dt
= . . .

Finally, if we assume the DNA chain to be infinite or circular, we can avoid
boundary conditions and replace the left and right-hand observables below by
the simpler observable in the middle.

= =

By doing so, we obtain the following finite GREG that describes the expected
dynamics of our model, from which the ODE for the mean velocity can be
obtained as well:

d

dt
= kF,E �kB,C �kF,C +kB,E

d

dt
= �kF,E +kB,C +kF,C �kB,E

B Definitions and properties of selected (co-)limits

Algebraic graph rewriting heavily relies on certain category-theoretical limits
and colimits. We give definitions of the relevant (co-)limits here along with some
of their basic properties. Among these, (final) pullback complements are prob-
ably the least widely known, and we refer the interested reader to [9,4] for a
more thorough treatment. For a general introduction to category theory, we
recommend [2] as one of many excellent text books on the subject.

Q

P Y

X Z

g2

g1

u

p1

p2 f2

f1

(24)

Z X

Y P

Q

f1

f2 i2 g2

i1

g1

u

(25)

P

X Y

W Z

Q

f 0
1

g0
1

p

f1
g1 f2

g2
u

g0
2

(26)

18

infinite ODE

d

dt
= kF,E �kB,C �kF,C +kB,E

d

dt
= �kF,E +kB,C +kF,C �kB,E

d

dt
= kF,E �kB,C �kF,C + . . .

d

dt
= �kF,E +kB,C +kF,C � . . .

d

dt
= . . .

Finally, if we assume the DNA chain to be infinite or circular, we can avoid
boundary conditions and replace the left and right-hand observables below by
the simpler observable in the middle.

= =

By doing so, we obtain the following finite GREG that describes the expected
dynamics of our model, from which the ODE for the mean velocity can be
obtained as well:

d

dt
= kF,E �kB,C �kF,C +kB,E

d

dt
= �kF,E +kB,C +kF,C �kB,E

B Definitions and properties of selected (co-)limits

Algebraic graph rewriting heavily relies on certain category-theoretical limits
and colimits. We give definitions of the relevant (co-)limits here along with some
of their basic properties. Among these, (final) pullback complements are prob-
ably the least widely known, and we refer the interested reader to [9,4] for a
more thorough treatment. For a general introduction to category theory, we
recommend [2] as one of many excellent text books on the subject.

Q

P Y

X Z

g2

g1

u

p1

p2 f2

f1

(24)

Z X

Y P

Q

f1

f2 i2 g2

i1

g1

u

(25)

P

X Y

W Z

Q

f 0
1

g0
1

p

f1
g1 f2

g2
u

g0
2

(26)

18

d

dt
= kF,E �kB,C �kF,C +kB,E

d

dt
= �kF,E +kB,C +kF,C �kB,E

d

dt
= kF,E �kB,C �kF,C + . . .

d

dt
= �kF,E +kB,C +kF,C � . . .

d

dt
= . . .

Finally, if we assume the DNA chain to be infinite or circular, we can avoid
boundary conditions and replace the left and right-hand observables below by
the simpler observable in the middle.

= =

By doing so, we obtain the following finite GREG that describes the expected
dynamics of our model, from which the ODE for the mean velocity can be
obtained as well:

d

dt
= kF,E �kB,C �kF,C +kB,E

d

dt
= �kF,E +kB,C +kF,C �kB,E

B Definitions and properties of selected (co-)limits

Algebraic graph rewriting heavily relies on certain category-theoretical limits
and colimits. We give definitions of the relevant (co-)limits here along with some
of their basic properties. Among these, (final) pullback complements are prob-
ably the least widely known, and we refer the interested reader to [9,4] for a
more thorough treatment. For a general introduction to category theory, we
recommend [2] as one of many excellent text books on the subject.

Q

P Y

X Z

g2

g1

u

p1

p2 f2

f1

(24)

Z X

Y P

Q

f1

f2 i2 g2

i1

g1

u

(25)

P

X Y

W Z

Q

f 0
1

g0
1

p

f1
g1 f2

g2
u

g0
2

(26)

18

The Stukalin MFA equations

no- or cyclic-boundary invariants

Figure 3: The OU SDE above, starting at 0, 0 and run with µ1 = µ2 = 0, ✓1 = ✓2 = 1.0, ⌃ = I ,
e = 1000, dt = 0.05; the concentration on y = x is noticeable on this longer time.

We can reinject this into the expression for X1 with ✓� = 0:

dX1 = µdt� ✓+1V0N (0,
1� e�2↵t

2↵
)dt+ �dB1

t

E(dX1) = µdt+ 1
2✓+

r
1� e�2↵t

4↵⇡
dt

with

E(1N�0N (0,�)) =
1

�
p
2⇡

R1
0 xe�x

2
/2�2

dx =

1

�
p
2⇡

R1
0 (��2

)(e�x

2
/2�2

)

0dx =

�p
2⇡

So we have a mean velocity boost of:

1
4

r
✓+(1� e�2✓+t

)

⇡
⇠ 1

4

r
✓+
⇡

µ and ✓ should be related in the model?

5.2.2 A model of bimotors using OU
We can write an OU process as a scaling limit of the bi-motor process truncated at offset k. In principle
we can find the fragmentation and the expression for V for the k case (even if it might be difficult to
do), and compare this to the drift. (What I like in the ctMC formulation is that the drift is not explicit
in the jump process; the separation is only made explicit by the scaling.)

The interest of having an SDE to describe repair is unclear at the moment, but we could perhaps
have a better fit - or a more stylish one? It would also be fun to incorporate a chi-induced switch

11

diffusion limits – here a 2d OU

same thing with SDEs?

5 OU as a continuous limit model?
OU(µ, ✓,�) in 1d is a solution to the following SDE:

dX
t

= �✓(X
t

� µ)dt+ � dB
t

(3)

with parameters µ the mean, � the variance of the noise, and ✓ the strength of the force pulling back
to the mean. As we will see below, the asymptotic distribution is N (µ,�2/2✓); hence differently from
the Brownian, the OU has bounded variance.3

(Apparently the case where the mean and pull depend on t can also be solved.)

5.0.1 Solution of 1d OU
Consider the case where µ = 0:

dX
t

= �✓X
t

dt+ � dB
t

We have:
d(e✓tX

t

) = ✓e✓tX
t

dt+ e✓tdX
t

= �e✓t dB
t

Hence:
��1

(e✓tX
t

�X0) =

R
t

0 e✓s dB
s

and

X
t

= e�✓tX0 + �

Z
t

0
e�✓(t�s) dB

s

(4)

And:

E(X
t

) = e�✓tX0 (5)

Using Eq. 4 and the lemma below:

��2e2✓tV (X
t

) =

R
t

0 e2✓s ds =

e2✓t � 1

2✓

So:

V (X
t

) =

�2

2✓
(1� e�2✓t

) (6)

Lemma 1
V (

R
t

0 f(s) dB
s

) := E((

R
t

0 f(s) dB
s

)

2
) =

R
t

0 f2
(s) ds

Given t and n, write t
i

:= it/n:

E((

R
t

0 f(s) dB
s

)

2
) ⇠ E([

P
0i<n

f(t
i

)(B(t
i+1)�B(t

i

))]

2
) by def of Ito stochastic integration

=

P
0i<n

f(t
i

)

2E([B(t
i+1)�B(t

i

)]

2
) B

t

has independent increments
=

P
0i<n

f(t
i

)

2t/n B
t

�B
s

⇠ N (0, t� s)

⇠
R
t

0 f2
(s) ds

⇤
3In this class 1, a vector-valued OU is defined in general as dXt = MXt dt+ ⌃

1
2 dBt where M is affine, as opposed to

the general Ito diffusion dXt = µ(Xt) dt+ �(Xt) dBt .

7

As OU is a Gaussian process, we can piece together the two results above and deduce that the large
time limit is ⇠ N (0,�2/2✓). When ✓ ! 0, X

t

! �B
t

and we lose the invariant probability.
Let’s compute the covariance at time s < t (again with µ = 0):

��2E(X
t

X
s

) = E(

R
t

0 e�✓(t�u) dB(u) ·
R
s

0 e�✓(s�v) dB(v))
⇠ E(

P
n

0 e
�✓(t�ti)

(B(t
i+1)�B(t

i

)) ·
P

m

0 e�✓(s�sj)
(B(s

j+1)�B(s
j

)))

=

P
n,m

0,0 e�✓(t+s�ti�sj)E[(B(t
i+1)�B(t

i

))(B(s
j+1)�B(s

j

))]

=

P
m

0 e�✓(t+s�2sj)E[(B(s
j+1)�B(s

j

))

2
]

=

P
m

0 e�✓(t+s�2sj)V [B(s
j+1 � s

j

)]

=

P
m

0 e�✓(t+s�2sj)
(s

j+1 � s
j

)

⇠
R
s

0 e�✓(t+s�2v)dv
= e�✓(t+s)

R
s

0 e2✓vdv
= 1/2✓e�✓(t+s)

(e2✓s � 1)

= 1/2✓(e�✓(t�s) � e�✓(t+s)
)

Hence:

E(X
t

X
s

) = �2/2✓(e�✓(t�s) � e�✓(t+s)
) (7)

For s = t, we find the expression in the preceding Lemma, which is reassuring. If we could prove
that X

t

is Gaussian (which it is), E(X
t

X
s

) would be enough to reconstruct it completely. More here.
Compare with the covariance function given in Chris Williams’ book.

5.1 exponential Bt

Just for fun and another raw Ito calculus example (the way we Taylor expand the random terms in
estimating the increments below), we solve the following linear SDE defining the geometric Brownian
motion:

dS
t

= !S
t

dt+ �S
t

dB
t

(8)

We look for a solution of the form S
t

= S0e
at+bBt :

S
t+�t

� S
t

= S
t

(ea�t+b(Bt+�t�Bt) � 1)

= S
t

((1 + a�t)(1 + b
p
�tN +

b

2

2 �tN 2
)� 1 + o(�t))

⇠ S
t

((

b

2

2 E(N 2
) + a)�t+ b

p
�tN)

and as V (N) = 1, with N = N (0, 1) we get the SDE above provided ! =

b

2

2 + a, and b = �; and
it is a strong solution whatever that means. The principle of the expansion is that the �t terms only
contribute drift, as the noise is asymptotically 0; it is all about the scaling (see basics.tex)!

If ! = 0, we get a martingale (aka exponential martingale associated to B
t

, see Comets 2003.tex);
and we see clearly it is martingale. We see that the random part can generate drift as well.

5.2 2d OU
Given ✓1, ✓2 > 0, we could pick a simple juxtaposition of 2 1d OUs:

dX1 = �✓1(X1 � µ1)dt+ dB1
t

dX2 = �✓2(X2 � µ2)dt+ dB2
t

8

Figure 2: The OU SDE above, starting at 0, 0 and run with µ1 = µ2 = 0, ✓1 = ✓2 = 1.0, ⌃ = I ,
e = 1000, dt = 0.01

where ↵ = ✓(V) + ✓(�V) which we suppose constant. This assumption expresses the fact that the
offset process is an OU(↵,), eqvly that the force de rappel is symmetric in how the offset is realized.
But unlike the case above, we can allow a dependence in the offset, eg:

✓(V) = ✓�1V�0 + ✓+1V0

(compare with assymetric wolf kicks of Vincent_Guoli2.tex)
Suppose to simplify that V0 = 0,

p
2� = 1. Then (see solution of 1d OU Eq. 4):

V (t) = e�↵t

R
t

0 dB
s

e↵s

We can evaluate the integral:
R
t

0 dB
s

e↵s ⇠
p
�t

P
t/�t

0 e↵i�tN (0, 1)

⇠
p
�t

P
t/�t

0 N (0, e2↵i�t

)

⇠
p
�tN (0,

P
t/�t

0 e2↵i�t

) check we can apply Lindenberg CLT

⇠ N (0,
e2↵t � 1

2↵
)

where the last step uses:
P

t/�t

0 e2↵i�t

=

P
t/�t

0 e2↵�ti

=

e2↵t � 1

e2↵�t � 1

⇠ e2↵t � 1

2↵�t

whence:4

V (t) = N (0,
1� e�2↵t

2↵
)

4This computation should be at the end of 1d OU; it agrees with this wikipedia page.

10

Instead, we write an OU where the process reverts to the diagonal X1 = X2:

dX
t

=

✓
µ1

µ2

◆
dt+

✓
�✓1 ✓1
✓2 �✓2

◆
X

t

dt+ ⌃ dB
t

(9)

R: Note that the kernel of the reverting force is by construction X1 = X2; we could work with a
general matrix of rank 1 - or not of full rank, and talk about ‘reversion’ to a subspace.

It is unclear how the drift µ will compete with the reverting force ✓. To understand the situation,
we can first have a look at the deterministic approximation:

˙X1 = µ1 � ✓1(X1 �X2)

˙X2 = µ2 � ✓2(X2 �X1)

This has a (probably unstable) fixed point X2(1) = X1(1)� µ1/✓1 provided µ1/✓1 + µ2/✓2 = 0. If
we write ⌫

i

= ✓�1
i

/(
P

✓�1
i

), the condition for a fixed point is ⌫ · µ = 0. As we will see shortly, the
system escapes to 1 when the condition is not satisfied.

With a change of variables U = ⌫ ·X , V = X1 �X2, in the ODE above, we get:

˙U = ⌫ · µ
˙V = µ1 � µ2 � (✓1 + ✓2)V =: µ� ✓V

with solution:
U = (⌫ · µ)t+ U0

V = µ/✓(1� e�✓t

) + V0e
�✓t

and asymptotically the lag becomes V1 = µ/✓ := (µ1 � µ2)/(✓1 + ✓2); so the lag remains, weighted
by ✓ where both pull forces cooperate additively (which means there is less dispersion than if the rv’s
were just juxtaposed as in the opening SDE) .

We can turn the full SDE:

d(U
t

= ⌫ ·X
t

) := ⌫ · dX
t

= ⌫ · µdt+ ⌫T⌃ dB
t

d(V
t

) = (µ� ✓V)dt+ (�11 � �21)dB1 + (�12 � �22)dB2

= �✓(V � µ/✓)dt+ [(�11 � �21)
2
+ (�12 � �22)

2
]

1
2 dB

Hence ⌫·X
t

is a simple Brownian with linear drift, and the lag vector V is given by a 1d OU(µ/✓, ✓,⌃0
).

With ⌃

0 derived from the basic formula for linear combinations of Gaussian vectors.
But the processes U , V are not independent (a priori), so I am not sure how useful the information

is. It is interesting to note that the variance of the normal vector decreases.N: verify that we find no increase in velocity in this case; or in the case below if deterministic!

5.2.1 2d OU with piecewise constant kicks
Consider the following (symmetric) variation on the above system:

dX1 = µdt� ✓(V)V dt+ �dB1
t

dX2 = µdt� ✓(�V)(�V)dt+ �dB2
t

with V = X1 �X2 as above, and ✓(V) � 0.
We get:

dV = �V (✓(V) + ✓(�V))dt+ �(dB1
t

� dB2
t

)

= �↵V dt+
p
2�dB

t

9

Figure 3: The OU SDE above, starting at 0, 0 and run with µ1 = µ2 = 0, ✓1 = ✓2 = 1.0, ⌃ = I ,
e = 1000, dt = 0.05; the concentration on y = x is noticeable on this longer time.

We can reinject this into the expression for X1 with ✓� = 0:

dX1 = µdt� ✓+1V0N (0,
1� e�2↵t

2↵
)dt+ �dB1

t

E(dX1) = µdt+ 1
2✓+

r
1� e�2↵t

4↵⇡
dt

with

E(1N�0N (0,�)) =
1

�
p
2⇡

R1
0 xe�x

2
/2�2

dx =

1

�
p
2⇡

R1
0 (��2

)(e�x

2
/2�2

)

0dx =

�p
2⇡

So we have a mean velocity boost of:

1
4

r
✓+(1� e�2✓+t

)

⇡
⇠ 1

4

r
✓+
⇡

µ and ✓ should be related in the model?

5.2.2 A model of bimotors using OU
We can write an OU process as a scaling limit of the bi-motor process truncated at offset k. In principle
we can find the fragmentation and the expression for V for the k case (even if it might be difficult to
do), and compare this to the drift. (What I like in the ctMC formulation is that the drift is not explicit
in the jump process; the separation is only made explicit by the scaling.)

The interest of having an SDE to describe repair is unclear at the moment, but we could perhaps
have a better fit - or a more stylish one? It would also be fun to incorporate a chi-induced switch

11

