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Modeling signaling pathway
• Signaling pathway:

-- A cell measures (i.e. checks thresholds, integrates, compares) the
concentration of some proteins in order to make decisions.

-- Many proteins (enzymes, receptors, transport molecules) are in-
volved.

-- They interact by binding with each other and activating each other.
• rule-based models:

-- A site graph-based rewrite language.
-- Description level matches with biologists’ observation and manipu-

lation level.
• Static analysis:

We propose some static analysis tools in order to:
-- help the design of rule-based models;
-- compute (abstract) the properties of rule-based models.

Jérôme Feret 4 2014, December the 12th



A single story
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A concurrent story
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Overshoot

When we combine the two stories. . .

. . . we get an overshoot.
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A chemical species
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E(r!1), R(l!1,r!2), R(r!2,l!3), E(r!3)
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A Unbinding/Binding Rule
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E(r), R(l,r)←→ E(r!1), R(l!1,r)
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Internal state
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R(Y1∼u,l!1), E(r!1)←→ R(Y1∼p,l!1), E(r!1)
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Don’t care, Don’t write
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A contextual rule
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R(Y1∼u,r!_)→ R(Y1∼p,r)
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Creation/Suppression
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R(r)→ R(r!1), R(r!1,l,Y1)

RR Rrr r

R(r!1), R(r!1)→ R(r)
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Early EGF example

Ligand-receptor binding, receptor dimerisation, rtk x-phosph, & de-phosph
 01: R(l,r), E(r) <-> R(l1,r), E(r1)
 02: R(l1,r), R(l2,r) <-> R(l1,r3), R(l2,r3)
 03: R(r1,Y68) -> R(r1,Y68p)
       R(Y68p) -> R(Y68) 
 04: R(r1,Y48) -> R(r1,Y48p)
       R(Y48p) -> R(Y48) 

Sh x-phosph & de-phosph
 14: R(r2,Y48p1), Sh(π1,Y7) ->  R(r2,Y48p1), Sh(π1,Y7p)
 ??: Sh(π1,Y7p)  ->  Sh(π1,Y7)
 16: Sh(π,Y7p) -> Sh(π,Y7)

Y68-G binding
 09: R(Y68p),  G(a,b)  <-> R(Y68p1)+G(a1,b)
 11: R(Y68p),  G(a,b2) <-> R(Y68p1)+G(a1,b2)

egf rules 1

receptor type: R(l,r,Y68,Y48)

refined from 
R(Y68p)+G(a)<->R(Y68p1)+G(a1)

refined from 
Sh(Y7p)-> Sh(Y7)

protein shorthands: E:=egf, R:=egfr, So:=Sos,Sh:=Sh,G:=grb2
site abbreviations & fusions: Y68:=Y1068, Y48:=Y1148/73, Y7:=Y317, π:=PTB/SH2
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Early EGF example

G-So binding
 10: R(Y68p1), G(a1,b), So(d) <-> R(Y68p1), G(a1,b2), So(d2)
 12: G(a,b), So(d)   <->  G(a,b1), So(d1)
 22: Sh(π,Y7p2), G(a2,b), So(d)      <->  Sh(π,Y7p2), G(a2,b1), S(d1)
 19: Sh(π1,Y7p2), G(a2,b), So(d)   <->  Sh(π1,Y7p2), G(a2,b1), S(d1) 

Y48-Sh binding
13: R(Y48p), Sh(π,Y7)  <-> R(Y48p1), Sh(π1,Y7) 
15: R(Y48p), Sh(π,Y7p) <-> R(Y48p1), Sh(π1,Y7p)
18: R(Y48p), Sh(π,Y7p1), G(a1,b)  <-> R(Y48p2), Sh(π2,Y7p1), G(a1,b)
20: R(Y48p), Sh(π,Y7p1), G(a1,b3), S(d3) <-> R(Y48p2), Sh(π2,Y7p1), G(a1,b3), S(d3)

Sh-G binding
17: R(Y48p1), Sh(π1,Y7p), G(a,b)   <-> R(Y48p1), Sh(π1,Y7p2), G(a2,b)
21: Sh(π,Y7p), G(a,b)  <->  Sh(π,Y7p1), G(a1,b)
23: Sh(π,Y7p), G(a,b2) <-> Sh(π,Y7p1), G(a1,b2)
24: R(Y48p1), Sh(π1,Y7p), G(a,b3), S(d3)  <-> R(Y48p1), Sh(π1,Y7p2), G(a2, b3), S(d3)

egf rules 2

refined from 
R(Y48p)+Sh(π)<->R(Y48p1)+Sh(π1)

why not simply G(b3)??

refined from 
Sh(π), G(a)<->Sh(π1), G(a1)

interface note: highlight 
the interacting parts

refined from 
So(d)+G(b)<->So(d1)+G(b1)
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Properties of interest

1. Show the absence of modelling errors:

• detect dead rules;
• detect overlapping rules;
• detect non exhaustive interactions;
• detect rules with ambiguous molecularity.

2. Get idiomatic description of the networks:

• capture causality;
• capture potential interactions;
• capture relationships between site states.

(simplify rules)

3. Allow fast simulation:

• capture accurate approximation of the wake-up relation.
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Embedding
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We write ZCΦ Z ′ iff:
• Φ is a site-graph morphism:

-- i is less specific than Φ(i),
-- if there is a link between (i, s) and (i ′, s ′),

then there is a link between (Φ(i), s) and (Φ(i ′), s ′).
• Φ is an into map (injective):

-- Φ(i) = Φ(i ′) implies that i = i ′.
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Set of reachable chemical species

Let R = {Ri} be a set of rules.
Let Species be the set of all chemical species (C, c1, c ′1, . . . , ck, c

′
k, . . . ∈ Species).

Let Species0 be the set of initial .
We write:

c1, . . . , cm →Rk c
′
1, . . . , c

′
n

whenever:

1. there is an embedding of the lhs of Rk in the solution c1, . . . , cm;

2. the (embedding/rule) produces the solution c ′1, . . . , c
′
n.

We are interested in Speciesω the set of all chemical species that can be
constructed in one or several applications of rules in R starting from the set
Species0 of initial chemical species.

(We do not care about the number of occurrences of each chemical species).
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Inductive definition

We define the mapping F as follows:

F :


℘(Species) → ℘(Species)

X 7→ X ∪

{
c ′j

∣∣∣∣ ∃Rk ∈ R, c1, . . . , cm ∈ X,c1, . . . , cm →Rk c
′
1, . . . , c

′
n

}
.

We define the set of reachable chemical species as follows:

Speciesω =
⋃{

Fn(Species0)
∣∣ n ∈ N

}
.
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Local views
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α({R(Y1∼u,l!1), E(r!1)}) = {R(Y1∼u,l!r.E); E(r!l.R)}.
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Galois connexion

• Let Local_view be the set of all local views.

• Let α ∈ ℘(Species)→ ℘(Local_view) be the function that maps any set
of chemical species into the set of their local views.

• Let γ ∈ ℘(Local_view) → ℘(Species) be the function that maps any
set of local views into the set of chemical species that can be built with
these local views.

• The pair (α, γ) forms a Galois connexion:

℘(Species) −−→←−−
α

γ

℘(Local_view).
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γ ◦ α

γ ◦ α is an upper closure operator: it abstracts away some information.

Guess the image of the following set of chemical species ?

{ }a

R
rl

Jérôme Feret 24 2014, December the 12th



α ◦ γ

α ◦ γ is a lower closure operator: it simplifies (or reduces) constraints.

Guess the image of the following set of local views ?

{ }R
a

; a

S
rl

l.r.

l

r.

r

l.R RR R
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One more question

α ◦ γ is a lower closure operator: it simplifies (or reduces) constraints.

Guess the image of the following set of local views ?

{ }R
a

; a

R
r

l. R RR
l l

r. l.

r
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Abstract rules
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Abstract counterpart to F

We define F] as:

F] :


℘(Local_view) → ℘(Local_view)

X 7→ X ∪

{
lv ′j

∣∣∣∣ ∃Rk ∈ R, lv1, . . . , lvm ∈ X,lv1, . . . , lvm →]
Rk

lv ′1, . . . , lv
′
n

}
.

Theorem 1 (soundness) It follows that:

1. both lfpx0F and lfpα(x0)F
] exist,

2. lfpx0F ⊆ γ(lfpα(x0)F
]).
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Concretization
For any X ∈ ℘(Local_view), γ(X) is given by a rewrite system:
For any lv ∈ X, we add the following rules:
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I and semi-links are non-terminal.
I is the initial symbol.
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Pumping lemma

• We use this rewrite system to enumerate the chemical species of γ(X).
• There are two cases:

1. either there is a finite number of rewrite sequences;
2. or we encounter cyclic derivations

i.e. an open chemical species with a cycle of the following form:
R.l-r.E ... R.l-r.E

can be built.
• We only enumerate chemical species that are reached through an acyclic

rewriting computation.
• It turns out that: if X ∈ α(℘(Species)) then each rewrite sequence is the

prefix of a terminating rewrite sequence.
(So there is an unbounded number of species if, and only if,
there is an unbounded number of rewrite sequences.)
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Examples

1. Make the demo for egf
2. Make the demo for fgf
3. Make the demo for Global invariants
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Which information is abstracted away ?

Our analysis is exact (no false positive):

• for EGF cascade (356 chemical species);

• for FGF cascade (79080 chemical species);

We know how to build systems with false positives. . .
. . .but they seem to be biologically meaningless.

This raises the following issues:

• Can we characterize which information is abstracted away ?

• Which is the form of the systems, for which we have no false positive ?

• Do we learn something about the biological systems that we describe ?
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Local set of chemical species

Definition 1 We say that a set X ∈ ℘(Species) of chemical species is local if
and only if X ∈ γ(℘(Local_view)).

(ie. a set X is local if and only if X is exactly the set of all the species that are
generated by a given set of local views.)
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Swapping relation

We define the binary relation
SWAP
∼ among tuples Species∗ of chemical species.

We say that (C1, . . . , Cm)
SWAP
∼ (D1, . . . , Dn) if and only if:

(C1, . . . , Cm) matches with

r l

r l

while (D1, . . . , Dn) matches with

r l

r l
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Swapping closure

Theorem 2 Let X ∈ ℘(Species) be a set of chemical species.
The two following assertions are equivalent:

1. the set X ∈ ℘(Species) is local;

2. for any tuples (Ci), (Dj) ∈ Species∗ such that:

• (Ci) ∈ X∗,

• and (Ci)
SWAP
∼ (Dj);

we have (Dj) ∈ X∗.
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Consequences

Theorem 3 (completeness) It follows that:

• if the set Speciesω of reachable chemical species is close with respect
swapping

SWAP
∼ ,

• then the reachability analysis is exact
(i.e. Speciesω = γ(lfpα(Species0)F

])).
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Outline

We have proved that:

• if the set Speciesω of reachable chemical species is close with respect
swapping

SWAP
∼ ,

• then the reachability analysis is exact (i.e. Speciesω = γ(lfpα(Species0)F
])).

Now we give some sufficient conditions that ensure this property.
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Sufficient conditions
Whenever the following assumptions:

1. initial agents are not bound;
2. rules are atomic;
3. rules are local:

• only agents that interact are tested,
• no cyclic patterns (neither in lhs, nor in rhs);

4. binding rules do not interfere i.e. if both:
• A(a∼m,S),B(b∼n,T)→ A(a∼m!1,S),B(b∼n!1,T)
• and A(a∼m’,S’),B(b∼n’,T’)→ A(a∼m’!1,S’),B(b∼n’!1,T’),

then:
• A(a∼m,S),B(b∼n’,T’)→ A(a∼m!1,S),B(b∼n’!1,T’);

5. chemical species in γ(α(Speciesω)) are acyclic,
are satisfied, the set of reachable chemical species is local.
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Non local systems

Species0
∆
= R(a∼u)

Rules ∆
=


R(a∼u) ↔ R(a∼p)
R(a∼u),R(a∼u) → R(a∼u!1),R(a∼u!1)
R(a∼p),R(a∼u) → R(a∼p!1),R(a∼p!1)
R(a∼p),R(a∼p) → R(a∼p!1),R(a∼p!1)


R(a∼u!1),R(a∼u!1) ∈ Speciesω
R(a∼p!1),R(a∼p!1) ∈ Speciesω
But R(a∼u!1),R(a∼p!1) 6∈ Speciesω.
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Non local systems

Species0
∆
= A(a∼u),B(a∼u)

Rules ∆
=


A(a∼u),B(a∼u)→ A(a∼u!1),B(a∼u!1)
A(a∼u!1),B(a∼u!1)→ A(a∼p!1),B(a∼u!1)
A(a∼u!1),B(a∼u!1)→ A(a∼u!1),B(a∼p!1)


A(a∼u!1),B(a∼p!1) ∈ Speciesω
A(a∼p!1),B(a∼u!1) ∈ Speciesω
But A(a∼p!1),B(a∼p!1) 6∈ Speciesω.
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Non local systems

Species0
∆
= A(a∼u)

Rules ∆
=

{
A(a∼u)↔ A(a∼p)
A(a∼u),A(a∼p)→ A(a∼u!1),A(a∼p!1)

}

A(a∼u!1),A(a∼p!1) ∈ Speciesω
But A(a∼p!1),A(a∼p!1) 6∈ Speciesω.
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Non local systems

Species0
∆
= R(a,b)

Rules ∆
= { R(a,b),R(a)→ R(a,b!1),R(a!1)}

R(a,b!2),R(a!2,b!1),R(a!1,b)∈ Speciesω
But R(a!1,b!1) 6∈ Speciesω.
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Outline

• we have a syntactic criterion in order to ensure that the set of reachable
chemical species of a kappa system is local ;

• we now design program transformations to help systems satisfying this
criterion ;

1. decontextualization
-- is fully automatic;
-- preserves the transition system;
-- simplifies rules thanks to reachability analysis.

2. conjugation
-- manual;
-- preserves the set of reachable chemical species;
-- uses backtrack to add new rules.
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Example

Initial rule:

R2(l!2,r),R1(l!1,r),E2(r!1),E1(r!2)→ R2(l!3,r!1),R1(l!2,r!1),E2(r!2),E1(r!3)

Decontextualized rule:

R2(l!_,r),R1(l!_,r)→ R2(l!_,r!1),R1(l!_,r!1)

We can remove redundant tests.
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Example

Initial rules:

Sh(Y7∼p!2,pi!1),G(a!2,b),R(Y48∼p!1) → Sh(Y7∼p,pi!1),G(a,b),R(Y48∼p!1)
Sh(Y7∼p!3,pi!1),G(a!3,b!2),So(d!2),R(Y48∼p!1) → Sh(Y7∼p,pi!1),G(a,b!2),So(d!2),R(Y48∼p!1)

Sh(Y7∼p!1,pi),G(a!1,b) → Sh(Y7∼p,pi),G(a,b)
Sh(Y7∼p!1,pi),G(a!1,b!_) → Sh(Y7∼p,pi),G(a,b!_)

Decontextualized rule:

Sh(Y7!1),G(a!1)→ Sh(Y7),G(a)

We can remove exhaustive enumerations.
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An undecontextualizable rule

Initial rule:

Sh(Y7∼u,pi!1),R(Y48∼p!1,r!_) -> Sh(Y7∼p,pi!1),R(Y48∼p!1,r!_)

Decontextualized rule:

Sh(Y7∼u,pi!1),R(Y48!1,r!_) -> Sh(Y7∼p,pi!1),R(Y48!1,r!_)
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Conjugation

If a rule R ′ is equivalent to a rule in the transitive closure of the system.
Then it may be included in the system without modifying reachable states.
To remove the context C of a rule, we try to apply it for another context C ′ by:

1. removing the context C ′ (backtrack) ;

2. building the context C ;

3. applying the initial rule ;

4. removing the context C (backtrack) ;

5. building the context C ′.

This is proved manually.
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Conclusion

• A scalable static analysis to abstract the reachable chemical species.

• A class of models for which the abstraction is complete.

• Many applications:

-- idiomatic description of reachable chemical species;
-- dead rule detection;
-- rule decontextualization;
-- computer-driven kinetic refinement.

• It can also help simulation algorithms:

-- wake up/inhibition map (agent-based simulation);
-- flat rule system generation (for bounded set of chemical species);
-- on the fly flat rule generation (for large/unbounded set)
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