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1 Abstract Interpretation

Definition 1 (partial order). A partial order (D, <) is given by a set D and a binary relation < € D x D
such that:

1. (reflexivity) Va € D, a < a;
2. (antisymmetry) Ya,a' € D, [a < a' Nd' <a] = a=d;
3. (transitivity) and Va,a',a” € D, [a<a' ANd' <d'] = a<d".

Definition 2 (closure). Given a partial order (D, <) and a mapping p : D — D.

1. We say that p is a upper closure operator, if and only if:
(a) (idempotence) ¥d € D, p(p(d)) = p(d);
(b) (extensivity) ¥d € D, d < p(d);
(¢) (monotonicity) Vd,d € D, d < d = p(d) < p(d').

2. We say that p is a lower closure operator, if and only if:
(a) (idempotence) ¥d € D, p(p(d)) = p(d);
(b) (antiextensivity) ¥d € D, p(d) < d;
(c) (monotonicity) Vd,d € D, d < d = p(d) < p(d').

Definition 3 (least upper bound). Given a partial order (D, <) and a subset X C A, we say that m € D
is a least upper bound for X, if and only if:

1. (bound)Va € X, a <m;
2. (least one) andVa € D, [Va' € X,d' <a] = m <a.

By antisymmetry, if it exists a least upper bound is unique, thus we call it the least upper bound.

Definition 4 (greatest lower bound). Given a partial order (D, <) and a subset X C A, we say that
m € D is a greatest lower bound for X, if and only if:

1. (bound)Va € X, m < a;
2. (least one) and Va € D, Vo' € X,a <d'] = a<m.

By antisymmetry, if it exists a greatest lower bound is unique, thus we call it the greatest lower bound.

Definition 5 (complete lattice). Given a partial order (D, <), we say that D is a complete lattice if any
subset X has a least upper bound UX.
In a complete lattice, any subset X has a greatest lower bound MX. Moreover,

NX)=w{de X |Vz € X,d < z}.

The element T = U(D) is the greatest element of D, and the element L = U(() is the least element.
A complete lattice is usually denoted by (D, <, L, T,U,M).



Definition 6 (chain-complete partial order). Given a partial order (D, <), we say that (D,<) is a
chain-complete partial order if and only if any chain X C D has a least upper bound LIX.
A chain-complete partial order is denoted by a triple (D, <,U).

Definition 7 (inductive function). Given a chain-complete partial order (D, C,U), we say that a function
F : D — D is inductive if and only if the two following properties are satisfied:

1. Ve e D, x CF(z) = F(x) CF(F(z));
2. for any chain C of elements in D such that x C F(x), for any x € C, we have: UC C F(UC).

Proposition 1. Let (D,C,U) be a chain-complete partial order and F : D — D be a function such that:
Vz,y€ D,z Cy = F(z) CF(y).
Then F is an inductive function.

Definition 8 (inductive definition). Let (D, C,U) be a chain-complete partial order, xo € D be an ele-
ment such that g C F(xg), and F : D — D be an inductive function.
There exists a unique collection of elements (X,) such that for any ordinal o:

X, =xg whenever o =0
X, =F(X,-1) whenever o is a succesor ordinal
X, =U{Xp | B <o} otherwise.

The collection (X,) is called the transfinite iteration of F starting from xo. For each ordinal o, the element
X, is usually denoted by F°(xq).

Proposition 2. Let (D, C,U) be a chain-complete partial order, xo € D be an element such that xo C F(xg),
and F : D — D an inductive function.
Then:

1. for any pair of ordinals (0,0), [0 < 0'] = F(x¢) C F (x0);
2. for any ordinal o, xo C F°(x0).

Lemma 1 (least fix-point). Let:

1. (D,C,U) be a chain-complete partial order;
2. Fe D — D be a monotonic map;
3. ko € D be an element such that: xo C F(xg).

Then: there exists y € D such that:

_$0gy,

- Fly) =y,
—VzeD, [[F(z)=2zAz90Cz2] = yCzl.

This element is called the least fix-point of F which is greater than xo, and is written Ifp, F.

Definition 9 (Galois connexion). Given two partial orders (D,C) and (D!, C), we say that the pair of
maps (a,7y) forms a Galois connection between D and D* if and only if:

1.« : D— Dt
2.~ : D= D;
3. and ¥d € D, Vd* € D%, [a(d) C d* < d C y(d*)].

In such a case, we write:
2l
D= D*.



Proposition 3. Let (D, C) and (D*,C) be partial orders, and D % D! be a Galois connexion.
The following properties are satisfied:

Vd € D, d C v(a(d));

Vd* € D* a(y(d¥)) C d*;

(o is monotonic) Vd,d' € D, d Cd = «a(d) C a(d');
(v is monotonic) Vd*, d'* € D¥, d* C d* = ~(d*) C y(d'*);
vd e D, a(d) = a(v(a(d)));

vd* € D, y(d*) = y(a(y(d)));

yoa is an upper closure operator;

a oy is a lower closure operator.
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Proposition 4. Let (D,C, L, T,U,N) and (D* C, L% T% 11,M) be two complete lattices. Let a be a mapping
between D and D* such that for any subset X C D, we have a(UX) = U{a(d) | d € X}.
Then there ezists a unique mapping v between D and D such that:

D%Dﬂ

is a Galois connexion.
Moreover, for any element d* € D¥, we have:

y(d*) = U{d| a(d) C &}

Proposition 5. Given (D, C) and (D% C) two partial orders, D % D! a Galois connezion, and X C D a
subset of D, if, X has a least upper bound UX and {a(d) | d € X} has a least upper bound U{a(d) | d € X},

then we have:
a(UX) =W{a(d) | de X}.

Proposition 6. Given (D,C) and (D*,C) two partial orders, D % D! o Galois connezion, and X' C

DY a subset of D¥, if, X* has a least upper bound UX* and {y(d*) | d* € X*} has a least upper bound
U{y(d") | d* € X*}, then we have:

Y(UXH) = y(a(U{y(d") | d* € X*})).
Lemma 2. Let:

(D, C,U) and (D¥ C,L) be chain-complete partial orders;

D <= D! be a Galois connexion;

Fe D — D be a monotonic mapping;

F# € D* — D* be mapping such that: [Vd* € D F(vy(d*)) C ~v(F*(d*))];
xog € D such that xg C F(xg).

Crds o o =

Then:
afzg) T F*(afx)).

Theorem 1 (soundness). Let:

(D, C,U) and (D¥ C,U) be chain-complete partial orders;
D % D! be a Galois connexion;

F e D — D and F¥ € D* — D* be monotonic mappings such that: [Vd* € D, F(y(d*)) C v(F*(d"))];
xg € D be an element such that: xo C F(xo).

e o~

Then, both Ifp, F and lfpa(%)]Fji exist, and moreover:

Do F C Y(Upa(ag)FF)-



Theorem 2. We suppose that:

(D, C) be a partial order;
(D* C,U) be chain-complete partial order;
D % Dt be a Galois connezion;
Fe D — D and F! € D — D' are monotonic;
vd' € D, F(y(d*)) C y(F*(d*));
Zo, inv € D such that:
— 29 € F(zo) C F(inv) C inv,
— inv = y(a(inv)),
— and a(F(y(a(inv))) = Ff(a(inv));
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Then, Ufp (. F* exists and ’y(lfpa(xo)Fﬁ) C inw.
Theorem 3. We suppose that:

1. (D,C,V) and (D¥ C,U) are chain-complete partial orders;
2. (D,Q) % (D¥,C) is a Galois connezion;

3. F : D— D is a monotonic map;

4. xo is a concrete element such that xg C F(x);

5. Foxy C v o Ft;

6. Floa=aoFo~voa.

Then:

= Ifp,,F and lfp()l(%)ﬂi‘ﬂ exist;
- lfpxUF € W(Du) — lfpon = ’Y(lfpa(mo)Fu)

Corollary 1 (relative completeness). We suppose that:

(D, C,V) and (D¥,C,L) are chain-complete partial orders;
(D,Q) % (D*,C) is a Galois connezion;

for any chain X* C D*, U(y(X*)) € v(D*);

F : D — D is a monotonic map;

xo 1s a concrete element such that xg C F(xg);

aoFoy =Tt

zo € y(D¥);

F(~(D*)) C ~(DH).
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Then, both lfp, F and lfpa(wo)ﬂ?jj exist, and moreover:

e F =7 (Ufpe(ao) FF)-

2 Site-graphs
Let N be a countable set of agent identifiers.

Let A be a finite set of agent types.
Let S be a finite set of site types.

Definition 10 (site-graphs). A site-graph is a triple (Ag, Site, Link) where:



— Ag : N — A is a partial map between N and A such that the subset of N of the elements i such that
Ag(i) is defined is finite;
— Site CN x S is a subset of N x S such that for any pair (i,s) € Site, Ag(i) is defined;
— Link C Site? is a relation over Site such that:
1. for any site a € Site, (a,a) & Link;
2. for any pair (a,b) € Link, we have (b,a) € Link;
3. for any sites a,b, b’ € Site, if both (a,b) € Link and (a,b") € Link, then b=1V".
Whenever (a,b) € Link, we say that there is a link between the site a and the site b.
Whenever a € Site, but there exists no b € Site such that (a,b) € Link, we say that a is free.

Definition 11 (embeddings). An embedding between two site-graphs (Ag, Site, Link) and (Ad, Site, Link)
is given by a partial mapping ¢ : N — N, such that:

(agent mapping) For any i € N, Ag(i) is defined if and only if ¢(i) is defined;

(well-formedness) For any i € N, if Ag(i) is defined, then Ag (¢(i)) is defined;

(into mapping) For any i,i" € N, if ¢(i) and ¢'(i) are defined, then ¢(i) = ¢p(i') = i =14';

(agent types) For any i € N, if Ag(i) is defined, then Ag(i) = Ag (¢(4));

(site types) For any site (i,s) € Site, (¢(i),s) € Site;

(free sites) For any pair (i,s) € Site such that for any (i',s") € Site, ((i,5), (i',s")) € Link, then for any
(i",s") € Site', ((¢(i), ), (i",s")) & Link;

7. (links) For any link ((i,s), (i',s")) € Link, ((¢(), s), (¢(i'),s")) € Link'.
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Definition 12 (automorphism). An embedding between a site-graph and itself is called an automorphism.

Definition 13 (paths). Let G = (Agy, Site, Link) be a site-graph. We define a path of length n > 0 in the
site-graph G a sequence (i, Sk)o<k<zxn—1 Of 2 X n pairs of sites in Site such that:

1. For any j such that 0 < j < n, ((i2xj, S2x;), (t2xj+1, S2xj+1)) € Link.
2. For any j such that 1 < j < m, taxj = tax;j—1 and Saxj 7 Saxj—1-

Proposition 7 (sub-paths). Let G = (Ag, Site, Link) be a site-graph and (ik, Sk)o<k<zxn—1 be a path
of length n > 0 in the site-graph G. Let m,m’ be two integers such that 0 < m < m’ < n, then,
(ks Sk)2xm<k<2xm/—1 1S a path in the site-graph G.

Proposition 8 (path composition). Let G = (Ag, Site, Link) be a site-graph and (ix, Sk)o<k<2xn—1 and
(1), S} Jo<k<2xn’—1 be two paths of length n > 0 and n' > 0 in the site-graph G such that iaxn—1 = i, and
Soxn—1 7 8-

Then, the sequence (i}, s}.)o<k<2x(n4n’)—1 where:

(i s7) = (ix 1) whenever 0 Sk < 2xn =1
(1751 = (i aens Sh2n)  whenever2xn <k <2 (n+n) ~1

is a path of length n +n' in G.

Proposition 9 (path image). Let G = (Ag, Site, Link) be a site-graph, ¢ be an automorphism of G, and
(ik, Sk)o<k<2xn—1 be a path of length n > 0 in G, then (¢(ir), Sk)o<k<axn—1 @S a path of length n in G.

Definition 14 (connected components). A site-graph (Ag, Site, Link) is a connected component, if and
only if, for any pair (i,i') € N? of agent identifiers such that Ag(i) and Ag(i') are defined and i # i', there
exists a pair (s,s') € 8% of site types, such that (i,s) € Site, (i’,s') € Site, and there is a path in G between
the site (i,s) and the site (i',s").

Definition 15 (cycle). Let G be a site-graph. A cycle of length n > 0 is a path (i, sk)o<k<2xn—1 in the
site-graph G such that iy = iaxn—1 and Sg # Soxn—1-



Lemma 1 (rigidity) An embedding between two connected components is fully characterized by the image
of one agent.

Proposition 10. Let G = (Ag, Site, Link) be a connected component without any cycle. Let ¢ be an auto-
morphism of G. Let i be an agent identifier such that Ag(i) is defined. Let (ix, Sk)o<k<2xn—1 be a path between
1 and ¢(1).

Then sg = Soxn—_1-

Lemma 2 (automorphism) Let G = (Ag, Site, Link) be a connected component without any cycle.

— G has at most two automorphisms.

— If ¢ is a automorphism over G, such that there exists i € N, such that Ag(i) is defined and ¢(i) # i, then
there exist two agent identifiers i,i" € N and a site type s € S, such that Ag(i) = Ag(i'), (3,s), (7, s) €
Site, and ((i,s), (i',s)) € Link.

Lemma 3 (Euler) If a site-graph has no cycle, then it has an agent with at most one bound site.
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