Rule-based modeling and application to biomolecular networks Abstract interpretation of protein-protein interactions networks Questions set

Jérôme Feret

LIENS (INRIA, ÉNS, CNRS)

1 Abstract Interpretation

Definition 1 (partial order). A partial order (D, \leq) is given by a set D and a binary relation $\leq \in D \times D$ such that:

- 1. (reflexivity) $\forall a \in D, a \leq a$;
- 2. (antisymmetry) $\forall a, a' \in D, [a \le a' \land a' \le a] \implies a = a';$
- 3. (transitivity) and $\forall a, a', a'' \in D$, $[a \leq a' \land a' \leq a''] \implies a \leq a''$.

Definition 2 (closure). Given a partial order (D, \leq) and a mapping $\rho : D \to D$.

- 1. We say that ρ is a upper closure operator, if and only if:
 - (a) (idempotence) $\forall d \in D, \ \rho(\rho(d)) = \rho(d);$
 - (b) (extensivity) $\forall d \in D, d \leq \rho(d);$
 - (c) (monotonicity) $\forall d, d' \in D, \ d \leq d' \implies \rho(d) \leq \rho(d').$
- 2. We say that ρ is a lower closure operator, if and only if:
 - (a) (idempotence) $\forall d \in D, \ \rho(\rho(d)) = \rho(d);$
 - (b) (antiextensivity) $\forall d \in D, \ \rho(d) \leq d;$
 - (c) (monotonicity) $\forall d, d' \in D, d \leq d' \implies \rho(d) \leq \rho(d').$

Definition 3 (least upper bound). Given a partial order (D, \leq) and a subset $X \subseteq A$, we say that $m \in D$ is a least upper bound for X, if and only if:

- 1. (bound) $\forall a \in X, a \leq m$;
- 2. (least one) and $\forall a \in D, \ [\forall a' \in X, a' \leq a] \implies m \leq a$.

By antisymmetry, if it exists a least upper bound is unique, thus we call it the least upper bound.

Definition 4 (greatest lower bound). Given a partial order (D, \leq) and a subset $X \subseteq A$, we say that $m \in D$ is a greatest lower bound for X, if and only if:

- 1. (bound) $\forall a \in X, m \leq a$;
- 2. (least one) and $\forall a \in D, \ [\forall a' \in X, a \leq a'] \implies a \leq m$.

By antisymmetry, if it exists a greatest lower bound is unique, thus we call it the greatest lower bound.

Definition 5 (complete lattice). Given a partial order (D, \leq) , we say that D is a complete lattice if any subset X has a least upper bound $\sqcup X$.

In a complete lattice, any subset X has a greatest lower bound $\sqcap X$. Moreover,

$$\sqcap(X) = \sqcup \{ d \in X \mid \forall x \in X, d \le x \}.$$

The element $\top = \sqcup(D)$ is the greatest element of D, and the element $\bot = \sqcup(\emptyset)$ is the least element. A complete lattice is usually denoted by $(D, \leq, \bot, \top, \sqcup, \sqcap)$. **Definition 6 (chain-complete partial order).** Given a partial order (D, \leq) , we say that (D, \leq) is a chain-complete partial order if and only if any chain $X \subseteq D$ has a least upper bound $\sqcup X$.

A chain-complete partial order is denoted by a triple (D, \leq, \sqcup) .

Definition 7 (inductive function). Given a chain-complete partial order (D, \subseteq, \cup) , we say that a function $\mathbb{F} : D \to D$ is inductive if and only if the two following properties are satisfied:

1. $\forall x \in D, x \subseteq \mathbb{F}(x) \implies \mathbb{F}(x) \subseteq \mathbb{F}(\mathbb{F}(x));$

2. for any chain C of elements in D such that $x \subseteq \mathbb{F}(x)$, for any $x \in C$, we have: $\cup C \subseteq \mathbb{F}(\cup C)$.

Proposition 1. Let (D, \subseteq, \cup) be a chain-complete partial order and $\mathbb{F} : D \to D$ be a function such that: $\forall x, y \in D, x \subseteq y \implies \mathbb{F}(x) \subseteq \mathbb{F}(y).$

Then \mathbb{F} is an inductive function.

Definition 8 (inductive definition). Let (D, \subseteq, \cup) be a chain-complete partial order, $x_0 \in D$ be an element such that $x_0 \subseteq \mathbb{F}(x_0)$, and $\mathbb{F} : D \to D$ be an inductive function.

There exists a unique collection of elements (X_o) such that for any ordinal o:

 $\begin{cases} X_o = x_0 & \text{whenever } o = 0\\ X_o = \mathbb{F}(X_{o-1}) & \text{whenever } o \text{ is a succesor ordinal}\\ X_o = \cup \{X_\beta \mid \beta < o\} & \text{otherwise.} \end{cases}$

The collection (X_o) is called the transfinite iteration of \mathbb{F} starting from x_0 . For each ordinal o, the element X_o is usually denoted by $\mathbb{F}^o(x_0)$.

Proposition 2. Let (D, \subseteq, \cup) be a chain-complete partial order, $x_0 \in D$ be an element such that $x_0 \subseteq \mathbb{F}(x_0)$, and $\mathbb{F} : D \to D$ an inductive function.

Then:

1. for any pair of ordinals (o, o'), $[o < o'] \implies \mathbb{F}^{o}(x_0) \subseteq \mathbb{F}^{o'}(x_0)$;

2. for any ordinal $o, x_0 \subseteq \mathbb{F}^o(x_0)$.

Lemma 1 (least fix-point). Let:

- 1. (D, \subseteq, \cup) be a chain-complete partial order;
- 2. $\mathbb{F} \in D \to D$ be a monotonic map;
- 3. $x_0 \in D$ be an element such that: $x_0 \subseteq \mathbb{F}(x_0)$.

Then: there exists $y \in D$ such that:

 $\begin{array}{l} - x_0 \subseteq y, \\ - \mathbb{F}(y) = y, \\ - \forall z \in D, \ [[\mathbb{F}(z) = z \land x_0 \subseteq z] \implies y \subseteq z]. \end{array}$

This element is called the least fix-point of \mathbb{F} which is greater than x_0 , and is written $lfp_{x_0}\mathbb{F}$.

Definition 9 (Galois connexion). Given two partial orders (D, \subseteq) and $(D^{\sharp}, \sqsubseteq)$, we say that the pair of maps (α, γ) forms a Galois connection between D and D^{\sharp} if and only if:

1.
$$\alpha : D \to D^{\sharp};$$

2. $\gamma : D^{\sharp} \to D;$
3. and $\forall d \in D, \forall d^{\sharp} \in D^{\sharp}, [\alpha(d) \sqsubseteq d^{\sharp} \Leftrightarrow d \subseteq \gamma(d^{\sharp})].$

In such a case, we write:

$$D \xleftarrow{\gamma}{\alpha} D^{\sharp}$$

Proposition 3. Let (D, \subseteq) and (D^{\sharp}, \subseteq) be partial orders, and $D \xleftarrow{\gamma}{\longrightarrow} D^{\sharp}$ be a Galois connexion. The following properties are satisfied:

- 1. $\forall d \in D, d \subseteq \gamma(\alpha(d));$
- 2. $\forall d^{\sharp} \in D^{\sharp}, \ \alpha(\gamma(d^{\sharp})) \sqsubseteq d^{\sharp};$
- 3. (α is monotonic) $\forall d, d' \in D, d \subseteq d' \implies \alpha(d) \sqsubseteq \alpha(d');$
- 4. (γ is monotonic) $\forall d^{\sharp}, d'^{\sharp} \in D^{\sharp}, d^{\sharp} \sqsubseteq d'^{\sharp} \Longrightarrow \gamma(d^{\sharp}) \subseteq \gamma(d'^{\sharp});$
- 5. $\forall d \in D, \ \alpha(d) = \alpha(\gamma(\alpha(d)));$
- 6. $\forall d^{\sharp} \in D^{\sharp}, \ \gamma(d^{\sharp}) = \gamma(\alpha(\gamma(d)));$
- 7. $\gamma \circ \alpha$ is an upper closure operator;
- 8. $\alpha \circ \gamma$ is a lower closure operator.

Proposition 4. Let $(D, \subseteq, \bot, \top, \cup, \cap)$ and $(D^{\sharp}, \subseteq, \bot^{\sharp}, \top^{\sharp}, \cup, \cap)$ be two complete lattices. Let α be a mapping between D and D^{\sharp} such that for any subset $X \subseteq D$, we have $\alpha(\cup X) = \sqcup \{\alpha(d) \mid d \in X\}$.

Then there exists a unique mapping γ between D^{\sharp} and D such that:

$$D \xleftarrow{\gamma}{\alpha} D^{\sharp}$$

is a Galois connexion.

Moreover, for any element $d^{\sharp} \in D^{\sharp}$, we have:

$$\gamma(d^{\sharp}) = \cup \{d \mid \alpha(d) \sqsubseteq d^{\sharp}\}.$$

Proposition 5. Given (D, \subseteq) and $(D^{\sharp}, \sqsubseteq)$ two partial orders, $D \stackrel{\gamma}{\underset{\alpha}{\longleftarrow}} D^{\sharp}$ a Galois connexion, and $X \subseteq D$ a subset of D, if, X has a least upper bound $\cup X$ and $\{\alpha(d) \mid d \in X\}$ has a least upper bound $\cup \{\alpha(d) \mid d \in X\}$, then we have:

$$\alpha(\cup X) = \sqcup \{ \alpha(d) \mid d \in X \}.$$

Proposition 6. Given (D, \subseteq) and (D^{\sharp}, \subseteq) two partial orders, $D \stackrel{\gamma}{\longleftarrow} D^{\sharp}$ a Galois connexion, and $X^{\sharp} \subseteq D^{\sharp}$ a subset of D^{\sharp} , if, X^{\sharp} has a least upper bound $\sqcup X^{\sharp}$ and $\{\gamma(d^{\sharp}) \mid d^{\sharp} \in X^{\sharp}\}$ has a least upper bound $\cup \{\gamma(d^{\sharp}) \mid d^{\sharp} \in X^{\sharp}\}, \text{ then we have:}$

$$\gamma(\sqcup X^{\sharp}) = \gamma(\alpha(\cup\{\gamma(d^{\sharp}) \mid d^{\sharp} \in X^{\sharp}\})).$$

Lemma 2. Let:

- 1. (D, \subseteq, \cup) and $(D^{\sharp}, \subseteq, \cup)$ be chain-complete partial orders;
- 2. $D \xleftarrow{\gamma}{\longleftrightarrow} D^{\sharp}$ be a Galois connexion; 3. $\mathbb{F} \in \overset{\gamma}{D} \to D$ be a monotonic mapping;
- 4. $\mathbb{F}^{\sharp} \in D^{\sharp} \to D^{\sharp}$ be mapping such that: $[\forall d^{\sharp} \in D^{\sharp}, \mathbb{F}(\gamma(d^{\sharp})) \subseteq \gamma(\mathbb{F}^{\sharp}(d^{\sharp}))];$
- 5. $x_0 \in D$ such that $x_0 \subseteq \mathbb{F}(x_0)$.

Then:

$$\alpha(x_0) \sqsubseteq \mathbb{F}^{\sharp}(\alpha(x_0)).$$

Theorem 1 (soundness). Let:

- 1. (D, \subseteq, \cup) and $(D^{\sharp}, \subseteq, \cup)$ be chain-complete partial orders;
- 2. $D \xleftarrow{\gamma}{\longrightarrow} D^{\sharp}$ be a Galois connexion;
- 3. $\mathbb{F} \in \tilde{D} \to D$ and $\mathbb{F}^{\sharp} \in D^{\sharp} \to D^{\sharp}$ be monotonic mappings such that: $[\forall d^{\sharp} \in D^{\sharp}, \mathbb{F}(\gamma(d^{\sharp})) \subset \gamma(\mathbb{F}^{\sharp}(d^{\sharp}))];$
- 4. $x_0 \in D$ be an element such that: $x_0 \subseteq \mathbb{F}(x_0)$.

Then, both $lfp_{x_0}\mathbb{F}$ and $lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}$ exist, and moreover:

$$lfp_{x_0}\mathbb{F} \subseteq \gamma(lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}).$$

Theorem 2. We suppose that:

1. (D, \subseteq) be a partial order; 2. $(D^{\sharp}, \sqsubseteq, \sqcup)$ be chain-complete partial order; 3. $D \xleftarrow{\gamma}{\longrightarrow} D^{\sharp}$ be a Galois connexion; 4. $\mathbb{F} \in D \to D$ and $\mathbb{F}^{\sharp} \in D^{\sharp} \to D^{\sharp}$ are monotonic; 5. $\forall d^{\sharp} \in D^{\sharp}, \mathbb{F}(\gamma(d^{\sharp})) \subseteq \gamma(\mathbb{F}^{\sharp}(d^{\sharp}));$ 6. $x_{0}, inv \in D$ such that: $-x_{0} \subseteq \mathbb{F}(x_{0}) \subseteq \mathbb{F}(inv) \subseteq inv,$ $-inv = \gamma(\alpha(inv)),$ $- and \alpha(\mathbb{F}(\gamma(\alpha(inv)))) = \mathbb{F}^{\sharp}(\alpha(inv));$

Then, $lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}$ exists and $\gamma(lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}) \subseteq inv.$

Theorem 3. We suppose that:

1. (D, \subseteq, \cup) and $(D^{\sharp}, \sqsubseteq, \sqcup)$ are chain-complete partial orders; 2. $(D, \subseteq) \xleftarrow{\gamma} (D^{\sharp}, \sqsubseteq)$ is a Galois connexion; 3. $\mathbb{F} : D \to D$ is a monotonic map; 4. x_0 is a concrete element such that $x_0 \subseteq \mathbb{F}(x_0)$; 5. $\mathbb{F} \circ \gamma \subseteq \gamma \circ \mathbb{F}^{\sharp}$; 6. $\mathbb{F}^{\sharp} \circ \alpha = \alpha \circ \mathbb{F} \circ \gamma \circ \alpha$.

Then:

$$\begin{array}{l} - \ lfp_{x_0}\mathbb{F} \ and \ lfp_{\alpha(x_0)}\mathbb{F}^{\sharp} \ exist; \\ - \ lfp_{x_0}\mathbb{F} \in \gamma(D^{\sharp}) \Longleftrightarrow \ lfp_{x_0}\mathbb{F} = \gamma(lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}) \end{array}$$

Corollary 1 (relative completeness). We suppose that:

1. (D, \subseteq, \cup) and $(D^{\sharp}, \sqsubseteq, \sqcup)$ are chain-complete partial orders; 2. $(D, \subseteq) \xleftarrow{\gamma}{\alpha} (D^{\sharp}, \sqsubseteq)$ is a Galois connexion; 3. for any chain $X^{\sharp} \subseteq D^{\sharp}, \cup (\gamma(X^{\sharp})) \in \gamma(D^{\sharp});$ 4. $\mathbb{F} : D \to D$ is a monotonic map; 5. x_0 is a concrete element such that $x_0 \subseteq \mathbb{F}(x_0);$ 6. $\alpha \circ \mathbb{F} \circ \gamma = \mathbb{F}^{\sharp};$ 7. $x_0 \in \gamma(D^{\sharp});$ 8. $\mathbb{F}(\gamma(D^{\sharp})) \subseteq \gamma(D^{\sharp}).$

Then, both $lfp_{x_0}\mathbb{F}$ and $lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}$ exist, and moreover:

$$lfp_{x_0}\mathbb{F} = \gamma(lfp_{\alpha(x_0)}\mathbb{F}^{\sharp}).$$

2 Site-graphs

Let \mathbb{N} be a countable set of agent identifiers. Let \mathcal{A} be a finite set of agent types. Let \mathcal{S} be a finite set of site types.

Definition 10 (site-graphs). A site-graph is a triple (Ag, Site, Link) where:

- $-Ag : \mathbb{N} \rightarrow \mathcal{A}$ is a partial map between \mathbb{N} and \mathcal{A} such that the subset of \mathbb{N} of the elements *i* such that Ag(i) is defined is finite;
- Site $\subseteq \mathbb{N} \times S$ is a subset of $\mathbb{N} \times S$ such that for any pair $(i, s) \in Site$, Ag(i) is defined;
- $Link \subseteq Site^2$ is a relation over Site such that:
 - 1. for any site $a \in Site$, $(a, a) \notin Link$;
 - 2. for any pair $(a, b) \in Link$, we have $(b, a) \in Link$;
 - 3. for any sites $a, b, b' \in Site$, if both $(a, b) \in Link$ and $(a, b') \in Link$, then b = b'.
 - Whenever $(a, b) \in Link$, we say that there is a link between the site a and the site b.

Whenever $a \in Site$, but there exists no $b \in Site$ such that $(a,b) \in Link$, we say that a is free.

Definition 11 (embeddings). An embedding between two site-graphs (Ag, Site, Link) and (Ag', Site', Link') is given by a partial mapping $\phi : \mathbb{N} \to \mathbb{N}$, such that:

- 1. (agent mapping) For any $i \in \mathbb{N}$, Ag(i) is defined if and only if $\phi(i)$ is defined;
- 2. (well-formedness) For any $i \in \mathbb{N}$, if Ag(i) is defined, then $Ag'(\phi(i))$ is defined;
- 3. (into mapping) For any $i, i' \in \mathbb{N}$, if $\phi(i)$ and $\phi'(i)$ are defined, then $\phi(i) = \phi(i') \implies i = i'$;
- 4. (agent types) For any $i \in \mathbb{N}$, if Ag(i) is defined, then $Ag(i) = Ag'(\phi(i))$;
- 5. (site types) For any site $(i, s) \in Site$, $(\phi(i), s) \in Site'$;
- 6. (free sites) For any pair $(i, s) \in Site$ such that for any $(i', s') \in Site$, $((i, s), (i', s')) \notin Link$, then for any $(i'', s'') \in Site'$, $((\phi(i), s), (i'', s'')) \notin Link$;
- 7. (links) For any link $((i, s), (i', s')) \in Link, ((\phi(i), s), (\phi(i'), s')) \in Link'$.

Definition 12 (automorphism). An embedding between a site-graph and itself is called an automorphism.

Definition 13 (paths). Let $\mathcal{G} = (Ag, Site, Link)$ be a site-graph. We define a path of length n > 0 in the site-graph \mathcal{G} a sequence $(i_k, s_k)_{0 \le k \le 2 \times n-1}$ of $2 \times n$ pairs of sites in Site such that:

- 1. For any j such that $0 \le j < n$, $((i_{2 \times j}, s_{2 \times j}), (i_{2 \times j+1}, s_{2 \times j+1})) \in Link$.
- 2. For any j such that $1 \leq j < n$, $i_{2 \times j} = i_{2 \times j-1}$ and $s_{2 \times j} \neq s_{2 \times j-1}$.

Proposition 7 (sub-paths). Let $\mathcal{G} = (Ag, Site, Link)$ be a site-graph and $(i_k, s_k)_{0 \le k \le 2 \times n-1}$ be a path of length n > 0 in the site-graph \mathcal{G} . Let m, m' be two integers such that $0 \le m < m' \le n$, then, $(i_k, s_k)_{2 \times m \le k \le 2 \times m'-1}$ is a path in the site-graph \mathcal{G} .

Proposition 8 (path composition). Let $\mathcal{G} = (Ag, Site, Link)$ be a site-graph and $(i_k, s_k)_{0 \le k \le 2 \times n-1}$ and $(i'_k, s'_k)_{0 \le k \le 2 \times n'-1}$ be two paths of length n > 0 and n' > 0 in the site-graph \mathcal{G} such that $i_{2 \times n-1} = i'_0$ and $s_{2 \times n-1} \neq s'_0$.

Then, the sequence $(i''_k, s''_k)_{0 \le k \le 2 \times (n+n')-1}$ where:

 $\begin{cases} (i_k'', s_k'') = (i_k, s_k) & \text{whenever } 0 \le k \le 2 \times n - 1 \\ (i_k'', s_k'') = (i_{k-2 \times n}', s_{k-2 \times n}') & \text{whenever } 2 \times n \le k \le 2 \times (n+n') - 1 \end{cases}$

is a path of length n + n' in \mathcal{G} .

Proposition 9 (path image). Let $\mathcal{G} = (Ag, Site, Link)$ be a site-graph, ϕ be an automorphism of \mathcal{G} , and $(i_k, s_k)_{0 \le k \le 2 \times n-1}$ be a path of length n > 0 in \mathcal{G} , then $(\phi(i_k), s_k)_{0 \le k \le 2 \times n-1}$ is a path of length n in \mathcal{G} .

Definition 14 (connected components). A site-graph (Ag, Site, Link) is a connected component, if and only if, for any pair $(i, i') \in \mathbb{N}^2$ of agent identifiers such that Ag(i) and Ag(i') are defined and $i \neq i'$, there exists a pair $(s, s') \in S^2$ of site types, such that $(i, s) \in Site$, $(i', s') \in Site$, and there is a path in \mathcal{G} between the site (i, s) and the site (i', s').

Definition 15 (cycle). Let \mathcal{G} be a site-graph. A cycle of length n > 0 is a path $(i_k, s_k)_{0 \le k \le 2 \times n-1}$ in the site-graph \mathcal{G} such that $i_0 = i_{2 \times n-1}$ and $s_0 \ne s_{2 \times n-1}$.

Lemma 1 (rigidity) An embedding between two connected components is fully characterized by the image of one agent.

Proposition 10. Let $\mathcal{G} = (Ag, Site, Link)$ be a connected component without any cycle. Let ϕ be an automorphism of \mathcal{G} . Let i be an agent identifier such that Ag(i) is defined. Let $(i_k, s_k)_{0 \le k \le 2 \times n-1}$ be a path between i and $\phi(i)$.

Then $s_0 = s_{2 \times n-1}$.

Lemma 2 (automorphism) Let $\mathcal{G} = (Ag, Site, Link)$ be a connected component without any cycle.

- \mathcal{G} has at most two automorphisms.
- If ϕ is a automorphism over \mathcal{G} , such that there exists $i \in \mathbb{N}$, such that Ag(i) is defined and $\phi(i) \neq i$, then there exist two agent identifiers $i, i' \in \mathbb{N}$ and a site type $s \in \mathcal{S}$, such that $Ag(i) = Ag(i'), (i, s), (i', s) \in Site$, and $((i, s), (i', s)) \in Link$.

Lemma 3 (Euler) If a site-graph has no cycle, then it has an agent with at most one bound site.