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1 Abstract Interpretation

Definition 1 (partial order). A partial order (D,≤) is given by a set D and a binary relation ≤ ∈ D×D
such that:

1. (reflexivity) ∀a ∈ D, a ≤ a;
2. (antisymmetry) ∀a, a′ ∈ D, [a ≤ a′ ∧ a′ ≤ a] =⇒ a = a′;
3. (transitivity) and ∀a, a′, a” ∈ D, [a ≤ a′ ∧ a′ ≤ a′′] =⇒ a ≤ a”.

Definition 2 (closure). Given a partial order (D,≤) and a mapping ρ : D → D.

1. We say that ρ is a upper closure operator, if and only if:
(a) (idempotence) ∀d ∈ D, ρ(ρ(d)) = ρ(d);
(b) (extensivity) ∀d ∈ D, d ≤ ρ(d);
(c) (monotonicity) ∀d, d′ ∈ D, d ≤ d′ =⇒ ρ(d) ≤ ρ(d′).

2. We say that ρ is a lower closure operator, if and only if:
(a) (idempotence) ∀d ∈ D, ρ(ρ(d)) = ρ(d);
(b) (antiextensivity) ∀d ∈ D, ρ(d) ≤ d;
(c) (monotonicity) ∀d, d′ ∈ D, d ≤ d′ =⇒ ρ(d) ≤ ρ(d′).

Definition 3 (least upper bound). Given a partial order (D,≤) and a subset X ⊆ A, we say that m ∈ D
is a least upper bound for X, if and only if:

1. (bound) ∀a ∈ X, a ≤ m;
2. (least one) and ∀a ∈ D, [∀a′ ∈ X, a′ ≤ a] =⇒ m ≤ a.

By antisymmetry, if it exists a least upper bound is unique, thus we call it the least upper bound.

Definition 4 (greatest lower bound). Given a partial order (D,≤) and a subset X ⊆ A, we say that
m ∈ D is a greatest lower bound for X, if and only if:

1. (bound) ∀a ∈ X, m ≤ a;
2. (least one) and ∀a ∈ D, [∀a′ ∈ X, a ≤ a′] =⇒ a ≤ m.

By antisymmetry, if it exists a greatest lower bound is unique, thus we call it the greatest lower bound.

Definition 5 (complete lattice). Given a partial order (D,≤), we say that D is a complete lattice if any
subset X has a least upper bound tX.

In a complete lattice, any subset X has a greatest lower bound uX. Moreover,

u(X) = t{d ∈ X | ∀x ∈ X, d ≤ x}.

The element > = t(D) is the greatest element of D, and the element ⊥ = t(∅) is the least element.
A complete lattice is usually denoted by (D,≤,⊥,>,t,u).



Definition 6 (chain-complete partial order). Given a partial order (D,≤), we say that (D,≤) is a
chain-complete partial order if and only if any chain X ⊆ D has a least upper bound tX.

A chain-complete partial order is denoted by a triple (D,≤,t).

Definition 7 (inductive function). Given a chain-complete partial order (D,⊆,∪), we say that a function
F : D → D is inductive if and only if the two following properties are satisfied:

1. ∀x ∈ D, x ⊆ F(x) =⇒ F(x) ⊆ F(F(x));
2. for any chain C of elements in D such that x ⊆ F(x), for any x ∈ C, we have: ∪C ⊆ F(∪C).

Proposition 1. Let (D,⊆,∪) be a chain-complete partial order and F : D → D be a function such that:
∀x, y ∈ D,x ⊆ y =⇒ F(x) ⊆ F(y).

Then F is an inductive function.

Definition 8 (inductive definition). Let (D,⊆,∪) be a chain-complete partial order, x0 ∈ D be an ele-
ment such that x0 ⊆ F(x0), and F : D → D be an inductive function.

There exists a unique collection of elements (Xo) such that for any ordinal o:
Xo = x0 whenever o = 0

Xo = F(Xo−1) whenever o is a succesor ordinal

Xo = ∪{Xβ | β < o} otherwise.

The collection (Xo) is called the transfinite iteration of F starting from x0. For each ordinal o, the element
Xo is usually denoted by Fo(x0).

Proposition 2. Let (D,⊆,∪) be a chain-complete partial order, x0 ∈ D be an element such that x0 ⊆ F(x0),
and F : D → D an inductive function.

Then:

1. for any pair of ordinals (o, o′), [o < o′] =⇒ Fo(x0) ⊆ Fo′(x0);
2. for any ordinal o, x0 ⊆ Fo(x0).

Lemma 1 (least fix-point). Let:

1. (D,⊆,∪) be a chain-complete partial order;
2. F ∈ D → D be a monotonic map;
3. x0 ∈ D be an element such that: x0 ⊆ F(x0).

Then: there exists y ∈ D such that:

– x0 ⊆ y,
– F(y) = y,
– ∀z ∈ D, [[F(z) = z ∧ x0 ⊆ z] =⇒ y ⊆ z].

This element is called the least fix-point of F which is greater than x0, and is written lfpx0
F.

Definition 9 (Galois connexion). Given two partial orders (D,⊆) and (D],v), we say that the pair of
maps (α, γ) forms a Galois connection between D and D] if and only if:

1. α : D → D];
2. γ : D] → D;
3. and ∀d ∈ D, ∀d] ∈ D], [α(d) v d] ⇔ d ⊆ γ(d])].

In such a case, we write:

D −−−→←−−−α
γ

D].
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Proposition 3. Let (D,⊆) and (D],v) be partial orders, and D −−−→←−−−α
γ

D] be a Galois connexion.
The following properties are satisfied:

1. ∀d ∈ D, d ⊆ γ(α(d));
2. ∀d] ∈ D], α(γ(d])) v d];
3. (α is monotonic) ∀d, d′ ∈ D, d ⊆ d′ =⇒ α(d) v α(d′);
4. (γ is monotonic) ∀d], d′] ∈ D], d] v d′] =⇒ γ(d]) ⊆ γ(d′]);
5. ∀d ∈ D, α(d) = α(γ(α(d)));
6. ∀d] ∈ D], γ(d]) = γ(α(γ(d)));
7. γ ◦ α is an upper closure operator;
8. α ◦ γ is a lower closure operator.

Proposition 4. Let (D,⊆,⊥,>,∪,∩) and (D],v,⊥],>],t,u) be two complete lattices. Let α be a mapping
between D and D] such that for any subset X ⊆ D, we have α(∪X) = t{α(d) | d ∈ X}.

Then there exists a unique mapping γ between D] and D such that:

D −−−→←−−−α
γ

D]

is a Galois connexion.
Moreover, for any element d] ∈ D], we have:

γ(d]) = ∪{d | α(d) v d]}.

Proposition 5. Given (D,⊆) and (D],v) two partial orders, D −−−→←−−−α
γ

D] a Galois connexion, and X ⊆ D a

subset of D, if, X has a least upper bound ∪X and {α(d) | d ∈ X} has a least upper bound t{α(d) | d ∈ X},
then we have:

α(∪X) = t{α(d) | d ∈ X}.

Proposition 6. Given (D,⊆) and (D],v) two partial orders, D −−−→←−−−α
γ

D] a Galois connexion, and X] ⊆
D] a subset of D], if, X] has a least upper bound tX] and {γ(d]) | d] ∈ X]} has a least upper bound
∪{γ(d]) | d] ∈ X]}, then we have:

γ(tX]) = γ(α(∪{γ(d]) | d] ∈ X]})).

Lemma 2. Let:

1. (D,⊆,∪) and (D],v,t) be chain-complete partial orders;

2. D −−−→←−−−α
γ

D] be a Galois connexion;
3. F ∈ D → D be a monotonic mapping;
4. F] ∈ D] → D] be mapping such that: [∀d] ∈ D], F(γ(d])) ⊆ γ(F](d]))];
5. x0 ∈ D such that x0 ⊆ F(x0).

Then:
α(x0) v F](α(x0)).

Theorem 1 (soundness). Let:

1. (D,⊆,∪) and (D],v,t) be chain-complete partial orders;

2. D −−−→←−−−α
γ

D] be a Galois connexion;

3. F ∈ D → D and F] ∈ D] → D] be monotonic mappings such that: [∀d] ∈ D], F(γ(d])) ⊆ γ(F](d]))];
4. x0 ∈ D be an element such that: x0 ⊆ F(x0).

Then, both lfpx0
F and lfpα(x0)F

] exist, and moreover:

lfpx0
F ⊆ γ(lfpα(x0)F

]).

3



Theorem 2. We suppose that:

1. (D,⊆) be a partial order;
2. (D],v,t) be chain-complete partial order;

3. D −−−→←−−−α
γ

D] be a Galois connexion;

4. F ∈ D → D and F] ∈ D] → D] are monotonic;
5. ∀d] ∈ D], F(γ(d])) ⊆ γ(F](d]));
6. x0, inv ∈ D such that:

– x0 ⊆ F(x0) ⊆ F(inv) ⊆ inv,
– inv = γ(α(inv)),
– and α(F(γ(α(inv)))) = F](α(inv));

Then, lfpα(x0)F
] exists and γ(lfpα(x0)F

]) ⊆ inv.

Theorem 3. We suppose that:

1. (D,⊆,∪) and (D],v,t) are chain-complete partial orders;

2. (D,⊆) −−−→←−−−α
γ

(D],v) is a Galois connexion;
3. F : D → D is a monotonic map;
4. x0 is a concrete element such that x0 ⊆ F(x0);

5. F ◦ γ
.
⊆ γ ◦ F];

6. F] ◦ α = α ◦ F ◦ γ ◦ α.

Then:

– lfpx0
F and lfpα(x0)F

] exist;

– lfpx0
F ∈ γ(D])⇐⇒ lfpx0

F = γ(lfpα(x0)F
]).

Corollary 1 (relative completeness). We suppose that:

1. (D,⊆,∪) and (D],v,t) are chain-complete partial orders;

2. (D,⊆) −−−→←−−−α
γ

(D],v) is a Galois connexion;

3. for any chain X] ⊆ D], ∪(γ(X])) ∈ γ(D]);
4. F : D → D is a monotonic map;
5. x0 is a concrete element such that x0 ⊆ F(x0);
6. α ◦ F ◦ γ = F];
7. x0 ∈ γ(D]);
8. F(γ(D])) ⊆ γ(D]).

Then, both lfpx0
F and lfpα(x0)F

] exist, and moreover:

lfpx0
F = γ(lfpα(x0)F

]).

2 Site-graphs

Let N be a countable set of agent identifiers.
Let A be a finite set of agent types.
Let S be a finite set of site types.

Definition 10 (site-graphs). A site-graph is a triple (Ag,Site,Link) where:
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– Ag : N ⇀ A is a partial map between N and A such that the subset of N of the elements i such that
Ag(i) is defined is finite;

– Site ⊆ N× S is a subset of N× S such that for any pair (i, s) ∈ Site, Ag(i) is defined;
– Link ⊆ Site2 is a relation over Site such that:

1. for any site a ∈ Site, (a, a) 6∈ Link;
2. for any pair (a, b) ∈ Link, we have (b, a) ∈ Link;
3. for any sites a, b, b′ ∈ Site, if both (a, b) ∈ Link and (a, b′) ∈ Link, then b = b′.

Whenever (a, b) ∈ Link, we say that there is a link between the site a and the site b.
Whenever a ∈ Site, but there exists no b ∈ Site such that (a, b) ∈ Link, we say that a is free.

Definition 11 (embeddings). An embedding between two site-graphs (Ag,Site,Link) and (Ag′,Site′,Link′)
is given by a partial mapping φ : N⇀ N, such that:

1. (agent mapping) For any i ∈ N, Ag(i) is defined if and only if φ(i) is defined;
2. (well-formedness) For any i ∈ N, if Ag(i) is defined, then Ag′(φ(i)) is defined;
3. (into mapping) For any i, i′ ∈ N, if φ(i) and φ′(i) are defined, then φ(i) = φ(i′) =⇒ i = i′;
4. (agent types) For any i ∈ N, if Ag(i) is defined, then Ag(i) = Ag′(φ(i));
5. (site types) For any site (i, s) ∈ Site, (φ(i), s) ∈ Site′;
6. (free sites) For any pair (i, s) ∈ Site such that for any (i′, s′) ∈ Site, ((i, s), (i′, s′)) 6∈ Link, then for any

(i′′, s′′) ∈ Site′, ((φ(i), s), (i′′, s′′)) 6∈ Link;
7. (links) For any link ((i, s), (i′, s′)) ∈ Link, ((φ(i), s), (φ(i′), s′)) ∈ Link′.

Definition 12 (automorphism). An embedding between a site-graph and itself is called an automorphism.

Definition 13 (paths). Let G = (Ag,Site,Link) be a site-graph. We define a path of length n > 0 in the
site-graph G a sequence (ik, sk)0≤k≤2×n−1 of 2× n pairs of sites in Site such that:

1. For any j such that 0 ≤ j < n, ((i2×j , s2×j), (i2×j+1, s2×j+1)) ∈ Link.
2. For any j such that 1 ≤ j < n, i2×j = i2×j−1 and s2×j 6= s2×j−1.

Proposition 7 (sub-paths). Let G = (Ag,Site,Link) be a site-graph and (ik, sk)0≤k≤2×n−1 be a path
of length n > 0 in the site-graph G. Let m,m′ be two integers such that 0 ≤ m < m′ ≤ n, then,
(ik, sk)2×m≤k≤2×m′−1 is a path in the site-graph G.

Proposition 8 (path composition). Let G = (Ag,Site,Link) be a site-graph and (ik, sk)0≤k≤2×n−1 and
(i′k, s

′
k)0≤k≤2×n′−1 be two paths of length n > 0 and n′ > 0 in the site-graph G such that i2×n−1 = i′0 and

s2×n−1 6= s′0.
Then, the sequence (i′′k , s

′′
k)0≤k≤2×(n+n′)−1 where:{

(i′′k , s
′′
k) = (ik, sk) whenever 0 ≤ k ≤ 2× n− 1

(i′′k , s
′′
k) = (i′k−2×n, s

′
k−2×n) whenever 2× n ≤ k ≤ 2× (n+ n′)− 1

is a path of length n+ n′ in G.

Proposition 9 (path image). Let G = (Ag,Site,Link) be a site-graph, φ be an automorphism of G, and
(ik, sk)0≤k≤2×n−1 be a path of length n > 0 in G, then (φ(ik), sk)0≤k≤2×n−1 is a path of length n in G.

Definition 14 (connected components). A site-graph (Ag,Site,Link) is a connected component, if and
only if, for any pair (i, i′) ∈ N2 of agent identifiers such that Ag(i) and Ag(i′) are defined and i 6= i′, there
exists a pair (s, s′) ∈ S2 of site types, such that (i, s) ∈ Site, (i′, s′) ∈ Site, and there is a path in G between
the site (i, s) and the site (i′, s′).

Definition 15 (cycle). Let G be a site-graph. A cycle of length n > 0 is a path (ik, sk)0≤k≤2×n−1 in the
site-graph G such that i0 = i2×n−1 and s0 6= s2×n−1.
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Lemma 1 (rigidity) An embedding between two connected components is fully characterized by the image
of one agent.

Proposition 10. Let G = (Ag,Site,Link) be a connected component without any cycle. Let φ be an auto-
morphism of G. Let i be an agent identifier such that Ag(i) is defined. Let (ik, sk)0≤k≤2×n−1 be a path between
i and φ(i).
Then s0 = s2×n−1.

Lemma 2 (automorphism) Let G = (Ag,Site,Link) be a connected component without any cycle.

– G has at most two automorphisms.
– If φ is a automorphism over G, such that there exists i ∈ N, such that Ag(i) is defined and φ(i) 6= i, then

there exist two agent identifiers i, i′ ∈ N and a site type s ∈ S, such that Ag(i) = Ag(i′), (i, s), (i′, s) ∈
Site, and ((i, s), (i′, s)) ∈ Link.

Lemma 3 (Euler) If a site-graph has no cycle, then it has an agent with at most one bound site.
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