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Modeling signaling pathway
• Signaling pathway:

-- A cell measures (i.e. checks thresholds, integrates, compares) the
concentration of some proteins in order to make decisions.

-- Many proteins (enzymes, receptors, transport molecules) are in-
volved.

-- They interact by binding with each other and activating each other.
• rule-based models:

-- A site graph-based rewrite language.
-- Description level matches with biologists’ observation and manipu-

lation level.
• Static analysis:

We propose some static analysis tools in order to:
-- help the design of rule-based models;
-- compute (abstract) the properties of rule-based models.
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A single story
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A concurrent story
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Overshoot

When we combine the two stories. . .

. . . we get an overshoot.
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A chemical species
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E(r!1), R(l!1,r!2), R(r!2,l!3), E(r!3)
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A Unbinding/Binding Rule
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Internal state
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R(Y1∼u,l!1), E(r!1)←→ R(Y1∼p,l!1), E(r!1)
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Don’t care, Don’t write
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A contextual rule
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R(Y1∼u,r!_)→ R(Y1∼p,r)
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Creation/Suppression
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R(r)→ R(r!1), R(r!1,l,Y1)
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R(r!1), R(r!1)→ R(r)
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Early EGF example

Ligand-receptor binding, receptor dimerisation, rtk x-phosph, & de-phosph
 01: R(l,r), E(r) <-> R(l1,r), E(r1)
 02: R(l1,r), R(l2,r) <-> R(l1,r3), R(l2,r3)
 03: R(r1,Y68) -> R(r1,Y68p)
       R(Y68p) -> R(Y68) 
 04: R(r1,Y48) -> R(r1,Y48p)
       R(Y48p) -> R(Y48) 

Sh x-phosph & de-phosph
 14: R(r2,Y48p1), Sh(π1,Y7) ->  R(r2,Y48p1), Sh(π1,Y7p)
 ??: Sh(π1,Y7p)  ->  Sh(π1,Y7)
 16: Sh(π,Y7p) -> Sh(π,Y7)

Y68-G binding
 09: R(Y68p),  G(a,b)  <-> R(Y68p1)+G(a1,b)
 11: R(Y68p),  G(a,b2) <-> R(Y68p1)+G(a1,b2)

egf rules 1

receptor type: R(l,r,Y68,Y48)

refined from 
R(Y68p)+G(a)<->R(Y68p1)+G(a1)

refined from 
Sh(Y7p)-> Sh(Y7)

protein shorthands: E:=egf, R:=egfr, So:=Sos,Sh:=Sh,G:=grb2
site abbreviations & fusions: Y68:=Y1068, Y48:=Y1148/73, Y7:=Y317, π:=PTB/SH2
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Early EGF example

G-So binding
 10: R(Y68p1), G(a1,b), So(d) <-> R(Y68p1), G(a1,b2), So(d2)
 12: G(a,b), So(d)   <->  G(a,b1), So(d1)
 22: Sh(π,Y7p2), G(a2,b), So(d)      <->  Sh(π,Y7p2), G(a2,b1), S(d1)
 19: Sh(π1,Y7p2), G(a2,b), So(d)   <->  Sh(π1,Y7p2), G(a2,b1), S(d1) 

Y48-Sh binding
13: R(Y48p), Sh(π,Y7)  <-> R(Y48p1), Sh(π1,Y7) 
15: R(Y48p), Sh(π,Y7p) <-> R(Y48p1), Sh(π1,Y7p)
18: R(Y48p), Sh(π,Y7p1), G(a1,b)  <-> R(Y48p2), Sh(π2,Y7p1), G(a1,b)
20: R(Y48p), Sh(π,Y7p1), G(a1,b3), S(d3) <-> R(Y48p2), Sh(π2,Y7p1), G(a1,b3), S(d3)

Sh-G binding
17: R(Y48p1), Sh(π1,Y7p), G(a,b)   <-> R(Y48p1), Sh(π1,Y7p2), G(a2,b)
21: Sh(π,Y7p), G(a,b)  <->  Sh(π,Y7p1), G(a1,b)
23: Sh(π,Y7p), G(a,b2) <-> Sh(π,Y7p1), G(a1,b2)
24: R(Y48p1), Sh(π1,Y7p), G(a,b3), S(d3)  <-> R(Y48p1), Sh(π1,Y7p2), G(a2, b3), S(d3)

egf rules 2

refined from 
R(Y48p)+Sh(π)<->R(Y48p1)+Sh(π1)

why not simply G(b3)??

refined from 
Sh(π), G(a)<->Sh(π1), G(a1)

interface note: highlight 
the interacting parts

refined from 
So(d)+G(b)<->So(d1)+G(b1)
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Properties of interest

1. Show the absence of modelling errors:

• detect dead rules;
• detect overlapping rules;
• detect non exhaustive interactions;
• detect rules with ambiguous molecularity.

2. Get idiomatic description of the networks:

• capture causality;
• capture potential interactions;
• capture relationships between site states.

(simplify rules)

3. Allow fast simulation:

• capture accurate approximation of the wake-up relation.
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Embedding
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We write ZCΦ Z ′ iff:
• Φ is a site-graph morphism:

-- i is less specific than Φ(i),
-- if there is a link between (i, s) and (i ′, s ′),

then there is a link between (Φ(i), s) and (Φ(i ′), s ′).
• Φ is an into map (injective):

-- Φ(i) = Φ(i ′) implies that i = i ′.
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Set of reachable chemical species

Let R = {Ri} be a set of rules.
Let Species be the set of all chemical species (C, c1, c ′1, . . . , ck, c

′
k, . . . ∈ Species).

Let Species0 be the set of initial .
We write:

c1, . . . , cm →Rk c
′
1, . . . , c

′
n

whenever:

1. there is an embedding of the lhs of Rk in the solution c1, . . . , cm;

2. the (embedding/rule) produces the solution c ′1, . . . , c
′
n.

We are interested in Speciesω the set of all chemical species that can be
constructed in one or several applications of rules in R starting from the set
Species0 of initial chemical species.

(We do not care about the number of occurrences of each chemical species).
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Inductive definition

We define the mapping F as follows:

F :


℘(Species) → ℘(Species)

X 7→ X ∪

{
c ′j

∣∣∣∣ ∃Rk ∈ R, c1, . . . , cm ∈ X,c1, . . . , cm →Rk c
′
1, . . . , c

′
n

}
.

The set ℘(Species) is a complete lattice.
The mapping F is an extensive ∪-complete morphism.

We define the set of reachable chemical species as follows:

Speciesω =
⋃{

Fn(Species0)
∣∣ n ∈ N

}
.
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Local views
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α({R(Y1∼u,l!1), E(r!1)}) = {R(Y1∼u,l!r.E); E(r!l.R)}.
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Galois connexion

Let Local_view be the set of all local views.

Let α ∈ ℘(Species)→ ℘(Local_view) be the function that maps any set of
complexes into the set of their local views.

The set ℘(Local_view) is a complete lattice.
The function α is a ∪-complete morphism.

Thus, it defines a Galois connexion:

℘(Species) −−→←−−
α

γ

℘(Local_view).

(The function γ maps a set of local views into the set of complexes that can
be built with these local views).
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γ ◦ α

γ ◦ α is an upper closure operator: it abstracts away some information.

Guess the image of the following set of chemical species ?

{ }a

R
rl
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α ◦ γ

α ◦ γ is a lower closure operator: it simplifies (or reduces) constraints.

Guess the image of the following set of local views ?

{ }R
a

; a

S
rl

l.r.

l

r.

r

l.R RR R
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One more question

α ◦ γ is a lower closure operator: it simplifies (or reduces) constraints.

Guess the image of the following set of local views ?

{ }R
a

; a

R
r

l. R RR
l l

r. l.

r
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Abstract rules
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Abstract counterpart to F

We define F] as:

F] :


℘(Local_view) → ℘(Local_view)

X 7→ X ∪

{
lv ′j

∣∣∣∣ ∃Rk ∈ R, lv1, . . . , lvm ∈ X,lv1, . . . , lvm →]
Rk

lv ′1, . . . , lv
′
n

}
.

We have:

• F] is extensive;

• F] is monotonic;

• F ◦ γ
.

⊆ γ ◦ F];

• F] ◦ α = α ◦ F ◦ γ ◦ α (we will see later why).
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Soundness

Theorem 1 Let:

1. (D,⊆,∪) and (D],v,t) be chain-complete partial orders;

2. D −−→←−−
α

γ

D] be a Galois connexion;

3. F ∈ D→ D and F] ∈ D] → D] be monotonic mappings such that:
F ◦ γ

.

⊆ γ ◦ F];

4. x0 ∈ D be an element such that: x0 ⊆ F(x0);
Then:

1. both lfpx0F and lfpα(x0)F
] exist,

2. lfpx0F ⊆ γ(lfpα(x0)F
]).
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Combinatorial blow up
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Avoiding combinatorial blow up
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Packing

• packing strategy: a covering P of the set of sites.

• template: a class p ∈ P in the covering.

• projection: for any p ∈ P, the function Πp restricts a local view to p.

• sub-local-view: sub_local_viewP = {Πp(lv) | lv ∈ Local_view , p ∈ P}.
• abstraction: the following function

αP :

{
℘(Local_view) → ℘(sub_local_viewP)

X 7→ {Πp(lv) | lv ∈ X, p ∈ P}.

is a ∪-complete morphism.

It defines a Galois connexion ℘(Local_view) −−−→←−−−
αP

γP
℘(sub_local_viewP).

• counterpart: F]
P = αP ◦ F

] ◦ γP.
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Automatic packing

Let P be a covering such that:

1. each site is at least in one class of P;

2. whenever a rule tests two sites a and b,
then, for any p ∈ P, a ∈ p⇐⇒ b ∈ p;

3. whenever a rule modifies two sites a and b,
then, for any p ∈ P, a ∈ p⇐⇒ b ∈ p;

4. whenever a rule modifies a site a and tests a site b,
then for any p ∈ P, a ∈ p =⇒ b ∈ p;

Then:
F(γP(℘(sub_local_viewP))) ⊆ γP(℘(sub_local_viewP))
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Relative completeness

Theorem 2 We suppose that:
1. (D,⊆,∪) and (D],v,t) are chain-complete partial orders;

2. (D,⊆) −−→←−−
α

γ

(D],v) is a Galois connexion;

3. γ(D]) is closed by ∪;
4. F : D→ D is a monotonic map;
5. x0 is a concrete element such that x0 ⊆ F(x0);
6. α ◦ F ◦ γ = F];
7. x0 ∈ γ(D]);
8. F(γ(D])) ⊆ γ(D]).

Then:
• lfpx0F and lfpα(x0)F

] exist;

• lfpx0F = γ(lfpα(x0)F
]).
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Concretization
For any X ∈ ℘(Local_view), γ(X) is given by a rewrite system:
For any lv ∈ X, we add the following rules:
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I and semi-links are non-terminal.
I is the initial symbol.

Jérôme Feret 36 January 2012



Pumping lemma

• We use this rewrite system to enumerate the chemical species of γ(X).
• There are two cases:

1. either there is a finite number of rewrite sequences;
2. or we encounter cyclic derivations

i.e. an open chemical species with a cycle of the following form:
R.l-r.E ... R.l-r.E

can be built.
• We only enumerate chemical species that are reached through an acyclic

rewriting computation.
• It turns out that: if X ∈ α(℘(Species)) then each rewrite sequence is the

prefix of a terminating rewrite sequence.
(So there is an unbounded number of species if, and only if,
there is an unbounded number of rewrite sequences.)
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Examples

1. Make the demo for egf
2. Make the demo for fgf
3. Make the demo for Global invariants
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Counting chemical species

Given a set of local views X, we can easily count the number of species in
γ(X) by using the following lemmas:

Lemma 1 (rigidity) An embedding between two connected components is
fully characterized by the image of one agent.

Lemma 2 (automorphism) If γ(X) is finite, then for any C ∈ γ(X):
• C has at most two automorphisms;

• if C has two automorphisms, then C has a bond of the form R.r − r.R.
Moreover one automorphism swaps the two R of this bond.

Lemma 3 (Euler) If a chemical species has no cycle, then it has an agent
with only one site.

sketch the algorithm
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Which information is abstracted away ?

Our analysis is exact (no false positive):

• for EGF cascade (356 chemical species);

• for FGF cascade (79080 chemical species);

We know how to build systems with false positives. . .
. . .but they seem to be biologically meaningless.

This raises the following issues:

• Can we characterize which information is abstracted away ?

• Which is the form of the systems, for which we have no false positive ?

• Do we learn something about the biological systems that we describe ?
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Which information is abstracted away ?

Theorem 3 We suppose that:

1. (D,⊆) be a partial order;

2. (D],v,t) be chain-complete partial order;

3. D −−→←−−
α

γ

D] be a Galois connexion;

4. F ∈ D→ D and F] ∈ D] → D] are monotonic;

5. F ◦ γ
.

⊆ γ ◦ F];

6. x0, inv ∈ D such that:

• x0 ⊆ F(x0) ⊆ F(inv) ⊆ inv,
• inv = γ(α(inv)),
• and α(F(γ(α(inv)))) = F](α(inv));

Species

inv
lfpα(Species0)F

]

Speciesω

Then, lfpα(x0)F
] exists and γ(lfpα(x0)F

]) ⊆ inv.
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When is there no false positive ?

Theorem 4 We suppose that:

1. (D,⊆,∪) and (D],v,t) are chain-complete partial orders;

2. (D,⊆) −−→←−−
α

γ

(D],v) is a Galois connexion;

3. F : D→ D is a monotonic map;

4. x0 is a concrete element such that x0 ⊆ F(x0);

5. F ◦ γ
.

⊆ γ ◦ F];

6. F] ◦ α = α ◦ F ◦ γ ◦ α.

Then:

• lfpx0F and lfpα(x0)F
] exist;

• lfpx0F ∈ γ(D
])⇐⇒ lfpx0F = γ(lfpα(x0)F

]).

Jérôme Feret 42 January 2012



Local set of chemical species

Definition 1 We say that a set X ∈ ℘(Species) of chemical species is local if
and only if X ∈ γ(℘(Local_view)).

(ie. a set X is local if and only if X is exactly the set of all the species that are
generated by a given set of local views.)
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Swapping relation

We define the binary relation
SWAP
∼ among tuples Species∗ of chemical species.

We say that (C1, . . . , Cm)
SWAP
∼ (D1, . . . , Dn) if and only if:

(C1, . . . , Cm) matches with

r l

r l

while (D1, . . . , Dn) matches with

r l

r l

Jérôme Feret 44 January 2012



Swapping closure

Theorem 5 Let X ∈ ℘(Species) be a set of chemical species.
The two following assertions are equivalent:

1. the set X ∈ ℘(Species) is local;

2. for any tuples (Ci), (Dj) ∈ Species∗ such that:

• (Ci) ∈ X∗,

• and (Ci)
SWAP
∼ (Dj);

we have (Dj) ∈ X∗.
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Consequences

Let X ∈ α(℘(Species)) be a set of complexes.

1. Each open complex C built with the local views in X is a sub-complex of
a close complex C ′ in γ(X).

2. When considering the rewrite system that computes γ(X), any partial
rewriting sequence can be completed in a successful one.

3. We have F] ◦ α = α ◦ F ◦ γ ◦ α.
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Proof (easier implication way)

If:

• X = γ(α(X)),

• (Ci) ∈ X∗,

• and (Ci)
SWAP
∼ (Dj);

Then:
we have α({Ci}) = α({Dj}) (because (Ci)

SWAP
∼ (Dj))

and α({Ci}) ⊆ α(X) (because (Ci) ∈ X∗ and by monotonicity);
so α({Dj}) ⊆ α(X);
so {Dj} ⊆ γ(α(X)) (by def. of Galois connexions);
so {Dj} ⊆ X (since X = γ(α(X)));
so (Dj) ∈ X∗.
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Proof (more difficult implication way)

We suppose that X is close with respect to
SWAP
∼ .

We want to prove that γ(α(X)) ⊆ X.

We prove, by induction, that any open complex that can be built using the
rewrite system (associated with α(X)) can be embedded in a complex in X:

• By def. of α, this is satisfied for any local view in α(X);

• This remains satisfied after unfolding a semi-link with a local view;

• This remains satisfied after binding two semi-links.
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Initialization
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Unfolding a semi-link
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Unfolding a semi-link
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Binding two semi-links
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Consequences

Let X ∈ α(℘(Species)) be a set of complexes.

1. Each open complex C built with the local views in X is a sub-complex of
a close complex C ′ in γ(X).

2. When considering the rewrite system that computes γ(X), any partial
rewriting sequence can be completed in a successful one.

3. We have F] ◦ α = α ◦ F ◦ γ ◦ α.
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Outline

We have proved that:

• if the set Speciesω of reachable chemical species is close with respect
swapping

SWAP
∼ ,

• then the reachability analysis is exact (i.e. Speciesω = γ(lfpα(Species0)F
])).

Now we give some sufficient conditions that ensure this property.
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Sufficient conditions
Whenever the following assumptions:

1. initial agents are not bound;
2. rules are atomic;
3. rules are local:

• only agents that interact are tested,
• no cyclic patterns (neither in lhs, nor in rhs);

4. binding rules do not interfere i.e. if both:
• A(a∼m,S),B(b∼n,T)→ A(a∼m!1,S),B(b∼n!1,T)
• and A(a∼m’,S’),B(b∼n’,T’)→ A(a∼m’!1,S’),B(b∼n’!1,T’),

then:
• A(a∼m,S),B(b∼n’,T’)→ A(a∼m!1,S),B(b∼n’!1,T’);

5. chemical species in γ(α(Speciesω)) are acyclic,
are satisfied, the set of reachable chemical species is local.
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Proof outline

We sketch a proof in order to discover sufficient conditions that ensure this
property:

• We consider tuples of complexes in which the same kind of links occur
twice.

• We want to swap these links.

• We introduce the history of their computation.

• There are several cases. . .
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First case (I/V)

..

.

.

..

.

..

rr
rr

C ∈ Speciesω C ′ ∈ Speciesω
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First case (II/V)

..

.

.

..

.

..

r r
r r

just before the links are made

C ∈ Speciesω∗ C ′ ∈ Speciesω∗
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First case (III/V)

..

.

.

..

.

.. rr
rr

C ∈ Speciesω
∗

we suppose we can swap the links
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First case (IV/V)

Then, we ensure that further computation steps:

• are always possible;

• have the same effect on local views;

• commute with the swapping relation
SWAP
∼ .

Cn
SWAP
∼ ,σ //

R,φ

��

C ′n

R,φ

��

Cn+1
SWAP
∼ ,σ //C ′n+1
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First case (V/V)

..
..

...

.

..

.

..

.

.. rr
rr

C ∈ Speciesω
∗
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Second case (I/II)

..
..

...

.

..

.

..

.

..

rr
rr

C ∈ Speciesω

we assume that the chemical species C is acyclic
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Second case (II/II)

..

.

.

..

.
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.
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.
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rr
rr

rr
rr
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Sufficient conditions
Whenever the following assumptions:

1. initial agents are not bound;
2. rules are atomic;
3. rules are local:

• only agents that interact are tested,
• no cyclic patterns (neither in lhs, nor in rhs);

4. binding rules do not interfere i.e. if both:
• A(a∼m,S),B(b∼n,T)→ A(a∼m!1,S),B(b∼n!1,T)
• and A(a∼m’,S’),B(b∼n’,T’)→ A(a∼m’!1,S’),B(b∼n’!1,T’),

then:
• A(a∼m,S),B(b∼n’,T’)→ A(a∼m!1,S),B(b∼n’!1,T’);

5. chemical species in γ(α(Speciesω)) are acyclic,
are satisfied, the set of reachable chemical species is local.
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Third case (I/III)

..
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rr

C ∈ Speciesω
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Third case (II/III)

..
..
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.
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rr rr

C ∈ Speciesω∗
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Third case (II/III)

..
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.
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.
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? ? ?

rr
rr
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rr

C ∈ SpeciesωC ∈ Speciesω∗
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Dangerous sites

A site is dangerous if it may occur in a cycle within a complex (∈ γ(α(Speciesω))).

We would weaken the fifth requirement into:

• The binding state of a dangerous site is never tested, unless for binding
or unbinding this site.

• When we bind dangerous sites, we only test that these sites are free.

Then, we prove that:

1. we can build any complex with free dangerous sites,

2. then, we can bind them as much as we like.
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Non local systems

Species0
∆
= R(a∼u)

Rules ∆
=


R(a∼u) ↔ R(a∼p)
R(a∼u),R(a∼u) → R(a∼u!1),R(a∼u!1)
R(a∼p),R(a∼u) → R(a∼p!1),R(a∼p!1)
R(a∼p),R(a∼p) → R(a∼p!1),R(a∼p!1)


R(a∼u!1),R(a∼u!1) ∈ Speciesω
R(a∼p!1),R(a∼p!1) ∈ Speciesω
But R(a∼u!1),R(a∼p!1) 6∈ Speciesω.
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Non local systems

Species0
∆
= A(a∼u),B(a∼u)

Rules ∆
=


A(a∼u),B(a∼u)→ A(a∼u!1),B(a∼u!1)
A(a∼u!1),B(a∼u!1)→ A(a∼p!1),B(a∼u!1)
A(a∼u!1),B(a∼u!1)→ A(a∼u!1),B(a∼p!1)


A(a∼u!1),B(a∼p!1) ∈ Speciesω
A(a∼p!1),B(a∼u!1) ∈ Speciesω
But A(a∼p!1),B(a∼p!1) 6∈ Speciesω.
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Non local systems

Species0
∆
= A(a∼u)

Rules ∆
=

{
A(a∼u)↔ A(a∼p)
A(a∼u),A(a∼p)→ A(a∼u!1),A(a∼p!1)

}

A(a∼u!1),A(a∼p!1) ∈ Speciesω
But A(a∼p!1),A(a∼p!1) 6∈ Speciesω.
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Non local systems

Species0
∆
= R(a,b)

Rules ∆
= { R(a,b),R(a)→ R(a,b!1),R(a!1)}

R(a,b!2),R(a!2,b!1),R(a!1,b)∈ Speciesω
But R(a!1,b!1) 6∈ Speciesω.
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Overview

1. Introduction
2. Kappa language
3. Local views
4. Local set of chemical species
5. Local rule systems
6. Decontextualization
7. Conclusion
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Outline

• we have a syntactic criterion in order to ensure that the set of reachable
chemical species of a kappa system is local ;

• we now design program transformations to help systems satisfying this
criterion ;

1. decontextualization
-- is fully automatic;
-- preserves the transition system;
-- simplifies rules thanks to reachability analysis.

2. conjugation
-- manual;
-- preserves the set of reachable chemical species;
-- uses backtrack to add new rules.
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Example

Initial rule:

R2(l!2,r),R1(l!1,r),E2(r!1),E1(r!2)→ R2(l!3,r!1),R1(l!2,r!1),E2(r!2),E1(r!3)

Decontextualized rule:

R2(l!_,r),R1(l!_,r)→ R2(l!_,r!1),R1(l!_,r!1)

We can remove redundant tests.
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Example

Initial rules:

Sh(Y7∼p!2,pi!1),G(a!2,b),R(Y48∼p!1) → Sh(Y7∼p,pi!1),G(a,b),R(Y48∼p!1)
Sh(Y7∼p!3,pi!1),G(a!3,b!2),So(d!2),R(Y48∼p!1) → Sh(Y7∼p,pi!1),G(a,b!2),So(d!2),R(Y48∼p!1)

Sh(Y7∼p!1,pi),G(a!1,b) → Sh(Y7∼p,pi),G(a,b)
Sh(Y7∼p!1,pi),G(a!1,b!_) → Sh(Y7∼p,pi),G(a,b!_)

Decontextualized rule:

Sh(Y7!1),G(a!1)→ Sh(Y7),G(a)

We can remove exhaustive enumerations.
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How does it work ?

To remove a test, we prove that:

• this test is satisfied whenever the other tests are satisfied;

• or each complex that passes all tests but this one also matches with the
left hand side of another rule that performs the same action.
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More formally
More formally:
• Each rule R is associated with the set S(R) of open chemical species

that can match its lhs;
• Rules are gathered in equivalence classes according to the actions they

perform;
• For each class [R], we compute:

G([R]) = ∪{S(R ′) | R ′ ∈ [R]}.

• For each class [R], Reach([R]) is an over approximation of the set of
open chemical species that may match the lhs of a rule R ′ ∈ [R].

A rule R may be decontextualized in a rule R ′ if:

S(R ′) ∩ Reach([R]) ⊆ G([R]).

Decontextualization is more efficient, if the reachability analysis is accurate.
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An undecontextualizable rule

Initial rule:

Sh(Y7∼u,pi!1),R(Y48∼p!1,r!_) -> Sh(Y7∼p,pi!1),R(Y48∼p!1,r!_)

Decontextualized rule:

Sh(Y7∼u,pi!1),R(Y48!1,r!_) -> Sh(Y7∼p,pi!1),R(Y48!1,r!_)
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Conjugation

If a rule R ′ is equivalent to a rule in the transitive closure of the system.
Then it may be included in the system without modifying reachable states.
To remove the context C of a rule, we try to apply it for another context C ′ by:

1. removing the context C ′ (backtrack) ;

2. building the context C ;

3. applying the initial rule ;

4. removing the context C (backtrack) ;

5. building the context C ′.

This is proved manually.

Jérôme Feret 81 January 2012



Overview

1. Introduction
2. Kappa language
3. Local views
4. Local set of chemical species
5. Local rule systems
6. Decontextualization
7. Conclusion
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Conclusion

• A scalable static analysis to abstract the reachable chemical species.

• A class of models for which the abstraction is complete.

• Many applications:

-- idiomatic description of reachable chemical species;
-- dead rule detection;
-- rule decontextualization;
-- computer-driven kinetic refinement.

• It can also help simulation algorithms:

-- wake up/inhibition map (agent-based simulation);
-- flat rule system generation (for bounded set of chemical species);
-- on the fly flat rule generation (for large/unbounded set)
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