SAS 2011

Formal model reduction

Jérôme Feret
Laboratoire d'Informatique de l'École Normale Supérieure
INRIA, ÉNS, CNRS

Friday, September the 16th
Joint-work with...

Walter Fontana
Harvard Medical School

Vincent Danos
Edinburgh

Ferdinanda Camporesi
Bologna / ÉNS

Russ Harmer
Harvard Medical School

Jean Krivine
Paris VII
Overview

1. Context and motivations
2. Handmade ODEs
3. Abstract interpretation framework
4. Kappa
5. Concrete semantics
6. Abstract semantics
7. Conclusion
Signalling Pathways
Pathway maps

Oda, Matsuoka, Funahashi, Kitano, Molecular Systems Biology, 2005
Differential models

\[
\begin{align*}
\frac{dx_1}{dt} &= -k_1 \cdot x_1 \cdot x_2 + k_{-1} \cdot x_3 \\
\frac{dx_2}{dt} &= -k_1 \cdot x_1 \cdot x_2 + k_{-1} \cdot x_3 \\
\frac{dx_3}{dt} &= k_1 \cdot x_1 \cdot x_2 - k_{-1} \cdot x_3 + 2 \cdot k_2 \cdot x_3 \cdot x_3 - k_{-2} \cdot x_4 \\
\frac{dx_4}{dt} &= k_2 \cdot x_3^2 - k_2 \cdot x_4 + \frac{v_4 \cdot x_5}{p_4 + x_5} - (k_3 \cdot x_4 - k_{-3} \cdot x_5) \\
\frac{dx_5}{dt} &= \ldots \\
&\vdots \\
\frac{dx_n}{dt} &= -k_1 \cdot x_1 \cdot c_2 + k_{-1} \cdot x_3
\end{align*}
\]

– do not describe the structure of molecules;
– combinatorial explosion: forces choices that are not principled;
– a nightmare to modify.
A gap between two worlds

Two levels of description:

1. Databases of proteins interactions in natural language
 + documented and detailed description
 + transparent description
 – cannot be interpreted

2. ODE-based models
 + can be integrated
 – opaque modelling process, models can hardly be modified
 – there are also some scalability issues.
Rule-based approach

We use site graph rewrite systems

1. The description level matches with both
 - the observation level
 - and the intervention level
 of the biologist.
 We can tune the model easily.

2. Model description is very compact.
Semantics

Several semantics (qualitative and/or quantitative) can be defined.

Interaction map

CTMC

ODEs

\[
\begin{align*}
\frac{dx_1}{dt} &= -k_1 \cdot x_1 \cdot x_2 + k_{-1} \cdot x_3 \\
\frac{dx_2}{dt} &= -k_1 \cdot x_1 \cdot x_2 + k_{-1} \cdot x_3 \\
\frac{dx_3}{dt} &= k_1 \cdot x_1 \cdot x_2 - k_{-1} \cdot x_3 + 2 \cdot k_2 \cdot x_3 \cdot x_3 - k_{-2} \cdot x_4 \\
\frac{dx_4}{dt} &= k_2 \cdot x_3^2 - k_2 \cdot x_4 + \frac{y_2 \cdot y_5}{p_4 \cdot y_5} - (k_3 \cdot x_4 - k_{-3} \cdot x_5) \\
\frac{dx_5}{dt} &= \cdots \\
\frac{dx_i}{dt} &= -k_1 \cdot x_1 \cdot c_2 + k_{-1} \cdot x_3
\end{align*}
\]
Complexity walls

The diagram illustrates the relationship between the number of instances per molecular species and the number of molecular species, categorizing models based on their complexity:

- **Deterministic differential equations**
 - Number of instances: 10^6
 - Number of species: 400

- **Stochastic master equations**
 - Number of instances: 1000
 - Number of species: 80,000

- **Agent/rule-based**
 - Number of instances: 10
 - Number of species: 500,000

- **Unknown category**
 - Number of instances: 10^{33}
 - Number of species: 10^{33}

The diagram highlights the combinatorial wall and the event wall, indicating the boundaries between different complexity classes.
A breach in the wall(s)?
Overview

1. Context and motivations
2. Handmade ODEs
 (a) using the flow of information
 (b) using symmetries
3. Abstract interpretation framework
4. Kappa
5. Concrete semantics
6. Abstract semantics
7. Conclusion
A system with a switch
A system with a switch

\[(u,u,u) \rightarrow (u,p,u) \quad k^c \]
\[(u,p,u) \rightarrow (p,p,u) \quad k^l \]
\[(u,p,p) \rightarrow (p,p,p) \quad k^l \]
\[(u,p,u) \rightarrow (u,p,p) \quad k^r \]
\[(p,p,u) \rightarrow (p,p,p) \quad k^r \]
A system with a switch

\[
\begin{align*}
(u,u,u) &\rightarrow (u,p,u) & k^c \\
(u,p,u) &\rightarrow (p,p,u) & k^l \\
(u,p,p) &\rightarrow (p,p,p) & k^l \\
(u,p,u) &\rightarrow (u,p,p) & k^r \\
(p,p,u) &\rightarrow (p,p,p) & k^r \\

\frac{d[(u,u,u)]}{dt} &= -k^c[(u,u,u)] \\
\frac{d[(u,p,u)]}{dt} &= -k^l[(u,p,u)] + k^c[(u,u,u)] - k^r[(u,p,u)] \\
\frac{d[(u,p,p)]}{dt} &= -k^l[(u,p,p)] + k^r[(u,p,u)] \\
\frac{d[(p,p,u)]}{dt} &= k^l[(u,p,u)] - k^r[(p,p,u)] \\
\frac{d[(p,p,p)]}{dt} &= k^l[(u,p,p)] + k^r[(p,p,u)]
\end{align*}
\]
Two subsystems
Two subsystems
Two subsystems

\[
\begin{align*}
(u, u, u) &= (u, u, u) \\
(u, p, ?) &\xrightarrow{\Delta} (u, p, u) + (u, p, p) \\
(p, p, ?) &\xrightarrow{\Delta} (p, p, u) + (p, p, p)
\end{align*}
\]

\[
\begin{align*}
\frac{d[(u, u, u)]}{dt} &= -k_c \cdot [(u, u, u)] \\
\frac{d[(u, p, ?)]}{dt} &= -k' \cdot [(u, p, ?)] + k_c \cdot [(u, u, u)] \\
\frac{d[(p, p, ?)]}{dt} &= k' \cdot [(u, p, ?)]
\end{align*}
\]
Dependence index

The states of left site and right site would be independent if, and only if:

\[
\frac{[(?,p,p)]}{[(?,p,u)] + [(?,p,p)]} = \frac{[(p,p,p)]}{[(p,p,?)]}.
\]

Thus we define the dependence index as follows:

\[
X \triangleq [(p,p,p)] \cdot \left([(?,p,u)] + [(?,p,p)] \right) - [(?,p,p)] \cdot [(p,p,?)].
\]

We have:

\[
\frac{dX}{dt} = -X \cdot (k^l + k^r) + k^c \cdot [(p,p,p)] \cdot [(u,u,u)].
\]

So the property \((X = 0) \) is not an invariant.
Conclusion

We can use the absence of flow of information to cut chemical species into self-consistent fragments of chemical species:

− some information is abstracted away: we cannot recover the concentration of any species;

+ flow of information is easy to abstract;

We are going to track the correlations that are read by the system.
Overview

1. Context and motivations
2. Handmade ODEs
 (a) using the flow of information
 (b) using symmetries
3. Abstract interpretation framework
4. Kappa
5. Concrete semantics
6. Abstract semantics
7. Conclusion
A model with symmetries

\[
P \rightarrow \ast P \quad k_1 \\
P \rightarrow P^* \quad k_1 \\
P \rightarrow \ast P \quad k_1 \\
\ast P \rightarrow \ast P^* \quad k_1 \\
\ast P \rightarrow \emptyset \quad k_2 \\
\ast P^* \rightarrow \emptyset \quad k_2
\]
Reduced model

\[\text{P} \rightarrow \ast \text{P} \quad 2 \cdot k_1 \]

\[\ast \text{P} \rightarrow \ast \text{P}^* \quad k_1 \]

\[\ast \text{P}^* \rightarrow \emptyset \quad k_2 \]
Invariant

We wonder whether or not:

\[*[P] = [P^*], \]

Thus we define the difference \(X \) as follows:

\[X \triangleq *[P] - [P^*]. \]

We have:

\[\frac{dX}{dt} = -k_1 \cdot X. \]

So the property \((X = 0) \) is an invariant.

Thus, if \(*[P] = [P^*] \) at time \(t = 0 \), then \(*[P] = [P^*] \) forever.
Conclusion

We can abstract away the distinction between chemical species which are equivalent up to symmetries (with respect to the reactions).

1. If the symmetries are satisfied in the initial state:
 + the abstraction is invertible:
 we can recover the concentration of any species,
 (thanks to the invariants).

2. Otherwise:
 – some information is abstracted away:
 we cannot recover the concentration of any species;
 + the system converges to a state which satisfies the symmetries.
Overview

1. Context and motivations
2. Handmade ODEs
3. Abstract interpretation framework
 (a) Concrete semantics
 (b) Abstraction
 (c) Bisimulation
 (d) Combination
4. Kappa
5. Concrete semantics
6. Abstract semantics
7. Conclusion
Continuous differential semantics

Let \mathcal{V}, be a finite set of variables;
and \mathcal{F}, be a C^∞ mapping from $\mathcal{V} \rightarrow \mathbb{R}^+$ into $\mathcal{V} \rightarrow \mathbb{R}$, as for instance,

- $\mathcal{V} \triangleq \{(u,u,u), (u,p,u), (p,p,u), (u,p,p), (p,p,p)\}$

- $\mathcal{F}(\rho) \triangleq \begin{cases}
([u,u,u]) \mapsto -k^c \cdot \rho([u,u,u]) \\
([u,p,u]) \mapsto -k^l \cdot \rho([u,p,u]) + k^c \cdot \rho([u,u,u]) - k^r \cdot \rho([u,p,u]) \\
([p,p,u]) \mapsto -k^l \cdot \rho([p,p,u]) + k^c \cdot \rho([u,u,u]) - k^r \cdot \rho([p,p,u]) \\
([p,p,p]) \mapsto -k^l \cdot \rho([p,p,p]) + k^r \cdot \rho([p,p,u]).
\end{cases}$

The continuous semantics maps each initial state $X_0 \in \mathcal{V} \rightarrow \mathbb{R}^+$ to the maximal solution $X_{X_0} \in [0, T_{X_0}^{\text{max}}] \rightarrow (\mathcal{V} \rightarrow \mathbb{R}^+)$ which satisfies:

$$X_{X_0}(T) = X_0 + \int_{t=0}^{T} \mathcal{F}(X_{X_0}(t)) \cdot dt.$$
Overview

1. Context and motivations
2. Handmade ODEs
3. Abstract interpretation framework
 (a) Concrete semantics
 (b) Abstraction
 (c) Bisimulation
 (d) Combination
4. Kappa
5. Concrete semantics
6. Abstract semantics
7. Conclusion
Abstraction

An abstraction \((\mathcal{V}, \psi, \mathbf{F})\) is given by:

- \(\mathcal{V}:\) a finite set of observables,
- \(\psi:\) a mapping from \(\mathcal{V} \rightarrow \mathbb{R}\) into \(\mathcal{V} \rightarrow \mathbb{R}\),
- \(\mathbf{F}:\) a \(C^\infty\) mapping from \(\mathcal{V} \rightarrow \mathbb{R}^+\) into \(\mathcal{V} \rightarrow \mathbb{R}\);

such that:

- \(\psi\) is linear with positive coefficients,
 and for any sequence \((x_n) \in (\mathcal{V} \rightarrow \mathbb{R}^+)^\mathbb{N}\) such that \((\|x_n\|)\) diverges towards \(+\infty\), then \((\|\psi(x_n)\|^\#)\) diverges as well (for arbitrary norms \(\| \cdot \|\) and \(\| \cdot \|^\#\)),
- the following diagram commutes:

\[
\begin{array}{ccc}
(\mathcal{V} \rightarrow \mathbb{R}^+) & \xrightarrow{F} & (\mathcal{V} \rightarrow \mathbb{R}) \\
\downarrow{\psi} & & \downarrow{\psi} \\
(\mathcal{V}^\# \rightarrow \mathbb{R}^+) & \xrightarrow{\mathbf{F}^\#} & (\mathcal{V}^\# \rightarrow \mathbb{R})
\end{array}
\]

i.e. \(\psi \circ F = \mathbf{F}^\# \circ \psi\).
Abstraction example

- \(\mathcal{V} \overset{\Delta}{=} \{((u,u,u)), ((u,p,u)), ((p,p,u)), ((u,p,p)), ((p,p,p))\} \)

- \(\mathcal{F}(\rho) \overset{\Delta}{=} \)
 \[
 \begin{cases}
 ((u,u,u)) \mapsto -k^c \cdot \rho(((u,u,u))) \\
 ((u,p,u)) \mapsto -k^l \cdot \rho(((u,p,u))) + k^c \cdot \rho(((u,u,u))) - k^r \cdot \rho(((u,p,u))) \\
 ((u,p,p)) \mapsto -k^l \cdot \rho(((u,p,p))) + k^r \cdot \rho(((u,u,u))) \\
 \ldots
 \end{cases}
 \]

- \(\mathcal{V}^\# \overset{\Delta}{=} \{((u,u,u)), ((?,p,u)), ((?,p,p)), ((u,p,?)), ((p,p,?))\} \)

- \(\psi(\rho) \overset{\Delta}{=} \)
 \[
 \begin{cases}
 ((u,u,u)) \mapsto \rho(((u,u,u))) \\
 ((?,p,u)) \mapsto \rho(((u,p,u))) + \rho(((p,p,u))) \\
 ((?,p,p)) \mapsto \rho(((u,p,p))) + \rho(((p,p,p))) \\
 \ldots
 \end{cases}
 \]

- \(\mathcal{F}^\#(\rho^\#) \overset{\Delta}{=} \)
 \[
 \begin{cases}
 ((u,u,u)) \mapsto -k^c \cdot \rho^\#(((u,u,u))) \\
 ((?,p,u)) \mapsto -k^r \cdot \rho^\#(((?,p,u))) + k^c \cdot \rho^\#(((u,u,u))) \\
 ((?,p,p)) \mapsto k^r \cdot \rho^\#(((?,p,u))) \\
 \ldots
 \end{cases}
 \]

(Completeness can be checked analytically.)
Abstract continuous trajectories

Let \((\mathcal{V}, \mathcal{F})\) be a concrete system.
Let \((\mathcal{V}^\#, \psi, \mathcal{F}^\#)\) be an abstraction of the concrete system \((\mathcal{V}, \mathcal{F})\).
Let \(X_0 \in \mathcal{V} \rightarrow \mathbb{R}^+\) be an initial (concrete) state.

We know that the following system:

\[
Y_{\psi(X_0)}(T) = \psi(X_0) + \int_{t=0}^{T} \mathcal{F}^\# \left(Y_{\psi(X_0)}(t) \right) \cdot dt
\]

has a unique maximal solution \(Y_{\psi(X_0)}\) such that \(Y_{\psi(X_0)} = \psi(X_0)\).

Theorem 1 Moreover, this solution is the projection of the maximal solution \(X_{X_0}\) of the system

\[
X_{X_0}(T) = X_0 + \int_{t=0}^{T} \mathcal{F} \left(X_{X_0}(t) \right) \cdot dt.
\]

(i.e. \(Y_{\psi(X_0)} = \psi(X_{X_0})\))
Abstract continuous trajectories

Proof sketch

Given an abstraction \((\mathcal{V}^\# , \psi, \mathcal{F}^\#)\), we have:

\[
X_{X_0}(T) = X_0 + \int_{t=0}^{T} \mathcal{F} \left(X_{X_0}(t) \right) \cdot dt
\]
\[
\psi \left(X_{X_0}(T) \right) = \psi \left(X_0 + \int_{t=0}^{T} \mathcal{F} \left(X_{X_0}(t) \right) \cdot dt \right)
\]
\[
\psi \left(X_{X_0}(T) \right) = \psi(X_0) + \int_{t=0}^{T} [\psi \circ \mathcal{F}] \left(X_{X_0}(t) \right) \cdot dt \quad (\psi \text{ is linear})
\]
\[
\psi \left(X_{X_0}(T) \right) = \psi(X_0) + \int_{t=0}^{T} \mathcal{F}^\# \left(\psi \left(X_{X_0}(t) \right) \right) \cdot dt \quad (\mathcal{F}^\# \text{ is } \psi\text{-complete})
\]

We set \(Y_0 \Delta \psi(X_0)\) and \(Y_{Y_0} \Delta \psi \circ X_{X_0}\).

Then we have:

\[
Y_{Y_0}(T) = Y_0 + \int_{t=0}^{T} \mathcal{F}^\# \left(Y_{Y_0}(t) \right) \cdot dt
\]

The assumption about \(\| \cdot \|, \| \cdot \|^\#\), and \(\psi\) ensures that \(\psi \circ X_{X_0}\) is a maximal solution.
Fluid trajectories
Fluid trajectories
Overview

1. Context and motivations
2. Handmade ODEs
3. Abstract interpretation framework
 (a) Concrete semantics
 (b) Abstraction
 (c) Bisimulation
 (d) Combination
4. Kappa
5. Concrete semantics
6. Abstract semantics
7. Conclusion
A model with symmetries

\[
P \xrightarrow{k_1} P^* \quad P^* \xrightarrow{k_1} P
\]

\[
P \xrightarrow{k_1} P^* \quad P^* \xrightarrow{k_1} P
\]

\[
*P \xrightarrow{k_2} \emptyset
\]
Differential equations

• Initial system:

\[
\frac{d}{dt} \begin{bmatrix}
P \\
P^* \\
P \\
P^*
\end{bmatrix} = \begin{bmatrix}
-2 \cdot k_1 & 0 & 0 & 0 \\
0 & k_1 & -k_1 & 0 \\
0 & k_1 & 0 & -k_1 \\
0 & 0 & k_1 & -k_2
\end{bmatrix} \cdot \begin{bmatrix}
P \\
P^* \\
P \\
P^*
\end{bmatrix}
\]

• Reduced system:

\[
\frac{d}{dt} \begin{bmatrix}
P \\
P^* + P^* \\
0 \\
P^*
\end{bmatrix} = \begin{bmatrix}
-2 \cdot k_1 & 0 & 0 & 0 \\
2 \cdot k_1 & -k_1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & k_1 & -k_2
\end{bmatrix} \cdot \begin{bmatrix}
P \\
P^* + P^* \\
0 \\
P^*
\end{bmatrix}
\]
Differential equations

• Initial system:
\[
\frac{d}{dt} \begin{bmatrix} P \\ *P \\ P^* \\ *P^* \end{bmatrix} = \begin{bmatrix} -2\cdot k_1 & 0 & 0 & 0 \\ k_1 & -k_1 & 0 & 0 \\ k_1 & 0 & -k_1 & 0 \\ 0 & k_1 & k_1 & -k_2 \end{bmatrix} \cdot \begin{bmatrix} P \\ *P \\ P^* \\ *P^* \end{bmatrix}
\]

• Reduced system:
\[
\frac{d}{dt} \begin{bmatrix} P \\ *P + P^* \\ 0 \\ *P^* \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} -2\cdot k_1 & 0 & 0 & 0 \\ k_1 & -k_1 & 0 & 0 \\ k_1 & 0 & -k_1 & 0 \\ 0 & k_1 & k_1 & -k_2 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} P \\ *P + P^* \\ 0 \\ *P^* \end{bmatrix}
\]
Pair of projections induced by an equivalence relation among variables

Let r be an idempotent mapping from \mathcal{V} to \mathcal{V}. We define two linear projections $P_r, Z_r \in (\mathcal{V} \rightarrow \mathbb{R}^+) \rightarrow (\mathcal{V} \rightarrow \mathbb{R}^+)$ by:

- $P_r(\rho)(V) = \begin{cases} \sum\{\rho(V') | r(V') = r(V)\} & \text{when } V = r(V) \\ 0 & \text{when } V \neq r(V) \end{cases}$

- $Z_r(\rho) = \begin{cases} V \mapsto \rho(V) & \text{when } V = r(V) \\ V \mapsto 0 & \text{when } V \neq r(V) \end{cases}$

We notice that the following diagram commutes:
Induced bisimulation

The mapping \(r \) induces a bisimulation,
\[\Delta \iff \text{for any } \sigma, \sigma' \in V \rightarrow \mathbb{R}^+, \ P_r(\sigma) = P_r(\sigma') \implies P_r(F(\sigma)) = P_r(F(\sigma')). \]

Indeed the mapping \(r \) induces a bisimulation,
\[\iff \text{for any } \sigma \in V \rightarrow \mathbb{R}^+, \ P_r(F(\sigma)) = P_r(F(P_r(\sigma))). \]
Induced abstraction

Under these assumptions \((r(\mathcal{V}), P_r, P_r \circ F \circ Z_r)\) is an abstraction of \((\mathcal{V}, F)\), as proved in the following commutative diagram:
Overview

1. Context and motivations
2. Handmade ODEs
3. Abstract interpretation framework
 (a) Concrete semantics
 (b) Abstraction
 (c) Bisimulation
 (d) Combination
4. Kappa
5. Concrete semantics
6. Abstract semantics
7. Conclusion
Abstract projection

We assume that we are given:

- a concrete system \((\mathcal{V}, F)\);
- an abstraction \((\mathcal{V}^#, \psi, F^#)\) of \((\mathcal{V}, F)\) (I);
- an idempotent mapping \(r\) over \(\mathcal{V}\) which induces a bisimulation (II);
- an idempotent mapping \(r^#\) over \(\mathcal{V}^#\) (III);

such that: \(\psi \circ P_r = P_{r^#} \circ \psi\) (IV).
Combination of abstractions

Under these assumptions, \((r^\#(V^\#), P_{r^\#} \circ \psi, P_{r^\#} \circ F^\# \circ Z_{r^\#})\) is an abstraction of \((V, F)\), as proved in the following commutative diagram:
Overview

1. Context and motivations
2. Handmade ODEs
3. Abstract interpretation framework
4. Kappa
5. Concrete semantics
6. Abstract semantics
7. Conclusion
A species

\[E(r!1), R(l!1,r!2), R(r!2,l!3), E(r!3) \]
A Unbinding/Binding Rule

\[E(r), R(l,r) \leftrightarrow E(r!1), R(l!1,r) \]
Internal state

\[R(Y_1 \sim u, l!1), E(r!1) \leftrightarrow R(Y_1 \sim p, l!1), E(r!1) \]
Don’t care, Don’t write

\[R \quad \text{Y1} \quad \text{u} \quad \text{r} \quad \leftrightarrow \quad R \quad \text{Y1} \quad \text{p} \quad \text{r} \neq \]

\[R \quad \text{Y1} \quad \text{u} \quad \text{r} \quad \leftrightarrow \quad R \quad \text{Y1} \quad \text{p} \quad \text{r} \]
Overview

1. Context and motivations
2. Handmade ODEs
3. Abstract interpretation framework
4. Kappa
5. Concrete semantics
6. Abstract semantics
7. Conclusion
We write $Z \triangleleft_\Phi Z'$ iff:

- Φ is a site-graph morphism:
 - i is less specific than $\Phi(i)$,
 - if there is a link between (i, s) and (i', s'), then there is a link between $(\Phi(i), s)$ and $(\Phi(i'), s')$.

- Φ is an into map (injective):
 - $\Phi(i) = \Phi(i')$ implies that $i = i'$.
Requirements

1. Reachable species
 We are given a set \mathcal{R} of connected site-graphs such that:
 - \mathcal{R} is finite;
 - \mathcal{R} contains at most one site-graph per isomorphism class;
 - \mathcal{R} is closed with respect to rule application;

2. Rules are associated with kinetic factors.
Differential system

Let us consider a rule \textit{rule}: \textit{lhs} \rightarrow \textit{rhs} k.

A ground instanciation of \textit{rule} is defined by an embedding \(\phi \) between \textit{lhs} into a tuple \((r_i)\) of elements in \(\mathcal{R} \) such that:

1. \(\textit{lhs} \) and \(\text{IM}(\phi) \) have the same number of connected components;
2. \(\phi \) preserves disconnectiveness.

and is written: \(r_1, \ldots, r_m \rightarrow p_1, \ldots, p_n \ k. \)

For each such ground instantiation, we get:

\[
\frac{d[r_i]}{dt} = \frac{k \cdot \prod [r_i]}{\text{SYM}(\textit{lhs})}
\text{ and } \frac{d[p_i]}{dt} = \frac{k \cdot \prod [r_i]}{\text{SYM}(\textit{lhs})}.
\]

where \(\text{SYM}(E) = \#\{\Phi \mid E \triangleleft_{\Phi} E\}. \)
Overview

1. Context and motivations
2. Handmade ODEs
3. Abstract interpretation framework
4. Kappa
5. Concrete semantics
6. Abstract semantics
 (a) Fragments
 (b) Soundness criteria
7. Conclusion
Abstract domain

We are looking for suitable pair $(\mathcal{V}^\#, \psi)$ (such that $\mathbb{F}^\#$ exists).

The set of linear variable replacements is too big to be explored.

We introduce a specific shape on $(\mathcal{V}^\#, \psi)$ so as:

- restrict the exploration;
- drive the intuition (by using the flow of information);
- having efficient way to find suitable abstractions $(\mathcal{V}^\#, \psi)$ and to compute $\mathbb{F}^\#$.

Our choice might be not optimal, but we can live with that.
Partial species

Fragments are well-chosen partial species.

A partial species $\mathcal{X} \in \mathcal{P}$ is a connected site-graph such that:
- the set of the sites of each node of type \mathcal{A} is a subset of the set of the sites of \mathcal{A};
- sites are free, bound to another site, or tagged with a binding type.

For instance:

$$G(b!d,So,a!1),Sh(Y_7!1,pi!2),R(Y_{48}!2,r)$$
Contact map

G
Sh
So

E

R

Y_{68}

Y_{48}

Y_7

b

d

a

pi

r

l

Jérôme Feret

Friday, September the 16th
Fragments and prefragments

A prefragment is a partial species which can be annotated with a binary relation \rightarrow over the sites, such that:

1. There would be a site which is reachable from each other site, via the reflexive and transitive closure of \rightarrow;

2. Any relation over sites can be projected over a relation on the annotated interaction map.

A fragment is a maximal prefragment (for the embedding order).
Are they fragments?
Are they fragments?
Are they fragments?

Thus, it is a prefragment.
Are they fragments?

It is maximally specified. Thus it is a fragment.
Are they fragments?
Are they fragments?

Thus, it is a prefragment.
Are they fragments?

It can be refined into another prefragment. Thus, it is not a fragment.
Are they fragments?

So b a Y_7

G d b

Sh
Are they fragments?

Thus, it is a prefragment.
Are they fragments?

It can be refined into another prefragment. Thus, it is not a fragment.
Are they fragments?
Are they fragments?

Thus, it is a prefragment.
Are they fragments?

It is maximally specified. Thus it is a fragment.
Are they fragments?

Yes

No

Yes

No

Yes
Basic properties

Property 1 (prefragment) The concentration of any prefragment can be expressed as a linear combination of the concentration of some fragments.

We consider two norms $|| \cdot ||$ on $\mathcal{V} \to \mathbb{R}^+$ and $|| \cdot ||^\#$ on $\mathcal{V}^\# \to \mathbb{R}^+$.

Property 2 (non-degenerescence) Given a sequence of valuations $(x_n)_{n \in \mathbb{N}} \in (\mathcal{V} \to \mathbb{R}^+)^\mathbb{N}$ such that $||x_n||$ diverges toward $+\infty$, then $||\phi(x_n)||^\#$ diverges toward $+\infty$ as well.

Which other properties do we need so that the function $F^\#$ can be defined?
Overview

1. Context and motivations
2. Handmade ODEs
3. Abstract interpretation framework
4. Kappa
5. Concrete semantics
6. Abstract semantics
 (a) Fragments
 (b) Soundness criteria
7. Conclusion
Can we express the amount (per time unit) of this fragment (below) concentration that is consumed by this rule (above)?
Fragments consumption

No, because we have abstracted away the correlation between the state of the site r and the state of the site l.
Whenever a fragment intersects a connected component of a lhs on a modified site, then the connected component must be embedded in the fragment!
We reflect, in the annotated contact map, each path that stems from a tested site to a modified site (in the lhs of a rule).
We need to express the “concentration” of any connected component of a lhs with respect to the “concentration” of fragments.
Each connected component of a lhs must be a prefragment.
For each connected component of a lhs, there must exists a site which is reachable from all the other ones.
For any rule:

\[
\text{rule} : \ C_1, \ldots, C_n \rightarrow \text{rhs} \quad k
\]

and any embedding between a modified connected component \(C_k \) and a fragment \(F \), we get:

\[
\frac{d[F]}{dt} = \frac{k \cdot [F] \cdot \prod_{i \neq k} [C_i]}{\text{SYM}(C_1, \ldots, C_n) \cdot \text{SYM}(F)}.
\]
Can we express the amount (per time unit) of this fragment (bellow) concentration that is produced by the rule (above)?
Yes, if the connected components of the lhs of the refinement are prefragments. This is already satisfied thanks to the previous syntactic criteria.
For any rule:

\[
\text{rule: } C_1, \ldots, C_m \rightarrow \text{rhs} \quad k
\]

and any overlap between a fragment \(F \) and \(\text{rhs} \) on a modified site, we write \(C'_1, \ldots, C'_n \) the lhs of the refined rule;

if \(m = n \), then we get:

\[
\frac{d[F]}{dt} = \frac{k \cdot \prod_i [C'_i]}{\text{SYM}(C_1, \ldots, C_m) \cdot \text{SYM}(F)};
\]

otherwise, we get no contribution.
Fragment properties

If:

• an annotated contact map satisfies the syntactic criteria,
• fragments are defined by this annotated contact map,
• we know the concentration of fragments;

then:

• we can express the concentration of any connected component occurring in lhss,
• we can express fragment proper consumption,
• we can express fragment proper production,

• WE HAVE A CONSTRUCTIVE DEFINITION FOR F^\sharp.

Jérôme Feret 70 Friday, September the 16th
Overview

1. Context and motivations
2. Handmade ODEs
3. Abstract interpretation framework
4. Kappa
5. Concrete semantics
6. Abstract semantics
7. Conclusion
Experimental results

<table>
<thead>
<tr>
<th>Model</th>
<th>early EGF</th>
<th>EGF/Insulin</th>
<th>SFB</th>
</tr>
</thead>
<tbody>
<tr>
<td>#species</td>
<td>356</td>
<td>2899</td>
<td>$\sim 2.10^{19}$</td>
</tr>
<tr>
<td>#fragments (ODEs)</td>
<td>38</td>
<td>208</td>
<td>$\sim 2.10^{5}$</td>
</tr>
<tr>
<td>#fragments (CTMC)</td>
<td>356</td>
<td>618</td>
<td>$\sim 2.10^{19}$</td>
</tr>
</tbody>
</table>

Both differential semantics (4 curves with match pairwise)
Related issues I: Semantics comparisons

Species-based semantics Rule-based semantics Abstract semantics

CTMC ⊆ refinements

limit

refinements

ODE ⊆ limit

another talk!

this talk!

Jérôme Feret 73 Friday, September the 16th
1. ODE approximations:
 - Concrete definition of the control flow and hierarchy of abstractions.
 A notion of control flow which would be invariant by:
 - neutral rule refinement;
 - compilation of a Kappa system into a Kappa system with only one agent type.

 Joint work with Ferdinanda Camporesi (Bologna/ÉNS)

2. Stochastic semantics approximations:
 - Can we design abstraction?
 - Find the adequate soundness criteria.

 Joint work with Thomas Henzinger (IST-Vienna), Heinz Koepppl (ETH-Zurich), Tatjana Petrov (ETH-Zurich)