
Abstract Interpretation of Mobile Systems 1

Jérôme Feret

Département d’Informatique de l’École Normale Supérieure,
75230 PARIS Cedex 5, FRANCE

Abstract

We propose an Abstract Interpretation-based context-free analysis for mobile sys-
tems written in the π-calculus. Our analysis automatically captures a sound – but
not complete – description of the potential behavior of a mobile system interacting
with an unknown context. It focuses on both the control flow and the occurrence
number of agents during computation sequences.

Control flow analysis detects all the possible interactions between the agents of a
system, but also the potential interactions with the context. In order to deal with
dynamic creation of both names and agents which is an inherent feature of mobility,
our analysis distinguishes between recursive instances of the same agent. This way,
we are able to prove the integrity of an ftp-server used by an unbounded number
of clients. Occurrence counting analysis just consists in abstracting the occurrence
number of instances of agents. Our abstraction is relational; this makes us able to
detect both quickly and precisely mutual exclusion and non-exhaustion of resources.

Key words: mobility, π-calculus, static analysis, abstract interpretation, control
flow analysis, occurrence counting analysis, worst case analysis.

1 Introduction

The development of large scale communicating distributed systems demands
the design of methods for analyzing mobile systems. In such systems, agent
distribution dynamically changes during computation, making their analysis a
very difficult task. Furthermore, the size of these systems, such as the Internet
for instance, is large enough to prevent a single person from knowing the
whole system. This is why we are interested in validating properties on a

1 This work was supported by the RTD project IST-1999-20527 “DAEDALUS” of
the European FP5 programme.

Preprint submitted to Elsevier Science 11 March 2004

mobile system which belongs to a bigger one, called its context, without having
precise knowledge of this context. We propose a fully automatic Abstract
Interpretation-based analysis for detecting and proving some properties of
such mobile systems.

In this study, we focus on mobile systems described in the π-calculus [22, 23]
which is a formalism well suited for understanding the problems related to mo-
bility. The π-calculus describes systems of agents which may interact via the
communication of channel names through channels. When receiving a channel
name, an agent gets some control over this name: it can communicate with
other agents sharing this name or even communicate this name to other agents.
The expressive power of the π-calculus also follows from a replication mecha-
nism, which allows the spawning of number of instances of a same agent. Thus,
each instance of each agent opens its own channels and can then communi-
cate their names to other agents. The semantics of the π-calculus is usually
described up to a congruence relation. This relation allows agents to interact
by solving conflict between channel names and making the agents move in the
syntactic description of the system. Nevertheless, because of this congruence
relation, it would be very difficult to derive an abstraction of the usual se-
mantics of the π-calculus. To solve this problem, we introduce a non-standard
semantics. This non-standard semantics is fully operational (i. e. it requires
no congruence relation). It uses a fresh name allocation scheme, in order to
provide fresh names to opened channels, and describes configurations as sets
of agents, so that the congruence relation is no longer required. Moreover, this
fresh name allocation scheme allows us to encode some interesting properties
in the semantics, such as the fact that two channels have been opened by the
same instance of an agent, or by two successive instances of an agent.

Having chosen the appropriate semantics, we use the Abstract Interpretation
framework to design decidable analyses of the π-calculus. This framework is
highly generic: it can be applied to various analyses, provided some abstract
primitives are given. Moreover, it is extensible: it allows us to build the (ap-
proximated reduced) product of several analyses expressed in this framework.
We then use our framework to address two orthogonal issues: the control flow
and the occurrence counting. Control flow analysis consists in detecting the
set of agent instances that can receive the names of the channels opened by a
given instance of an agent. This analysis is context-free: it will detect which
channel names can be communicated to the context. It is also non-uniform
in the sense that it distinguishes between recursive instances of agents. It can
prove, for instance, that a name can be communicated to only one other in-
stance of an agent, and not to the other ones. In the case of the ftp-server,
it detects that the server can return a query only to the correct client even
in the case where an unbounded number of clients are created. Occurrence
counting analysis consists in abstracting the occurrence number of instances
of agents during computation sequences. It is especially useful to detect mu-

2

tual exclusion. It also helps in discovering a bound to the number of agents
during computation sequences, so that we can verify that some part of the
systems will not exceed physical limits imposed by the implementation of the
system. In the case of the ftp-server, we can automatically infer the maximum
number of simultaneous client sessions. Our approach relies on the use of a
reduced product between a non-relational and a relational domain. Complex-
ity problems are solved by using approximated algorithms for calculating a
reduction between these two domains.

As a result we get a polynomial analysis which has been implemented in
Ocaml. The corresponding prototype can be used on the web at:

http://www.di.ens.fr/~feret/prototypes/prototypes.html.en

Some examples and a short tutorial are also provided.

Related works are discussed in Sect. 2. The standard semantics of the π-
calculus is given in Sect. 3. It is first refined in Sect. 4 and extended to open
systems in Sect. 5. A generic abstract analysis is designed in Sect. 6. It is
instantiated in both Sect. 7 and Sect. 8 to get, respectively, a control flow and
an occurrence counting analysis. Complexity results and analysis times are
given in Sect. 9.

2 Related work

Flow analysis. Control flow analyses focus on the explicit flow of information.
Nielson et al. use abstract interpretation in [1–3] to infer a uniform descrip-
tion of the interactions between agents and apply Seidl’s solver to get a cubic
implementation of their analysis in [25]. Hennessy and Riely have designed a
type-based analysis with the same expressive power in [19]. These analyses use
explicit information flow to detect whether some security constraints specified
using a security level cannot be violated. Nevertheless, these analyzes are uni-
form (or mono-variant). They cannot distinguish between distinct instances
of the same agent. For example, it is impossible to give distinct security levels
to distinct instances of the same agent. System specification could be rewrit-
ten so that several instances of a given agent are syntacticly distinguished
from the others. Therefore, this requires a human intervention to guess which
replication have to be syntactically unfolded and how many instances have
to be distinguished. Our analysis requires no human analysis, and can find
interesting properties even if an arbitrary number of instances have to be
distinguished. Moreover, it is not obvious in many cases that there exists a
syntactic rewriting of the system so that several different recursive instances
can be distinguished on purely syntactic ground and where the security policy

3

is checkable using purely uniform analyses.

Cardelli et al. use group creation in [4] to assign dependent security levels
to channel names. A group can be associated with each recursive instance of
an agent, and can then be used to prevent names of channels from exiting
the scope of the instance which has opened these channels. Nevertheless, our
analysis is much more expressive: we can infer algebraic comparisons between
agent instances, which allows us to express the fact that an instance of an
agent can only communicate with the next instance of it or with the previous
one. As a consequence, we can prove that the name of a channel is sent back
to the instance which has previously opened this channel, even if this name is
not confined into the scope of this recursive instance.

Venet has already proposed a non-uniform analysis in [30, 31]. This analysis
infers a sound non-uniform description of the topology of communications
between the agents of friendly systems [22], in which replication guards cannot
be nested and systems are closed. The main contributions with respect to
Venet’s work are:

(1) the extension of the non-uniform analysis to agents with nested replica-
tion guards;

(2) the extension to open systems acting in a possibly unknown context;
(3) the occurrence counting analysis.

Occurrence counting analysis. Only very few analyses for counting occur-
rences of agents have been published. Nevertheless, this problem is very close
to the problem of approximating the behavior of a Petri net, and of occur-
rence counting in mobile ambients. In [18], Nielson et al. propose an exponen-
tial analysis for counting occurrences of agents inside ambients. In [26], they
use context-dependent counts for inferring a more accurate description of the
internal structure of agents, at the expense of a higher time complexity (an
exponential number of agents are distinguished). These analyses rely on the
use of a non-relational domain to abstract the content of an ambient. Then,
they use disjunctive completion, and abstract the set of all the potential con-
tents of a syntactic ambient as the power set of this abstract domain. These
two analyses encounter the same problem: in the case that several instances
of the same agent may coexist, when one instance of this agent performs a
computation step, these analyses cannot decide whether only one or several
instances remain after this computation step, so they have to consider the two
possible cases, which leads to both a loss of precision and an exponential ex-
plosion in complexity. The use of an approximated reduced product between
a relational domain and a non-relational domain to globally abstract sets of
multi-sets of agents allows us to solve this problem efficiently. Thus we obtain
a very accurate analysis which is polynomial in the number of syntactic agents
(i.e. polynomial in the size of the initial system configuration).

4

Behavioral types. In [20], Kobayashi and Igarashi use CCS processes as types
for mobile systems and check some behavioral invariants expressed in modal
logic. Nevertheless, describing causality between actions leads to an explosion
of the size of the types. Another problem is that their type system cannot
express properties that deal with the dynamic creation of channel names.
Rajamani and Rehof have extended this type system in [28], so that it handles
dynamic name creation. But type checking is undecidable in general. So, they
will have to propose an approximation in future work.

Modular analysis. Context-free semantics is an important issue in static anal-
ysis. It allows the analysis of only a part of a system, without much knowledge
of its context. It can be used to abstract the behavior of an instance of an
agent, and detect which names may escape the scope of this part. This can be
used to detect dead code, for instance. Rajamani and Rehof propose a modular
analysis in [28]. Having abstracted the behavior of two modules, they can cal-
culate an approximation of the parallel composition of them. But this analysis
is very restrictive because module types must satisfy some assume-guarantee
properties.

Security analysis. In the Dolev-Yao’s model [13], a system is usually proved not
to be vulnerable to a given class of attackers. Such classes are then described
by a set of rules which explain how an attacker can interact with a system.
In our approach, the class of the attacker is actually any system expressed in
the π-calculus. The benefit is that our context-free analysis is complete with
respect to the model, so that we can use our results to analyze a module.
The main drawback of our approach is that we cannot express other attacks.
For instance, we could imagine that an attacker could guess some sensitive
information, by observing the time of execution of some agents.

3 π-calculus

We introduce in this section the π-calculus and a standard semantics for it.
The π-calculus is a formalism used to describe mobile systems. It describes
a system as a set of agents which exchange information over channels. These
communications enable agent synchronization, but also dynamic modification
of the system topology: agents can open new channels, they can also pass con-
trol over some channels to other agents, and they can even dynamically create
other agents. Here, we consider a lazy version of the synchronous polyadic π-
calculus [22] with internal choice operator. In the polyadic π-calculus, agents
can communicate tuples of channel names. We use the lazy version of replica-
tion introduced in [29, Chap. 7]: agent creations are performed only when they
are required by a communication. This is not a limitation as full replication
can be encoded with lazy replication (Cf. [29, page:102]).

5

3.1 Syntax

LetN be a countable set of channel names and L a countable set of labels. The
syntax of agents is described in Fig. 1(a). Syntactic components are identified
by distinct labels in L. Input guard, replication guard and name restriction act
as name binders, i.e in the agents c?j[x1, ..., xn]P , ∗d?j[y1, ..., yp]Q and (ν x)R,
the occurrences of x1, ..., xn in P , y1, ..., yp in Q and x in R are bound. We
also assume that no name occurs twice in a whole system, as an argument of
an input guard, a replication guard or a name restriction. Usual rules about
scope, substitution and α-conversion apply. We denote by fn(P) the set of free
names in P , i.e names that are not under the scope of a binder, and by bn(P)
the set of bound names in P .

3.2 Semantics

We now informally introduce the semantics of the π-calculus. The agent aP
first computes the action a before launching the continuation P . The agent
(ν x)P opens a new channel, named x, the agent P can use this channel for
communicating, it can also send the name x to the other agents. In (P | Q), P
and Q are two concurrent agents which may behave independently, or interact
by communicating. The formula (P ⊕ Q) denotes an internal choice between
two agents. Either P or Q is run, while the other fades away; the choice be-
tween P andQ does not depend on the other agents. The agent 0 does nothing.
The agent c!i[x1, ..., xn]P sends a message via the channel named c, this mes-
sage is the tuple of channel names (x1, ..., xn). The agent c?i[y1, ..., yn]P waits
for a message on the channel named c, and binds the channel names y1,...,yn to
the received channel names. The agent ∗c?i[y1, ..., yn]P is a resource: it repli-
cates itself just before receiving a message: a new instance of P is launched
with y1,...,yn bound to the received channel names while ∗c?i[y1, ..., yn]P waits
for the next message.

The operational semantics is given by both a congruence relation in Fig. 1(b)
and a reduction relation in Fig. 1(c). The congruence relation allows agents
to interact, while the reduction relation describes agent computations. Some
rules in the congruence relation make agents move inside the syntactic tree:
they assert the associativity and commutativity of the parallel composition.
Some others extend the scope of names to the agents they are communicated
to: α-conversion solves conflicts between names, swapping selects the name the
scope of which we wish to extend, and extrusion extends its scope to another
agent. The reduction relation describes agents’ communications. A communi-
cation is allowed when there are two concurrent agents, such that the first one
sends a message on a channel, while the second one waits for a message on

6

P ::= aP (action)

| (ν x)P (name restriction)

| (P | P) (parallel composition)

| (P ⊕ P) (internal choice)

| 0 (nil)

a ::= c!j [x1, ..., xn] (output guard)

| c?i[x1, ..., xn] (input guard)

| ∗c?i[x1, ..., xn] (replication guard)

where c, x1, ..., xn, x ∈ N , i, j ∈ L and n > 0.

(a) Syntax

(ν x)P ≡ (ν y)P [x← y] if y 6∈ fn(P) (α-conversion)

P | Q ≡ Q | P (commutativity)

P | (Q | R) ≡ (P | Q) | R (associativity)

P | 0 ≡ P (end of an agent)

(ν x)0 ≡ 0 (garbage collecting)

(ν x)(ν y)P ≡ (ν y)(ν x)P (swapping)

((ν x)P) | Q ≡ (ν x)(P | Q) if x 6∈ fn(Q) (extrusion)

where x, y ∈ N .

(b) Congruence relation

c!j [x1, ..., xn]P | c?i[y1, ..., yn]Q
(i,j)
−→ P |

∼
Q (comm.)

c!j [x1, ..., xn]P | ∗c?i[y1, ..., yn]Q
(i,j)
−→ P |

∼
Q | ∗c?i[y1, ..., yn]Q (replication)

P ⊕Q
⊕
−→ P (left choice)

P ⊕Q
⊕
−→ Q (right choice)

P
λ
−→ Q

(ν x)P
λ
−→ (ν x)Q

P ′ ≡ P P
λ
−→ Q Q ≡ Q′

P ′ λ
−→ Q′

P
λ
−→ P ′

P | Q
λ
−→ P ′ | Q

where c, x, x1, ..., xn, y1, ..., yn ∈ N , i, j ∈ L, λ ∈ {⊕} ∪ (L × L),

and
∼
Q = Q[y1 ← x1, ..., yn ← xn].

(c) Reduction relation

Fig. 1. Standard operational semantics

7

the same channel (we also request that both messages have the same arity).
The results of such a communication are obtained by applying the substitu-
tion of the λ-calculus in the continuation of the message receiver. When the
receiver is a resource, it is just syntactically replicated before performing the
communication; this way the resource is still available after the communica-
tion. We have labelled each choice reduction step with the symbol ⊕ and each
communication reduction step with the labels of both agents involved in the
communication: this will allow us to relate the state of a system to the history
of the computation steps that have led to this state.

3.3 Examples

We now propose some examples to illustrate both this semantics and the kind
of properties we are interested in. We will find that the semantics we have
considered is not precise enough to handle the properties we are interested in.

Example 1 An ftp-server can be described by the system given in Fig. 2.
The first resource repeatedly creates a new client which sends a query to a
server. This query is composed of a query request, and an address address.
The client sends its query again in the case that it receives a failure report de-
noted by the agent address![]. The second resource describes the server. When
this one receives a query, it replicates itself. Then, either it uses an available
port and computes the query or it reports a failure to the client by spawn-
ing the agent address![]. Available ports are denoted by agents port![]. Data
processing just consists in a communication between two agents of the server,
through the channel the name of which is deal: most computational features
are abstracted away. After this communication, the port is released, while the
answer is sent back to the client. An instance of the agent email![rep] is left
as a trace of the session.

Our analysis will prove both the integrity and the non-exhaustion of this sys-
tem: it will discover that each time an agent email ![rep] is spawned, the
names email and rep are respectively bound to the names of two channels
opened by the restrictions (ν address) and (ν request) of the same instance
of a resource, and so the server returns its computed answer to the correct
client; it also captures the fact that no more than three instances of the syn-
tactic agent deal ![data] can occur simultaneously, which means that no more
than three simultaneous sessions can be active in the same time.

Example 2 We propose in Fig. 3 a mobile system which creates a ring of
processes, with a token passed around this ring. The names of the channels
opened by name restrictions (ν left0) and (ν right) denote the processes of
the ring. The first part of the system describes the ring creation. The first pro-

8

((ν make)(ν server)(ν port)
((∗make?1[](ν address)(ν request)

(
(∗address ?2[]server!3[address, request])
|
address !4[]
|
make!5[]

))
|
(∗server?6[email, data](ν deal)

(
port?7[](deal !8[data] | deal ?9[rep](email !10[rep] | port!11[]))
⊕
email !12[]

))
| port!13[]
| port!14[]
| port!15[]
| make!16[])
)

Fig. 2. An ftp-server

((ν make)(ν mon)(ν left0)
(
((∗make?1[left](ν right)(mon!2[left, right] | make!3[right]))
| (∗make?4[left](mon!5[left, left0]))
| make!6[left0])
|
((∗mon?7[prev, next]

(∗prev ?8[](ν crit)(crit ?[]9next !10[]
| crit !11[])))

| left0!12[]))
)

Fig. 3. A ring of processes

9

cess is created by the restriction (ν left0). An agent mon![v1; v2] denotes a
connection between two processes. Then, each time the first resource is repli-
cated, a new process is created and linked to the previous process, which has
been passed as an argument of the replication. The second resource replication
closes the ring by linking the last created process to the first created process.
The second part of the system describes the execution of the processes: an ad-
ditional resource spawns a resource for each process of the ring. Then a token
is put into the ring of processes: the token is denoted by syntactic copies of
the agents next![] and left0![]. The name of this agent describes the token
location. When the token is available, the corresponding process can replicate
its resource, and as a result the process enters its critical section. The critical
section is exited when the two agents crit![] and crit?[] have interacted; the
token is then passed to the next process.

Our analysis can prove both the integrity and the non-exhaustion of this sys-
tem: it discovers that each time an agent mon![left;right] is spawned, either
the name left is linked to the channel opened by the restriction (ν left0), or
both names left and right are linked to two channels opened by instances of
the restriction (ν right), but the channel linked to the name left has been
opened by the previous instance of it, which means that a process of the ring
can only be connected to either the first one or to the next one; it captures
the fact that only one simultaneous instance of the syntactic agent crit![] can
exist. That is to say, that only one process of the ring can enter its critical
section at a given time.

Remark 3 The standard semantics is not well suited to express and capture
integrity properties, because the link between agent instances and the names
of the channel they have opened is not encoded explicitly. For instance, if we
think about the example of the ftp-server and if we cleverly choose the names
of opened channels by indexing them with the instance number of the client
resource, we obtain after two sessions of the server a system of the following
form 2 :

(ν c)(ν address1)(ν request1)(ν address2)(ν request2)

(S ′ | address1!
10[request1] | address2!

10[request2]).

It appears explicitly that request answers are returned at good addresses. How-
ever, we could have chosen the names differently and obtained the following
α-equivalent configuration:

(ν c)(ν address2)(ν request1)(ν address1)(ν request2)

(S ′ | address2!
10[request1] | address1!

10[request2])

2 This term only shows explicitly the information we are interested in. The variable
S ′ denotes the rest of the system and the notation (ν c) denotes a sequence of
restrictions for all implicit names.

10

in which this property is lost.

The link between the recursive instances of an agent and the names of the
channels they have opened could be easily hard-coded: it would be enough to
open a new channel named p for each recursive instance of an agent, and then
encoding the relation that this instance has opened a given channel name n
by spawning an agent has opened!i[p;n], where has opened is the name of
a channel opened at the beginning of the system computation. Nevertheless, it
would be very difficult to abstract this relation. All the more so since we are
also interested in more complex properties, such as whether two channels have
to be opened by two successive instances of an agent. Moreover, we do not
know statically which complex properties are required to prove easier ones.

The purpose of the next section is to design a semantics in which channel
name origin is carefully traced and can easily be abstracted.

4 Refining the semantics

The non-standard semantics is a refined semantics which aims at explicitly
specifying the links between the channels and the instances of agents which
have opened them. Any instance of an agent is identified unambiguously by a
marker in order to distinguish that instance from all others. Each time a chan-
nel is opened, the name of this channel is tagged with the marker of the agent
instance which has opened this channel, so that the origin of channel names
is easily traced. Venet, in [31], has presented such a non-standard semantics,
but it applies only to a small part of the π-calculus, called the friendly sys-
tems [22]. In particular, it requires replication guards not to be nested, and
the system to be closed. We propose here a new non-standard semantics in
order to relax those restrictions.

This section will be organized as follows: we first describe our marker allocation
scheme, then we propose a naive fully operational semantics for describing the
behavior of closed mobile systems, and we finally improve this semantics in
order to reduce the number of computation steps. We deal with open systems
in the next section.

4.1 Fresh name allocation

As explained before, α-conversion prevents expressing the link between recur-
sive instances and the names of the channels they have opened. To avoid the
use of α-conversion, we propose a name allocation scheme which ensures the

11

freshness of allocated names. Such a scheme has already been proposed by
De Bruijn in [11]. Nevertheless, our requirement is quite different. De Bruijn’s
naming scheme allows α-conversion to be avoided, in order to simplify some
manual proofs. We also expect our scheme to allow us to express some in-
tegrity properties. For instance, we would like to express in our semantics the
fact that two names are denoting channels which have been opened by the
same instance of a given agent. Furthermore, as we want to make static anal-
yses, we want to capture invariants on allocated markers. For that purpose,
we want the scheme not to depend on the interleaving order. To solve that
problem, we propose to tag each instance of agent by a marker which encodes
the history of the replications which have led to its creation. Each name will
then be tagged with the marker of the agent which has opened the channel
denoted by this name.

We denote byM the set of all binary trees the leaves of which are all labelled
with ε and the nodes of which are labelled with pairs (i, j) where both i and
j are in L. The tree having a node labelled with a, a left sibling t1 and a right
one t2 is denoted by N(a, t1, t2). Markers are binary trees in M. Initial agent
instances are tagged with the marker ε, while the marker of each new agent
instance is calculated recursively from the marker of the agent instances the
computation of which has lead to its creation:

• when a computation step does not involve replicating a resource, the marker
of the computed agent is just passed to its continuation;
• when a resource is replicated, a new marker is deterministically allocated

to the spawned instance: it is given by N((i, j), idi, idj) where i is the label
of the resource, idi is the marker of the resource, j is the label of the agent
instance which replicates the resource and idj is the marker of this agent
instance.

Marker allocation consistency is expressed by the following proposition:

Proposition 4 During each computation sequence, two distinct instances of
the same agent are always tagged with distinct markers.

PROOF. The proof of Prop. 4 can be made by induction on the length of the
computation sequence. It relies on the fact that each tagged agent instance
contains explicitly both the label and the markers of an agent instance which
has necessarily been consumed to spawn this instance. 2

Moreover, in accordance with the following proposition, we can simplify the
shape of the markers without losing marker allocation consistency:

12

Proposition 5 Let φ1 and φ2 be the two following functions:

φ1 :















M → (L 2)∗

N(a, b, c) 7→ φ1(c).a

ε 7→ ε

φ2 :















M → L∗

N((i, j), b, c) 7→ φ2(c).j

ε 7→ ε.

Marker allocation remains consistent when replacing each marker by its image
by φ1 or φ2.

Such simplifications allow us to reduce the cost of our analysis, but also lead
to a loss of accuracy, since they merge information related to distinct compu-
tation sequences of the system.

Example 6 Coming back to the example of the ftp-server, with this allocation
scheme, the first instance of the client resource will be tagged with the marker
id1 = N((1, 16), ε, ε), while the second instance will be tagged with the marker
id2 = N((1, 5), ε,N((1, 16), ε, ε)). So that the configuration reached after two
sessions of the server will be of the following form:

(ν c)(ν addressid1
)(ν requestid1

)(ν addressid2
)(ν requestid2

)

(S ′ | addressid1
!10[requestid1

] | addressid2
!10[requestid2

]),

where the names are indexed by the marker of the threads which have opened
the channels they denote. We did not indicate the marker of agent instances
which depends on the number of attempts required to establish the connection
with the server. It appears explicitly that the names addressidi

and requestidi

communicated to an instance of the agent labelled 10 denote two channels
opened by the same recursive instance of an agent.

4.2 Naive semantics

We now propose a fully operational semantics of the π-calculus, in which the
channel names are allocated in accordance to the previously proposed fresh
name allocation scheme. Furthermore, we get rid of the congruence relation
by orienting it, and simulating it by additional operational rules.

4.2.1 Definition

Let us first consider the case of a closed mobile system S in the π-calculus.
The subset of L used in labeling S is denoted by Lused. A non-standard con-
figuration is a set of thread instances, where a thread instance is a triplet
composed of a syntactic component, a marker and an environment. The syn-
tactic component is a copy of a sub-term of S, the marker is calculated at

13

the creation of the thread and the environment specifies the semantic value
of each free name of the syntactic component: it maps each free name of the
syntactic component to a pair (x, id), where x is a bound name of S and id is
a marker. Intuitively, (x, id) refers to the name of the channel opened by the
instance of the restriction (ν x) tagged with the marker id. While threads are
running, environments are calculated in order to mimic the standard seman-
tics. The translation of a labelled system S into a set of initial threads and
non-standard computation rules are given in Fig. 4.

Roughly speaking, the initial configuration contains only one thread: the sys-
tem itself, tagged with the marker of the initial thread, ε. Since the system is
closed, its environment is empty. Structural rules mimic and orient the congru-
ence relation. A thread the syntactic component of which is composed of two
concurrent agents can be replaced by the two corresponding threads. Name
restriction consists in opening a channel denoted by a fresh name, and binding
the corresponding variable to this name in the environment of the continua-
tion. The fresh name is obtained by tagging the name used in the restriction
by the marker of the agent which has opened the corresponding channel. A
thread the syntactic component of which is the empty agent can be removed.
Choice rules mimic choice reduction rules. A thread the syntactic component
of which is a choice between two agents can be replaced by a thread corre-
sponding to one of these agents. Communication rules mimic communication
reduction rules. The synchronization condition is checked in the environment
of the communicating threads. Name passing is described by explicit substitu-
tion in environments. In the case that a resource is replicated, a fresh marker
is inferred in accordance with our marker allocation scheme.

Example 7 We consider the following system:

(ν a)(∗a?1[]((ν b)(b!2[b]0 | a!3[]0)) | a!4[]0),

and propose a computation sequence for it in the naive non-standard semantics
in Fig. 5. The initial state C0 is just a single thread the syntactic component
of which is the system, the marker of which is ε and the environment of which
is empty. The first computation step C0

ε
−→ n C1 consists in opening a new

channel, named (a, ε), since it is opened using the restriction (ν a) of a thread
the marker of which is ε. The second computation step C1

ε
−→ n C2 consists

in decomposing the thread into two concurrent threads; thus the marker of
the single thread is just passed to both threads. The third computation step

C2
(1,4)
−→ n C3 is a communication between the two threads. Since the first

one is a resource, it is still available after the communication. The thread
which has sent the message is consumed and new threads, corresponding to
the continuation of the communicating threads are spawned. The continuation
of the resource is tagged with a new marker N((1, 4), ε, ε) obtained from both
the labels and the markers of both communicating threads, while the marker

14

Cn
0 (S) = (S, ε, ∅)

(a) Initial configuration

C ∪ {(P | Q, id, E)}
ε
−→n C ∪ {(P, id, E|fn(P)); (Q, id, E|fn(Q))}

C ∪ {((ν x)P, id, E)}
ε
−→n C ∪ {(P, id, E[x→ (x, id)]|fn(P))}

C ∪ {(0, id, E)}
ε
−→n C

(b) Structural rules

C ∪ {P ⊕Q, id, E}
⊕
−→n C ∪ {(P, id, E|fn(P))}

C ∪ {P ⊕Q, id, E}
⊕
−→n C ∪ {(Q, id, E|fn(Q))}

(c) Choice rules

E?(y) = E!(x)

C ∪











(y?i[y]P, id?, E?);

(x!j [x]Q, id!, E!)











(i,j)
−→n C ∪











(P, id?, E?[y → E!(x)]|fn(P));

(Q, id!, E!|fn(Q))











E?(y) = E!(x), id∗ = N((i, j), id?, id!)

C ∪











(∗y?i[y]P, id?, E?);

(x!j [x]Q, id!, E!)











(i,j)
−→n C ∪



























(∗y?i[y]P, id?, E?);

(P, id∗, E?[y → E!(x)]|fn(P));

(Q, id!, E!|fn(Q))



























(d) Communication rules

Fig. 4. Naive semantics

15

C0
ε
−→n C1

ε
−→n C2

(1,4)
−→n C3

ε
−→n C4

ε
−→n C5

ε
−→n C6

(1,3)
−→n C7−→n

∗ C8

where

C0 ={((ν a)((∗a?1[](ν b)(b!2[b]0 | a!3[]0)) | a!4[]0), ε, ∅)}

C1 ={((∗a?1[](ν b)(b!2[b]0 | a!3[]0)) | a!4[]0, ε, [a 7→ (a, ε)])}

C2 =











(∗a?1[](ν b)(b!2[b]0 | a!3[]0), ε, [a 7→ (a, ε)]);

(a!4[]0, ε, [a 7→ (a, ε)])











C3 =



























(∗a?1[](ν b)(b!2[b]0 | a!3[]0), ε, [a 7→ (a, ε)]);

((ν b)(b!2[b]0 | a!3[]0),N((1, 4), ε, ε), [a 7→ (a, ε)]);

(0, ε, ∅)



























C4 =











(∗a?1[](ν b)(b!2[b]0 | a!3[]0), ε, [a 7→ (a, ε)]);

((ν b)(b!2[b]0 | a!3[]0),N((1, 4), ε, ε), [a 7→ (a, ε)])











C5 =











(∗a?1[](ν b)(b!2[b]0 | a!3[]0), ε, [a 7→ (a, ε)]);

((b!2[b]0 | a!3[]0),N((1, 4), ε, ε), [a 7→ (a, ε), b 7→ (b,N((1, 4), ε, ε))])











C6 =



























(∗a?1[](ν b)(b!2[b]0 | a!3[]0), ε, [a 7→ (a, ε)]);

(b!2[b]0,N((1, 4), ε, ε), [b 7→ (b,N((1, 4), ε, ε))]);

(a!3[]0,N((1, 4), ε, ε), [a 7→ (a, ε)])



























C7 =







































(∗a?1[](ν b)(b!2[b]0 | a!3[]0), ε, [a 7→ (a, ε)]);

(b!2[b]0,N((1, 4), ε, ε), [b 7→ (b,N((1, 4), ε, ε))]);

((ν b)(b!2[b]0 | a!3[]0),N((1, 3), ε,N((1, 4), ε, ε)), [a 7→ (a, ε)]);

(0, ε, ∅)







































C8 =







































(∗a?1[](ν b)(b!2[b]0 | a!3[]0), ε, [a 7→ (a, ε)]);

(b!2[b]0,N((1, 4), ε, ε), [b 7→ (b,N((1, 4), ε, ε))]);

(b!2[b]0,N((1, 3), ε,N((1, 4), ε, ε)), [b 7→ (b,N((1, 3), ε,N((1, 4), ε, ε)))]);

(a!3[]0,N((1, 3), ε,N((1, 4), ε, ε)), [a 7→ (a, ε)])







































Fig. 5. A computation sequence in the naive semantics

16

of the thread which has sent the message is just passed to its continuation.
The next computation step, C3

ε
−→ n C4, is a garbage collection: it consists in

removing the thread corresponding to the empty agent. The fifth computation
step C4

ε
−→ n C5 opens a channel. Its name is given by (b,N((1, 4), ε, ε))

since it is opened by the restriction (ν b) of a thread the marker of which is
N((1, 4), ε, ε). Then in the computation step C5

ε
−→n C6 a single thread is cut

into two concurrent threads, which allows us to go on with the recursion: the

computation step C6
(1,3)
−→ n C7 allows the system to spawn another instance

of the resource with the fresh marker N((1, 3), ε,N((1, 4), ε, ε)). There is no
confusion between recursive instances and the names of the channels they have
opened: we can notice that in each thread corresponding to the agent labelled
b!2[b], the marker of the thread and the marker of the name communicated to
the variable b are the same. 2

4.2.2 Correspondence

The correspondence between the standard and the naive non-standard seman-
tics is established by a translation function Π. We define the translation Π(C)
of a non-standard configuration C as follows:

Π(C) = (ν c1)...(ν ck)(E(t1)| ... |E(tl))

where {ci | i ∈ J1; kK} = {E(x) | (P, id, E) ∈ C, x ∈ fn(P)}, C = {ti | i ∈
J1; lK} and E is the function which substitutes each free name of an agent
by its image in the environment. The system Π(C) is well defined thanks to
associativity, commutativity, and swapping rules. We have also assumed 3 that
N ×M was a subset of N .

The standard and the non-standard semantics are in weak bisimulation, as
expressed by the following theorem:

Theorem 8 We have S = Π(Cn
0 (S)), and for any non-standard configurations

C and for any word u ∈ (L2 ∪ {ε;⊕})∗ such that Cn
0 (S)

u
−→ n

∗ C, we have:

(1) C
ε
−→ n C

′ =⇒ Π(C) ≡ Π(C ′);

(2) ∀λ ∈ L2 ∪ {⊕}, C
λ
−→ n C

′ =⇒ Π(C)
λ
−→ Π(C ′);

(3) ∀λ ∈ L2 ∪ {⊕}, Π(C)
λ
−→ P =⇒ ∃D, ∃E,







C
ε
−→ n

∗ D
λ
−→ n E

Π(E) ≡ P.

The proof of Thm. 8 is shown in appendix A.

3 We consider in fact that a tagged name is a name, since there exists a bijection
between the set of the tagged names and the set of the names.

17

4.3 Efficient semantics

We now propose to reduce the number of reduction steps in order to make
analysis design easier, and also to obtain a more efficient analysis. We will first
consider a semantics in where all structural steps are automatically performed.
Then we will introduce another semantics in where choice steps are also dealt
in the same way.

4.3.1 Strongly bisimilar semantics

The binary relation
ε
−→n is nœtherian and locally confluent. So, it is confluent

[12], and we can define its limit ⇓ as follows:

a ⇓ b if and only if a
ε
−→n

∗ b and ∄c, b
ε
−→n c.

We now express explicitly this limit by designing an extraction function β i

which performs all structural rules in parallel. The definition of β i is given in
Fig. 6.

β i((ν n)P, id, E) = β i (P, id, (E[n 7→ (n, id)]))

β i(0, id, E) = ∅

β i(P | Q, id, E) = β i(P, id, E)∪β i(Q, id, E)

β i(P ⊕ Q, id, E) = {(P ⊕ Q, id, E|fn(P ⊕ Q))}

β i(aP, id, E) = {(aP, id, E|fn(aP))}

Fig. 6. Extraction function

Proposition 9 For any non-standard configuration C, we have C ⇓
⋃

t∈C
β i(t).

The proof of Prop. 9 is shown in the appendix B.

We define the intermediate semantics as the transition system ({Ci
0(S)},−→i),

where the set of the initial states {Ci
0(S)} and the computation rule −→ i are

given as follows:

• Ci
0(S) = β i(Cn

0 (S)),

• ∀λ ∈ (L2 ∪ {⊕}), a
λ
−→ i b if and only if ∃c, a

λ
−→n c and c ⇓ b.

Example 10 We come back to the previously given system:

(ν a)(∗a?1[]((ν b)(b!2[b]0 | a!3[]0)) | a!4[]0),

18

D0
(1,4)
−→ i D1

(1,3)
−→ i D2

where

D0 =











(∗a?1[](ν b)(b!2[b]0 | a!3[]0), ε, [a 7→ (a, ε)]);

(a!4[]0, ε, [a 7→ (a, ε)])











D1 =



























(∗a?1[](ν b)(b!2[b]0 | a!3[]0), ε, [a 7→ (a, ε)]);

(b!2[b]0,N((1, 4), ε, ε), [b 7→ (b,N((1, 4), ε, ε))])

(a!3[]0,N((1, 4), ε, ε), [a 7→ (a, ε)])



























D2 =







































(∗a?1[](ν b)(b!2[b]0 | a!3[]0), ε, [a 7→ (a, ε)]);

(b!2[b]0,N((1, 4), ε, ε), [b 7→ (b,N((1, 4), ε, ε))])

(b!2[b]0,N((1, 3), ε,N((1, 4), ε, ε)), [b 7→ (b,N((1, 3), ε,N((1, 4), ε, ε)))])

(a!3[]0,N((1, 3), ε,N((1, 4), ε, ε)), [a 7→ (a, ε)])







































Fig. 7. A computation sequence in the intermediate semantics

and give a computation sequence for it in Fig. 7. It appears explicitly that struc-
tural computation steps are not described anymore. They are all performed im-
plicitly at the beginning of the system, and after each communication or choice
computation step: this way, the initial state D0 is equal to the state C2 while
the whole computation sequence C0

ε
−→ n C1

ε
−→ n C2 becomes implicit, then

the single computation step D1
(1,4)
−→ i D2 encodes the computation sequence

C2
(1,4)
−→ n C3

ε
−→ n C4

ε
−→ n C5

ε
−→ n C6, and the single computation step

D2
(1,3)
−→ i D3 encodes the computation sequence C6

(1,3)
−→ n C7 −→ n

∗ C8.

The standard and the intermediate semantics are in strong bisimilation (up
to ≡), as expressed by the following theorem:

Theorem 11 We have S ≡ Π(Ci
0(S)), and for all non-standard configurations

C and for all word u ∈ (L2 ∪ {ε;⊕})∗ such that Ci
0(S)

u
−→ i

∗ C, we have:

(1) ∀λ ∈ L2 ∪ {⊕}, C
λ
−→ i C

′ =⇒ Π(C)
λ
−→ Π(C ′);

(2) ∀λ ∈ L2 ∪ {⊕}, Π(C)
λ
−→ P =⇒ ∃D,







C
λ
−→ i D

Π(D) ≡ P.

The proof of Thm. 11 is shown in appendix B.

19

4.3.2 Efficient semantics

We propose to focus on communication rules and also to factor choice rules.
To do this, we have to restrict the set of the traces: to make things easier, we
propose to consider only the traces in which communications are delayed until
no choices can be made. 4

We denote by 99K the binary relation
ε
−→ n ∪

⊕
−→ n . The reduction relation

99K is nœtherian, but not locally confluent. We define the relation =⇒ as
follows:

a =⇒ b if and only if a 99K∗ b and ∄c, b 99K c.

Since 99K is not confluent, =⇒ is not deterministic. We now express explicitly
its action by designing an extraction function β which computes the set of all
the successors of a given configuration. The definition of β is given in Fig. 8(a).

Proposition 12 For any non standard configuration C, we have:

{b | C =⇒ b} =
{

⋃

Contt | ∀t ∈ C, Contt ∈ β(t)
}

.

The proof of Prop. 12 is shown in appendix C.

Intuitively, β gives the set of all the choices when spawning a continuation.
To spawn a continuation for a thread the syntactic component of which is a
choice (P ⊕Q), we either spawn a continuation choice for P or a continuation
choice for Q. Spawning a continuation for a thread the syntactic component
of which is a parallel composition (P | Q), consists in choosing a continuation
for P , choosing a continuation for Q, and spawning concurrently these two
continuations.

We now define the efficient semantics as the transition system (Ce
0(S),−→e):

• Ce
0(S) = β(S, ε, ∅)

• ∀λ ∈ L2, a
λ
−→ e b if and only if ∃c, a

λ
−→n c and c =⇒ b.

An explicit definition of (Ce
0(S),−→ e) is given in Fig. 8.

The following theorem establishes the correspondence between the standard
and the efficient semantics:

Theorem 13 For any initial non-standard configuration C0 ∈ Ce
0(S), there

4 We have also considered in [14, Sect. 3.3] restricting the set of the traces to those
for which choices are made only when necessary, which comes down considering
external choices instead of internal ones.

20

β((ν x)P, id, E) = β (P, id, (E[x 7→ (x, id)]))

β(0, id, E) = {∅}

β(P ⊕ Q, id, E) = β(P, id, E) ∪ β(Q, id, E)

β(P | Q, id, E) = {A ∪ B | A ∈ β(P, id, E), B ∈ β(Q, id, E)}

β(aP, id, E) = {{(aP, id, E|fn(aP))}}

(a) Extraction function

Ce
0(S) = β(S, ε, ∅)

(b) Initial configurations















E?(y) = E!(x),

CtP∈β(P, id?, E?[yi 7→ E!(xi)]),

CtQ∈β(Q, id!, E!)

C ∪











(y?i[y]P, id?, E?),

(x!j [x]Q, id!, E!)











(i,j)
−→ e (C ∪ CtP ∪ CtQ)















E∗(y) = E!(x),

CtP∈β(P,N((i, j), id∗, id!), E∗[yi 7→ E!(xi)]),

CtQ∈β(Q, id!, E!)

C ∪











(∗y?i[y]P, id∗, E∗),

(x!j [x]Q, id!, E!)











(i,j)
−→ e

(

C ∪ {(∗y?i[y]P, id∗, E∗)} ∪ CtP ∪ CtQ
)

(c) Communication rules

Fig. 8. Efficient semantics

21

exists k ∈ N such that S
⊕k

−→∗ Π(C0) and for all non-standard configurations
C and for all word u ∈ (L2)∗ such that C0

u
−→ e

∗ C, we have:

(1) ∀λ ∈ L2, C
λ
−→ e C

′ =⇒ ∃k ∈ N, ∃P, Π(C)
λ
−→ P

⊕k

−→∗ Π(C ′);

(2) ∀λ ∈ L2, Π(C)
λ
−→ P =⇒ ∃D,



















C
λ
−→ e D

and







∃k > 0, P
⊕k

−→+ Π(D)

or P ≡ Π(D).

The proof of Thm. 13 is shown in appendix C.

Remark 14 There is no bisimulation between the standard and the efficient
semantics. We have restricted both the set of traces to those where choices are
always performed before communications, and the set of states to those where
no choice appears at the top level. Therefore, these restrictions do not change
the properties we want to observe on mobile systems.

5 Context-free semantics

5.1 Construction

We now extend our non-standard semantics to open systems. An open system
S is a part of a bigger closed system, the rest of which is called its context.
The context is a set of agents, concurrently running with S. We represent
this context by the set of channel names it shares with the system S, we call
such names the unsafe names, and approximate its behavior as if it was an
intruder who was able to compose any possible agent working on these channel
names. An interaction between the system S and its context may only consist
in a communication between an agent pS of the first and an agent pcont of
the second, via a channel the name of which is unsafe. This communication is
called spying when pcont is the receiver, and spoiling when pcont is the message
sender. When spying, the context listens to obtain new channel names which
become unsafe. When spoiling, the context may pass any name to S, either
an unsafe name denoting a channel opened by a binder of the system S or a
name denoting a channel opened by the context itself; as a consequence, we
have to introduce an infinite set of unsafe names for the channels that the
context may have opened. Eventually, spoiling may lead to the replication of
a resource, which requires the allocation of an unambiguous marker, otherwise
the consistency of the semantics would not be preserved.

Since α-conversion allows us to choose the names of the new channels opened
by the context, we may assume that those channels have been declared by

22

recursive instances of a single agent. By choosing cont?, cont! ∈ L \ Lused and
ext ∈ N \ bn(S), such channels will be seen as if they had been created by the
restriction (ν ext) of a recursive instance of an agent the marker of which is
tn, where tn is recursively defined as follows:







t0 = N((cont?, cont!), ε, ε)

tn+1 = N((cont?, cont!), ε, tn).

Thus the set of the names of the channel opened by the context can be chosen
as the set {(ext, tn) | n ∈ N}, which we denote by en. We also assume that
all spoiling messages are recursive instances of a single agent the first action
of which is labelled with 0 ∈ L \ (Lused ∪ {cont?; cont!}). The coherence of our
semantics mainly relies on the fact that during a computation sequence, there
cannot be two different instances of a single agent with the same marker. We
guarantee this property by associating to each spoiling message a fresh marker
in the set {tn | n ∈ N}.

A non-standard configuration is now a triple (C,U, F), where C is a set of
threads, U is a set of channel names, and F is a set of markers. The set C
contains the running threads. The set U contains all the name (a, id) such
that the channel opened by the restriction (ν a) of the agent instance tagged
with the marker id is unsafe. The set F contains fresh markers which have not
been used as markers for spoiling message. At the beginning of the system,
free names have to be chosen among the set of initial unsafe names. We make
no assumptions about the past of the system, so that distinct free names can
be bound to the same unsafe name. This is especially useful when analyzing an
instance of a resource without any knowledge of the relations between channel
names that have been communicated to it.

The transition relation # takes into account the computations inside the
mobile system S, as well as the computations involving the system S and its
context. Initial non-standard configurations and computation rules are given
in Fig. 9.

5.2 Coherence

We propose to establish a relation between the non-standard semantics of
closed and open systems. Let SI(x1, ..., xn) be an open system the set of the
free names of which are exactly the set {xi | i ∈ J1;n]]}. We want to construct
a projection function Πτ , such that:

• any non-standard computation sequence τ of a closed system of the form
(ν c1)...(ν ck)(SI(ci1, ..., cin) | Sc(cj1 , ...cjl)), is mapped to a non-standard

23

Co
0(S) =











(Ct, en, {tn | n ∈ N})

∣

∣

∣

∣

∣

∣

∣

Ct ∈ β(S, ε, E),

E ∈ (fn(S)→ en)











(a) Initial configurations

C
λ
−→ e C

′

(C,U, F)
λ
(C ′, U, F)

(b) Internal interactions

t = (x!j [x1, ...xn]P, id, E), E(x) ∈ U, Ct ∈ β(P, id, E)

(C ∪ {t}, U, F)
(0,j)
(C ∪ Ct, U ∪ {E(xk) | k ∈ J1;nK}, F)

(c) Spied communication















t = (y?i[y1, ...yn]P, id, E),

E(y) ∈ U, c1, ..., cn ∈ U,

Ct ∈ β(P, id, E[yk 7→ ck])

(C ∪ {t}, U, F)
(i,0)
(C ∪ Ct, U, F)

(d) Spoiled communication







































t = (∗y?i[y1, ...yn]P, id, E),

E(y), c1, ..., cn ∈ U,

id! ∈ F,

id∗ = N((i, 0), id, id!),

Ct ∈ β(P, id∗, E[yk 7→ ck])

(C ∪ {t}, U, F)
(i,0)
(C ∪ {t} ∪ Ct, U, F \ {id!})

(e) Spoiled resource replication

Fig. 9. Context-free non-standard semantics

24

computation sequence of the open system SI ;
• reciprocally for any non-standard computation sequence τ ′ of the open sys-

tem SI, there exists a computation sequence τ of a closed system of the form
(ν c1)...(ν ck) (SI(ci1 , ..., cin) | Sc(cj1, ...cjl)), such that τ ′ = Πτ (τ).

Let LI ⊆ L be the subset of the labels occurring in SI and NI ⊆ N be
the subset of the names used in name restrictions of SI. The function lab
maps each syntactic component beginning with an action to the label of this
action. We introduce two one-to-one functions in order to interpret names and
agents created by the context of SI: let ΦM be a one-to-one map from the set
(L×M) into the set {tn | n ∈ N}, and ΦN be a one-to-one function from the
set (N ×M) into the set en. We now define the projection Πτ (SI,ΦM,ΦN)
which transforms each computation sequence of a closed mobile system S =
(ν c)(SI(ci1 , ..., cin) | Sc(cj1, ...cjl)) into a computation sequence of the part
SI of the system S. We assume without any loss of generality that fn(SI) =
{cik | k ∈ J1;nK}, and that no name occurs twice as an argument of a name
binder.

We first project each syntactic component label, by replacing each label which
does not occur in SI by the unique label of the context, that is to say the 0
label.

Definition 15 The projection Πl(l) of a syntactic component label l ∈ L is
defined as follows:

Πl(l) =







l if l ∈ LI

0 otherwise.

We then apply the syntactic component label projection pair-wise on transi-
tion labels.

Definition 16 The projection Πλ(i, j) of transition label (i, j) ∈ L 2 is defined
as follows:

Πλ(i, j) = (Πl(i),Πl(j)).

Next, we project the instance markers of the syntactic components of SI.
In such a marker, only the right sibling can be the marker of a syntactic
component of the context, as we know that the replicated resource necessarily
belongs to SI. When a resource is replicated by a message of the context, we
replace its syntactic component, and calculate a coherent marker according to
ΦM.

25

Definition 17 Marker projection is defined as follows:

ΠΦM

M :















N((i, j), t1, t2) 7→ N(Πλ(i, j),Π
ΦM

M (t1),Π
ΦM

M (t2)) if j ∈ LI

N((i, j), t1, t2) 7→ N(Πλ(i, j),Π
ΦM

M (t1),ΦM(j, t2))) if j 6∈ LI

ε 7→ ε.

We now project channel names. For a channel having been opened by a name
restriction of SI, we just project the marker. For those having been opened by
the context, we replace the name restriction by the unique restriction (ν ext)
of the context, and calculate the coherent marker according to ΦN .

Definition 18 Channel name projection is defined as follows:

ΠΦM,ΦN

N (x, idx) =







(x,ΠΦM

M (idx)) if x ∈ NI

ΦN (x, idx) otherwise.

We can easily project an instance of a syntactic component of SI by projecting
its marker, and each channel inside its environment.

Definition 19 Thread projection is defined as follows:

ΠΦM,ΦN

t (P, id, E) = (P,ΠΦM

M (id), [x 7→ ΠΦM,ΦN

N (E(x))]).

Then, we can project a configuration by projecting all the threads the syntactic
component of which is a sub-term of SI, and removing the other threads:

Definition 20 Configuration projection is defined as follows:

ΠΦM,ΦN

C (C) = {ΠΦM,ΦN

t (P, id, E) | (P, id, E) ∈ C, lab(P) ∈ LI}.

We can now define the projection of a computation sequence. At each com-
putation step, we obtain the set of the threads by projecting all the instances
of syntactic components of SI, and throwing away instances of syntactic com-
ponents of the context. Unfortunately, the set of unsafe names, and the set of
fresh markers, cannot be constructed without any knowledge of the previous
computation steps, so we construct them incrementally: at each computation
step, we insert spied names into the set of unsafe names, and remove the used
markers from the set of fresh markers. We also ignore all computation steps
only involving the context.

Definition 21 Computation sequence projection is then defined as follows:

Let τ = C0
λ1−→ e ...

λn−→ e Cn be a non-standard computation sequence, with

26

C0 ∈ Ce
0(S). We define the projection of τ , Πτ (SI,ΦM,ΦN)(τ) as the non-

standard computation sequence:

(A0, U0, F0)
Πλ(λa1

)

...
Πλ(λap)

(Ap, Up, Fp)

of the open system SI, where

• a1, ..., ap is the strictly ascending sequence of the elements of the set {i ∈
J1;nK | λi ∈ L

2 \ (L \ LI)
2};

• the initial configuration (A0, U0, F0) is the following triple:

(ΠΦM,ΦN

C (C0), en, {tn | n ∈ N});

• for k ∈ J1; pK, the configuration (Ak, Uk, Fk) is then defined as follows:
· Ak = ΠΦM,ΦN

C (Cak
),

· Uk =











Uk−1 if fst(λak
) ∈ LI,

Uk−1 ∪ {Π
ΦM,ΦN

N (E(xr)) | r ∈ J1;nK} otherwise,

where, in the last case, t = (x!j [x1, ..., xn]P, id, E) denotes the unique
thread in Cak−1

\ Cak
which matches this notation;

· Fk =











Fk−1 if snd(λak
) ∈ LI or if

λak−→ e is not a resource replication,

Fk−1 \ {ΦM(snd(λak
), id) | (P, id, E) ∈ Cak−1 \ Cak

} otherwise.

We establish the relation between the non-standard semantics of closed and
open systems, as follows:

Theorem 22 (Soundness) Let τ = C0...Cn be a non-standard computation
sequence of the following closed system:

(ν c1)...(ν ck)(SI(ci1, ..., cin) | Sc(cj1, ...cjl)),

with C0 ∈ Ce
0(S). Then Πτ (SI,ΦM,ΦN)(τ) = (A0, U0, F0)...(Ap, Up, Fp) is a

non-standard computation sequence of the open system SI and (A0, U0, F0) ∈
Co

0(S).

Theorem 23 (Completeness) Let τ ′ be the non-standard computation se-
quence of an open system SI, that we denote by:

(C0, U0, F0)
(i1,j1)
...

(in,jn)
(Cn, Un, Fn),

where (C0, U0, F0) ∈ Co
0(SI).

Then there exists:

• a closed system S∗ = (ν c)(SI(ci1 , ..., cin) | Sc(cj1, ...cjl)),

27

• two one-to-one functions ΦN and ΦM,
• a non-standard computation sequence τ of the system S∗,

such that Πτ (SI,ΦM,ΦN)(τ) = τ ′.

Soundness is ensured by construction. Completeness relies on the existence of
a most general context which can be used in simulating any context. It is given
in Fig. 10. It uses a global channel, named unsafe via which unsafe names
are sent an arbitrary amount of times. It is made off four kinds of resources.
The resource new opens a new unsafe channel; the resource repli is used to
replicates the information that a channel name is unsafe, so that a context
may use each unsafe name an arbitrary number of time; the resource spyk
collects an unsafe channel c, and receive through this channel a message of
arity k; the resource spoilk collects an unsafe channel c, and k unsafe names,
and sends the k names through the channel c. Resources spy0 and spoil0
only enforce some synchronization with the system. In Fig. 10, n denotes the
greatest arity of the messages occurring in the system part we analyze. Thus
the closed system can be chosen as the following one:

S∗ = (ν unsafe)(ν x1)...(ν xp)

(unsafe![x1] |...| unsafe![xp] | SI(xi1 , ..., xin) | Sc(unsafe)).

The non-standard computation sequence is obtained by mimicking spied and
spoiled computation steps in Sc. The full proof of Thms. 22 and 23 is shown
in appendix D.

Sc =(ν new)
(new | repli
| spy0 |...| spyn
| spoil0 | ... | spoiln
| new![]
)

where
• new := ∗new?[]((ν channel)(unsafe![channel] | new![]))
• repli := ∗unsafe?[x](unsafe![x] | unsafe![x])
• spyi := ∗unsafe?[c]c?[y1, ..., yi](unsafe![y1] | ... | unsafe![yi])
• spoili := ∗unsafe?[c]unsafe?[x1]...unsafe?[xi]c![x1, ..., xi]

Fig. 10. The most general context

28

6 Abstract Interpretation

Abstract Interpretation is a theory of the approximation of semantics. It for-
malizes the idea that the semantics can be more or less precise according to
the considered level of observation. In static analysis, abstract interpretation
is used to derive a decidable semantics from a concrete one. Because of the
upper-approximation, the result is not complete: this means that not all the
properties of the program are discovered, nevertheless, the result is sound: this
means that all the captured properties are correct.

In this section, we introduce a generic abstraction to approximate the behav-
ior of a mobile system. It could apply indeed to any transition system. This
abstraction does not yet depend on the abstracted properties: they are left
as a parameter of our analysis. Hence, our framework is highly generic, and
we can make a reduced product between several analyses. We will use this
framework to derive an analysis of the control flow in Sect. 7, and an analysis
of the occurrence number of the agents in Sect. 8.

6.1 Generic abstraction

We denote by C the set of the non-standard configurations and by Σ the set
of the transition labels. We are actually interested in the set C(S) of all the
configurations that a system may take during a finite sequence of computation
steps. This is given by its collecting semantics, which is defined in [6]. It can
be expressed as the least fixpoint of a ∪-complete endomorphism F on the
complete lattice ℘(Σ∗ × C) defined as follows:

F(X) = ({ε} × Co
0(S)) ∪

{

(u.λ, C ′)

∣

∣

∣

∣

∃C ∈ C, (u, C) ∈ X and C
λ
C ′

}

.

This least fixpoint is usually not decidable, so we use the Abstract Interpre-
tation framework [7] to compute a sound – but not necessarily complete –
approximation of it. More precisely, we use the relaxed version of Abstract In-
terpretation [8], in which the abstract domain is not supposed to be complete
under least upper bound; furthermore, no abstraction function is required.

Definition 24 An abstraction is a tuple (C♯,⊑♯,
⊔♯,⊥♯, γ, C♯

0, ,∇) which
satisfies:

(1) (C♯,⊑♯) is a pre-order;
(2)

⊔♯ : ℘finite(C♯)→ C♯ is such that ∀A♯ ∈ ℘finite(C♯), ∀a♯ ∈ A♯, a♯ ⊑♯
⊔♯(A♯);

(3) ⊥♯ ∈ C♯ satisfies ∀a♯ ∈ C♯, ⊥♯ ⊑♯ a♯;

29

(4) γ : C♯ → ℘(Σ∗ × C) is a monotonic map;
(5) C

♯
0 ∈ C

♯ is such that {ε} × Co
0(S) ⊆ γ(C♯

0);
(6) ∈ ℘(C♯×Σ×C♯) is an abstract deterministic labelled transition relation

over C♯ such that : ∀C♯ ∈ C♯, ∀(u, C) ∈ γ(C♯), ∀λ ∈ Σ, ∀C ∈ C,

C
λ
C =⇒ ∃C

♯
∈ C♯, (C♯ λ

 C
♯
and (u.λ, C) ∈ γ(C

♯
));

(7) ∇ : C♯ × C♯ → C♯ is a widening operator which satisfies:
• ∀C♯

1, C
♯
2 ∈ C

♯, C
♯
1 ⊑

♯ C
♯
1∇C

♯
2 and C♯

2 ⊑ C
♯
1∇C

♯
2,

• ∀(C♯
n)n∈N ∈

(

C♯
)N

, the sequence (C∇
n)n∈N defined as







C∇
0 = C

♯
0

C∇
n+1 = C∇

n ∇C
♯
n+1

is ultimately stationary.

The set C♯ is an abstract domain. It captures the properties we are inter-
ested in, and abstracts away the other properties. The pre-order ⊑♯ describes
the amount of information which is known about the properties that we ap-
proximate. We only use a pre-order to allow some concrete properties to be
described by several unrelated abstract elements. The abstract union

⊔♯ is
used to gather the information described by several abstract elements. For the
sake of generality, it does not necessarily compute the least upper bound of
a finite set of abstract elements (this least bound may not even exist). The
abstract element ⊥♯ denotes the empty set and it provides the basis for our
abstract iteration. The function γ is a concretization function which maps
each abstract property to the set of the concrete elements which satisfy this
property. The abstract element C♯

0 describes the properties satisfied by the
system initial configurations. The relation is used to mimic the concrete
transition system in the abstract domain and the operator ∇ is used to ensure
the convergence of the analysis in finitely many iterations.

Given an abstraction (C♯,⊑♯,
⊔♯,⊥♯, γ, C♯

0, ,∇), the abstract counterpart F♯

to F defined as:

F♯(C♯) =
⊔♯

({

C
♯
| ∃λ ∈ Σ, C♯ λ

 C
♯
}

∪ {C♯
0;C

♯}
)

.

satisfies the soundness condition ∀C♯ ∈ C♯, F ◦ γ(C♯) ⊆ γ ◦ F♯(C♯). Since F is
monotonic, we have ∀n ∈ N, ∀C♯ ∈ C♯, Fn ◦ γ(C♯) ⊆ γ ◦F♯

n

(C♯). On the other
hand, since F is a ∪-complete endomorphism, we have lfp∅ F =

⋃

n∈N

Fn(∅). As

a consequence, we obtain the soundness of our analysis:

Theorem 25 lfp∅ F ⊆
⋃

n∈N

[

γ ◦ F♯
n
]

(⊥♯).

30

Following [6], we compute a sound and decidable approximation of our abstract
semantics by using the widening operator ∇:

Theorem 26 The abstract iteration [8, 9] of F♯ defined as follows:



















F∇
0 = ⊥♯

F∇
n+1 =







F∇
n if F♯(F∇

n) ⊑♯ F∇
n

F∇
n∇F♯(F∇

n) otherwise

is ultimately stationary and its limit F∇ satisfies C(S) ⊆ γ(F∇).

6.2 Abstraction algebra

Our framework is highly extensible. We now give some operations over ab-
stractions to compose them.

Proposition 27 (Product) Let (C♯1,⊑
♯
1,

⊔♯
1,⊥

♯
1, γ1, C

♯
01
, 1,∇1) and (C♯2,⊑

♯
2,

⊔♯
2,⊥

♯
2, γ2, C

♯
02
, 2,∇2) be two abstractions.

The following tuple (C♯,⊑♯,
⊔♯,⊥♯, γ, C♯

0, ,∇) where

• C♯ = C♯1 × C
♯
2;

• ⊑♯,
⊔♯, ⊥♯ and ∇ are defined pair-wise;

• γ :







C♯ → ℘(Σ∗ × C)

(a♯1, a
♯
2) 7→ γ1(a

♯
1) ∩ γ2(a

♯
2);

• C♯
0 = (C♯

01
, C

♯
02

);
• is defined by:

(a1, a2)
λ
 (b1, b2) if and only if a1

λ
 1 b1 and a2

λ
 2 b2

is also an abstraction.

Proposition 28 (Reduction) Let (C♯,⊑♯,
⊔♯,⊥♯, γ, C♯

0, ,∇) be an abstrac-
tion, and ρ be a reduction operator 5 ρ : C♯ → C♯ which satisfies:

∀a♯ ∈ C♯, γ(a♯) ⊆ γ(ρ(a♯)).

The following tuple (C♯,⊑♯,
⊔♯,⊥♯, γ, C♯

0ρ
, ρ,∇) where

• C♯
0ρ

= ρ(C♯
0);

• ρ is defined by:
a ρ c if and only if there exists b ∈ C♯, such that ρ(a) b and c = ρ(b)

5 ρ simplifies the properties obtained in the abstract domain.

31

is also an abstraction.

Furthermore, ρ can also be used to simplify the final result of the abstract
iteration.

The proof of Prop. 27 and Prop. 28 is shown in appendix E.

7 Control flow analysis

We now use this framework to derive an analysis of the control flow. This
analysis requires an abstract domain for describing sets of marker tuples. In
the first subsection, we introduce the generic control flow analysis, indepen-
dently of the chosen abstract domain. In the next subsection, we propose three
different choices of abstract domains, so that we get three different analyses.

7.1 Generic control flow analysis

We propose to compute a description of both the potential interactions be-
tween the agents of a mobile system, and the potential interactions between
its agents and a hostile context. For that purpose, we will compute for each
syntactic name restriction an approximation of the set of the syntactic agents
that may receive the name of a channel opened by an instance of this name
restriction. As we want a non-uniform description, we will also compute a
comparison between the markers of the agents which have opened channels
and the ones of the agents to which the names of those channels have been
communicated. Due to the approximation, some of the discovered interactions
may be ineffective. But the analyzer detects all the interactions. So, if the an-
alyzer does not detect an interaction between two components, there cannot
be any interaction between them.

The main difficulty is to synthesize comparisons between markers throughout
computation steps. We use the marker of the agent instance to which channel
names are communicated as a pivot to synthesize the comparison between the
markers of the agent instances which have opened these channels. Further-
more, we use synchronization conditions on the channel names via which the
communication is performed to establish a comparison between the markers
of all the involved agent instances. Our main strategy is easy: we first gather
all the information we have about the marker pairs (this means we will ab-
stract sets of marker tuples). Then, synchronization conditions give equality
relations between some tuple components. If these equality relations are sat-
isfiable, the abstract computation step is enabled and we compute, for each

32

new agent instance, the comparison between the marker of the new instance
and the markers of the instances which had opened the channels.

We introduce for each n ∈ N an abstract pre-order (Id ♯n,⊑n) to represent sets of
n-tuples of thread markers. Thus, each Id ♯n is related to ℘(Mn) by a monotonic
concretization function γn. We introduce some abstract primitives to handle
these domains: a representation of the empty set ⊥♯n, a representation of the
initial marker ε♯, an abstraction of the set of the context markers t♯, an abstract
union

⊔

n, a widening operator ∇n, an associative abstract concatenation •
that is a correct abstraction of tuple concatenation, an abstract join sync to
enforce synchronization conditions, an abstract projection Π and an abstract

push operator push which is used to calculate the abstraction of the set of the
new markers when replicating a resource. These primitives shall satisfy the
following properties:

(1) γn(⊥♯n) = ∅;
(2) ε ∈ γ1(ε

♯);
(3) {tn | n ∈ N} ⊆ γ1(t

♯);
(4) ∀A ∈ ℘finite(Id

♯
n),

⊔

n(A) ∈ Id ♯n and ∀a♯ ∈ A, a♯ ⊑n
⊔

n(A);
(5) ∇n : (Id ♯n)

2 → Id ♯n is a widening operator;
(6) ∀a ∈ Id ♯n, b ∈ Id ♯m, (a • b) ∈ Id ♯n+m and











(idi)i∈J1;n+mK

∣

∣

∣

∣

∣

∣

∣

(idi)i∈J1;nK ∈ γn(a
♯),

(idi+n)i∈J1;mK ∈ γm(b♯)











⊆ γn+m(a • b);

(7) ∀a♯ ∈ Id ♯n, ∀A ∈ ℘(J1;nK2), sync(A, a♯) ∈ Id ♯n and
{(idi)i∈J1;nK | (idi) ∈ γn(a♯), ∀(k, l) ∈ A, idk = idl} ⊆ γn(sync(A, a♯));

(8) ∀a♯ ∈ Id ♯n, ∀p ∈ N, ∀(sk)k∈J1;pK ∈ J1;nKJ1;pK one-to-one sequence,
Π

(sk)
(a♯) ∈ Id ♯p and {(idsk

)k∈J1;pK | (idi)i∈J1;nK ∈ γn(a
♯)} ⊆ γp(Π

(sk)
(a♯));

(9) ∀a♯ ∈ Id ♯3 , push
(i,j)

(a♯) ∈ Id♯2 and

{(N((i, j), id1, id2), id3) | (id1, id2, id3) ∈ γ3(a
♯)} ⊆ γ2(push

(i,j)
(a♯)).

Moreover we define the operator dpush ∈ (Id ♯1 → Id ♯2) by:

∀a ∈ Id ♯1, dpush(a) = sync({(1, 2)}, a • a).

The operator dpush satisfies the following property:

∀a ∈ Id ♯1, {(id, id) | id ∈ γ1(a)} ⊆ γ2(dpush(a)).

We denote by P the set of syntactic components of S. We introduce νn(S) as
the set of the syntactic names used in name restrictions, including the name
ext. We then denote by I the set {(p, x, y) | p ∈ P, x ∈ fn(p), y ∈ νn(S)}.
I is the set of the possible interactions between agents of S. In the case that

33

y 6= ext, the interaction (p, x, y) denotes the fact that the variable x of an
instance of the agent p may be linked to the name of a channel opened by the
restriction (ν y); the interaction (p, x, ext) denotes the fact that the variable x
of an instance of the agent p may be linked to the name of a channel opened
by the context.

In this way, our abstraction (C♯,⊑♯,
⊔♯,⊥♯, γ, C♯

0, cfa,∇) is defined as follows:

• C♯ = ((I → id♯2)× (νn(S)→ id♯1));
• ⊑♯,

⊔♯,∇ are defined component-wise and pair-wise respectively from (⊑2,

⊑1), (
⊔

2,
⊔

1) and (∇2,∇1);
• ⊥♯ is given by the pair of functions which relate any elements respectively

to ⊥♯2 and ⊥♯1;
• the concretization γ(f, g) is the set (Σ∗ ×A) where A is the set of configu-

rations (C,U, F) which satisfy:
(1) (P, idP , E) ∈ C, x ∈ fn(P), E(x) = (y, idx) =⇒ (idP , idx) ∈ γ2(f(P, x, y)),
(2) (x, id) ∈ U =⇒ id ∈ γ1(g(x));
• C♯

0 and cfa are given in Figs. 12-14.

An abstract configuration is given by two functions. The first one maps each
interaction (P, x, y) to the description of the set of marker pairs (idP , idx)
such that, in the instance of P tagged with the marker idP , the variable x
may be linked to the name of the channel opened by the instance of the name
restriction (ν y) tagged with the marker idx. The second one maps each name
x to a description of the set of the markers id such that a channel opened by
the instance of the name restriction (ν x) tagged with the marker id may be
communicated to the context. Abstract transition rules just mimic the non-
standard ones. Their definition uses an abstract extraction function β♯ defined
in Fig. 11.

β♯((ν n)P, id ♯, E♯) = β♯(P, id ♯, E♯[(n, n) 7→ dpush(id ♯)])

β♯(0, id ♯, E♯) = ⊥♯

β♯(P ⊕ Q, id ♯, E♯) = ⊔♯{β♯(P, id ♯, E♯); β♯(Q, id ♯, E♯)}

β♯(P | Q, id ♯, E♯) = ⊔♯{β♯(P, id ♯, E♯); β♯(Q, id ♯, E♯)}

β♯(aP, id ♯, E♯) = ([(aP,m, n) 7→ E♯(m,n), ∀m ∈ fn(aP), n ∈ νn(S)], ∅)

Fig. 11. Abstract semantics: abstract extraction

The function β♯ is an abstract counterpart to β. It calculates all the inter-
actions obtained by spawning a continuation having a description of both its
marker and its environment: given P ∈ P, id ♯ ∈ Id ♯1 and E♯ ∈ ((bn(S) ×
νn(S)) → Id ♯2), the element β♯(P, id ♯, E♯) belongs to the abstract domain C♯

and satisfies the following soundness property:

34

C
♯
0 = ⊔♯{β♯(S, ǫ♯, [(n, ext) 7→ ǫ♯ • t♯, ∀n ∈ fn(S)]); {∅, [ext 7→ t♯]}}

Fig. 12. Abstract semantics: initial configurations

Let (f ♯can, f
♯
esc) be an abstract configuration,

if there are λ = y?i[y1, ..., yn]P , µ = x!j [x1, ..., xn]Q,
if

⊔

4{A(u) | u ∈ νn(S)} 6= ⊥♯4,
then (f ♯can, f

♯
esc) cfa ⊔♯ {(f ♯can, f

♯
esc); β

♯(P, id ♯P , E
♯
P); β♯(Q, id ♯Q, E

♯
Q)} where

• A(u) = sync({2, 4}, f ♯can(λ, y, u) • f
♯
can(µ, x, u)),

• id ♯P =
⊔

1{Π
(1)

(A(u)) | u ∈ νn(S)},

• id ♯Q =
⊔

1{Π
(3)

(A(u)) | u ∈ νn(S)},

• E♯
P = [(m,n) 7→

⊔

2{IP (m,n, u) | u ∈ νn(S)}, ∀m ∈ fn(P), n ∈ νn(S)]

where IP (m,n, u) =











Π
(1,6)

sync({3, 5}, A(u) • f ♯can(µ, xi, n)) if m = yi

Π
(1,6)

sync({1, 5}, A(u) • f ♯can(λ,m, n)) otherwise,

• E♯
Q = [(m,n) 7→

⊔

2{IQ(m,n, u) | u ∈ νn(S)}, ∀m ∈ fn(Q), n ∈ νn(S)]
where IQ(m,n, u) = Π

(3,6)
sync({3, 5}, A(u) • f ♯can(µ,m, n)).

(a) Abstract communication

Let (f ♯can, f
♯
esc) be an abstract configuration,

if there are λ = ∗y?i[y1, ..., yn]P , µ = x!j [x1, ..., xn]Q,
if

⊔

4{A(u) | u ∈ νn(S)} 6= ⊥♯4,
then (f ♯can, f

♯
esc) cfa ⊔♯ {(f ♯can, f

♯
esc); β

♯(P, id ♯P , E
♯
P); β♯(Q, id ♯Q, E

♯
Q)} where

• A(u) = sync({2, 4}, f ♯can(λ, y, u) • f
♯
can(µ, x, u)),

• id ♯P =
⊔

1{Π
{1}

(push
(i,j)

(Π
(1,3,4)

(A(u)))) | u ∈ νn(S)},

• id ♯Q =
⊔

1{Π
{3}

(A(u)) | u ∈ νn(S)},

• E♯
P = [(m,n) 7→

⊔

2{IP (m,n, u) | u ∈ νn(S)}, ∀m ∈ fn(P), n ∈ νn(S)]
where

IP (m,n, u) =















push
(i,j)

(Π
(1,3,6)

sync({3, 5}, A(u) • f ♯can(µ, xi, n))) if m = yi

push
(i,j)

(Π
(1,3,6)

sync({1, 5}, A(u) • f ♯can(λ,m, n))) otherwise,

• E♯
Q = [(m,n) 7→

⊔

2{IQ(m,n, u) | u ∈ νn(S)}, ∀m ∈ fn(Q), n ∈ νn(S)]
where IQ(m,n, u) = Π

(3,6)
sync({3, 5}, A(u) • f ♯can(µ,m, n)).

(b) Abstract resource replication

Fig. 13. Abstract semantics: internal interactions

35

Let (f ♯can, f
♯
esc) be an abstract configuration,

if there is µ = x!j [x1, ..., xn]Q,
if

⊔

3{A(u) | u ∈ νn(S)} 6= ⊥♯3,
then (f ♯can, f

♯
esc) cfa ⊔♯ {(f ♯can, f

♯
esc); β

♯(Q, id ♯
Q, E

♯
Q); (∅,Escape ♯)} where

• A(u) = sync({(2, 3)}, f ♯can(µ, x, u) • f
♯
esc(u)),

• id ♯Q =
⊔

1{Π
(1)

(A(u)) | u ∈ νn(S)},

• E♯
Q = [(m,n) 7→

⊔

2{IQ(m,n, u) | u ∈ bn(S)}, ∀m ∈ fn(Q), n ∈ νn(S)]
where IQ(m,n, u) = Π

(1,5)
sync({1, 4}, A(u) • f ♯can(µ,m, n)),

• Escape♯ = [m 7→ E(m), ∀m ∈ νn(S)]
where E(m) =

⊔

1{Π
(5)

(sync({(1, 4)}, A(u) • (f ♯can(µ, xk, m)))) | 1 6 k 6 n}.

(a) Abstract spied communication

Let (f ♯can, f
♯
esc) be an abstract configuration,

if there is λ = y?i[y1, ..., yn]P ,
if

⊔

3{A(u) | u ∈ νn(S)} 6= ⊥♯3,
then (f ♯can, f

♯
esc) cfa ⊔♯ {(f ♯can, f

♯
esc); β

♯(P, id ♯P , E
♯
P)} where

• A(u) = sync({(2, 3)}, f ♯can(λ, y, u) • f
♯
esc(u)),

• id ♯P =
⊔

1{Π
(1)

(A(u)) | u ∈ νn(S)},

• E♯
P = [(m,n) 7→

⊔

2{IP (m,n, u) | u ∈ νn(S)}, ∀m ∈ fn(P), n ∈ νn(S)]

where IP (m,n, u) =











id ♯P • (f ♯esc(n)) if m = yk

Π
(1,5)

sync({1, 4}, A(u) • f ♯can(λ,m, n)) otherwise.

(b) Abstract spoiled communication

Let (f ♯can, f
♯
esc) be an abstract configuration,

if there is λ = ∗y?i[y1, ..., yn]P ,
if

⊔

3{A(u) | u ∈ νn} 6= ⊥♯3,
then (f ♯can, f

♯
esc) cfa ⊔

♯ {(f ♯can, f
♯
esc); β

♯(P, id ♯P , E
♯
P)} where

• A(u) = sync({(2, 3)}, f ♯can(λ, y, u) • f
♯
esc(u)),

• id ♯P =
⊔

1{Π
(1)

(push
(i,0)

((Π
(1)

(A(u))) • t♯ • ⊤♯M)) | u ∈ νn(S)},

• E♯
P = [(m,n) 7→

⊔

2{IP (m,n, u) | u ∈ νn(S)}, ∀m ∈ fn(P), n ∈ νn(S)]
where

IP (m,n, u) =











(id ♯P • f
♯
esc(n)) if m = yk

push
(i,0)

((Π
(1,6,5)

sync({1, 4}, A(u)•f ♯can(λ,m, n)•t♯))) otherwise.

(c) Abstract spoiled resource replication

Fig. 14. Abstract semantics: external interactions

36

Proposition 29 ∀P ∈ P, ∀id ∈ γ1(id
♯), ∀E ∈ (fn(P)→ (νn(S)×M)) such

that ∀m ∈ fn(P), ∀n ∈ νn(S), ∀idn ∈ M, [E(m) = (n, idn) =⇒ (id, idn) ∈
γ2(E

♯(m,n))], we have:

Σ∗ × (β(P, id, E)× {∅} × ℘({tn | n ∈ N})) ⊆ γ(β♯(P, id ♯, E♯)).

The proof of Prop. 29 is shown in appendix F.

We now give some intuition about the abstract transition rules. For the sake
of brevity, we focus on abstract communication. Abstract communication be-
tween two syntactic components λ and µ simulates all the possible commu-
nications between instances of both λ and µ. These communications are first
quantified by the channel used by the communication, and more precisely, by
the name restriction (ν u) used in opening this channel. So, for each u ∈ νn(S),
we compute an abstraction A(u) of the 4-tuples of markers (idλ, idu, idµ, id

′
u)

such that idλ, idµ may be simultaneously the markers of an instance of λ
and µ while idu and id′u may be the markers of the instance that has opened
the channel named u. We obviously enforce the synchronization condition be-
tween the second and the fourth components of those tuples, which allows us
to detect relations between the first and the third ones. The abstract commu-
nication is allowed only if the set of 4-tuples is not empty. In that case, we
add the new interactions caused by the continuation of both λ and µ. These
continuations are calculated using the abstract extraction β♯. Continuation
marker descriptions are obtained by projecting A(u) onto, respectively, its
first and its third components. To calculate abstract environments, we have to
deal with interaction communication. An interaction is communicated by ab-
stractly concatenating it with each A(u), enforcing the synchronization with
the good agent marker, and then projecting the result in accordance with the
marker of the agent it is passed to. New open channels are dealt automatically
by the abstract extraction.

Theorem 30 (C♯,⊑♯,
⊔♯,⊥♯, γ, C♯

0, cfa,∇) is an abstraction.

The proof of Thm. 30 is shown in appendix F.

7.2 Abstract domains

Various domains can be used to instantiate the family of parametric domains
(Id ♯n)n∈N, depending on the expected complexity and accuracy. We propose
three particular instantiations. The first one abstracts away the information
about markers. The result is a uniform control flow analysis. The second one
keeps only the equality relations among markers, and gives an analysis which
has similar behavior to with group creation [4]. The third one allows algebraic

37

comparisons of markers which is, to the best of our knowledge, beyond the
scope of the analyses previously presented in the literature.

7.2.1 Uniform control flow analysis

Uniform control flow analysis consists in detecting the potential interactions
between syntactic components, without keeping any information about mark-
ers. For each name restriction (ν x), it will capture an upper-approximation of
the set of the syntactic components to which the names of the channels opened
by this restriction may be communicated. Such an analysis can easily be ob-
tained by instantiating all the elements of the family (Id ♯n)n∈N with the lattice
({⊥,⊤},⊑). The domain {⊥,⊤} is related to ℘(Idn) by the concretization
function γn defined by γn(⊥) = ∅ and γn(⊤) = Idn.

The abstract primitives are then defined as follows:

• ε♯ = ⊤;
• t♯ = ⊤;

• ∀A ∈ ℘({⊥;⊤}),
⊔

n(A) =







⊥ if ⊤ 6∈ A

⊤ otherwise;

• since there is no infinite sequence in {⊥;⊤} we can use the abstract union
as a widening operator;

• ∀a, b ∈ {⊥,⊤}, (a • b) =







⊥ if a = ⊥ or b = ⊥

⊤ if a = ⊤ and b = ⊤;

• ∀a ∈ {⊥,⊤}, sync(A, a) = a, Π
X

(a) = a and push
(i,j)

(a) = a.

The resulting analysis is always at least as precise as the analysis proposed
in [1,3]. Nielson et al.’s analysis computes the least element of a Moore family
defined as the solution set of a constraint system. Since our abstract union
is exact, and we do not use widening operator, the result of our abstract
semantics is the least fixpoint of the abstract endomorphism induced by C

♯
0

and cfa. This least fixpoint is also the least element of a Moore family defined
as the solution set of a constraint system. Then, comparing the constraints
involved in both analyses, it turns out that our constraint system is implied
by Nielson et al.’s one. So, any solution of Nielson et al.’s system is also a
solution of our system and the least solution of ours is more precise than
Nielson et al.’s one. Roughly speaking, Nielson et al.’s analysis does not take
into account action sequentiality: the constructed system only depends on the
syntactic action set. Furthermore, it cannot infer distinct interaction sets for
two distinct occurrences of the same channel name.

38

7.2.2 Confinement

We now focus on the equality relations between markers. This allows us to
analyze whether or not the name of a channel can be communicated only to
the recursive instance which has opened this channel.

For that purpose, we use a graph-based domain to represent equality rela-
tions between components of tuples. Each vertex describes a component; a
path between two vertices expresses the fact that the two related components
are always equal. We then lift that domain with an extra element in order
to represent a non-satisfiable property. We first define the set Gn of all the
undirected graphs having vertices in J1;nK. The transitive closure of a graph
(G,y) is denoted by (G,y∗). The pre-order, the concretization function and
the abstract primitives are defined on Gn as follows:

• ∀y1,y2∈ ℘(J1;nK2), (J1;nK,y1) ⊑n (J1;nK,y2)⇐⇒y2⊆y1,
• ∀(J1;nK,y) ∈ Gn, γn(J1;nK,y) = {(idi)i∈J1;nK | k y l =⇒ idk = idl};
• we also use

⊔

n as a widening operator since Gn is height bounded;
• ε♯ = ({1}, ∅);
• t♯ = ({1}, ∅);
• ∀A ∈ ℘(Gn),

⊔

n(A) = (J1;nK; y∪)
where i y∪ j⇐⇒∀(J1;nK,y) ∈ A, i y∗ j;

• ∀a=(J1;nK,ya) ∈ Gn, b=(J1;mK,yb) ∈ Gm, (a • b) = (J1;n+mK,y•)

where i y• j⇐⇒







i ya j if i, j ∈ J1;nK

(i− n) yb (j − n) if i, j ∈ Jn + 1;n+mK;

• ∀(J1;nK,y)∈Gn, A∈℘(J1;nK2), sync(A, (J1;nK,y)) = (J1;nK, A∪y);
• ∀a = (J1;nK,ya) ∈ Gn, Π

s
(a) = (J1; pK,yΠ)

where s = (sk)k∈J1;pK and i yΠ j⇐⇒i, j ∈ J1; pK, si y∗
a sj ;

• ∀a ∈ G3, push
(i,j)

(a) = (J1; 2K, ∅);

Roughly speaking, the partial order is the opposite of the constraint set inclu-
sion because, the more constraints, the fewer solutions. The concretization of
a graph is the set of all the tuples the components of which satisfy the equal-
ity relations described by the edges of this graph. The representation of the
empty word is just a graph with one vertex. So is the set representation of the
context markers. Gathering some abstract elements consists in intersecting the
constraint sets they are described with. Abstract concatenation is just a non-
relational union of two graphs, after a renaming of the vertices of the second
one. Synchronization consists in adding new constraints. Projection consists in
restricting the set of the vertices, keeping equality relations on the remaining
vertices. When replicating a resource, we know that the new instance marker
is fresh, but we can get no information of this fact. Before applying union and
projection, we must close graphs, if not we may lose information.

39

We then lift each Gn by adding an extra element ⊥n. This element ⊥n is
the least element of (Gn ∪ {⊥n}). The concretization of ⊥n is the empty set.
Abstract union is lifted as follows:

⊔

n(∅) = ⊥n
⊔

n(A ∪ {⊥n}) =
⊔

n(A).

All other abstract primitives are lifted to be strict, which means that they
return the good element in (⊥i)i∈N with respect to their image domain as
soon as one of their arguments is in (⊥i)i∈N.

As in [4], this analysis can only prove that the name of a channel is confined
inside the scope of the recursive instance which has opened this channel. It
is unable to prove that the name of a channel which first exits the scope of
the agent instance which has opened it, can then only be sent back to the
recursive instance which has opened it. The main problem is that we can only
propagate equality relations. When the name of a channel is communicated to
an agent having a distinct marker than the one of the agent which has opened
this channel, we have no information anymore. Then, if the channel name is
returned to the agent which has previously opened the channel, we cannot
infer the right relation. In order to do that we need an algebraic comparison
between markers.

7.2.3 Non-uniform analysis with algebraic comparisons

We now propose an abstract domain which deals with abstract algebraic com-
parisons between markers. Following Prop. 5, we only abstract the right comb
of each tree. We choose m ∈ {1; 2}, in accordance with the chosen simplifica-
tion function φ1 or φ2

6 . We introduce Σm as the alphabet Lm of the letters
occurring in markers. We use a reduced product between two abstractions.
Our first abstraction consists in abstracting component-wise the shape of the
markers associated to threads. The second one infers a comparison between
the Parikh vectors of the markers.

7.2.3.1 Regular approximation. We approximate the marker shape in
regular languages. For the sake of efficiency, we only use the regular languages
which can be described by a set of initial letters, a set of last letters and a
succession relation between letters. The result is an efficient abstract domain
of languages, the height of which is quadratic in the cardinal of the alphabet
Σm, and abstract primitives can be computed with a O(|Σm|2) worst-case time
cost.

6 Both functions have been introduced in Sect. 4, Prop. 5.

40

We introduce the set IdReg of tuples (i, f, t, b) such that i, f ∈ ℘(Σm), t ∈
(Σm → ℘(Σm)) and b ∈ {0; 1}. Each element (i, f, t, b) ∈ IdReg is related to a
language on Σm via a concretization function γReg defined as follows:

u ∈ γReg(i, f, t, b)⇐⇒



























|u| > 0 =⇒ u1 ∈ i

|u| > 0 =⇒ u|u| ∈ f

∀i ∈ J1; |u|J, |u|i+1 ∈ t(ui)

|u| = 0 =⇒ b = 1.

Roughly speaking, i is the set of the initial letters of the language words,
f is the set of the final letters. The set t(a) is the set of letters which may
immediately follow an occurrence of the letter a. The boolean b is equal to 1
if the empty word belongs to the language.

The abstract domain IdReg is then fitted with a complete lattice structure
(IdReg,⊥Reg,⊆Reg,

⋂Reg,
⋃Reg,⊥Reg,⊤Reg) as follows:

• ⊥Reg = (∅, ∅, [λ 7→ ∅], 0);
• ⊆Reg,

⋃Reg and
⋂Reg are defined component-wise from the usual set opera-

tions ⊆,
⋃

and
⋂

;
• ⊤Reg = (Σm,Σm, [λ 7→ Σm], 1).

Furthermore, the language containing only the empty word is described by
(∅, ∅, [λ 7→ ∅], 1) and is denoted by εReg. At last, we can define the primitive
pushReg : IdReg×Σm → IdReg which adds a letter at the end of all the words
of a language by pushReg((i, f, t, b), λ) = (i′, f ′, t′, b′) where:



































































i′ =







i ∪ {λ} if b = 1

i otherwise;

f ′ =







{λ} if b = 1 or i 6= ∅

∅ otherwise;

t′ =



a 7→







t(a) ∪ {λ} if a ∈ f

t(a) otherwise;





b′ = 0.

The emptiness test is given by the following equivalence:

γReg(i, f, t, b) 6= ∅ ⇐⇒ b = 1 or ∃a0, ..., an,







a0 ∈ i, an ∈ f,

∀k ∈ J0;nJ, ak+1 ∈ t(ak).

We then introduce the set IdReg
n of the n-tuples of IdReg. It is related to ℘(Idn)

by the following concretization function:

γn((Ai)i∈J1;nK) = {(idi)i∈J1;nK | ∀i ∈ J1;nK, φm(idi) ∈ γ
Reg(Ai)}.

41

Then the associated abstract primitives are defined as follows:

• ε♯ = εReg;
• t♯ = ({am}, {am}, tm, 0),

where a1 = cont!, a2 = (cont?, cont!) and tm =







x 7→ {am} if x = am

x 7→ ∅ otherwise;

•
⊔

n applies
⋃Reg component-wisely;

• Π (resp. •) is the classical projection (resp. concatenation) of tuples;
• sync(A,Q)i =

⋂Reg{Qj | (i, j) in the reflexive and transitive closure of A};
• since there is no infinite ascending sequences, we define our widening oper-

ator ∇n to be
⊔n;

• push
λ

(a, b, c) = pushReg(b, λ).

7.2.3.2 Numerical approximation. Our second abstraction captures re-
lational comparisons between the occurrence number of each pattern inside
sets of marker pairs. For each n ∈ N, we introduce a set Vn of distinct vari-
ables {xλi | i ∈ J1;nK, λ ∈ Σm}. The abstract domain ℘(NVn) is related to
℘(Idn) by the monotonic map γn:

γn(A) = {(idi)i∈J1;nK | ∃(nt)t∈Vn
∈ A, ∀xλi ∈ Vn, nxλ

i
= |φm(idi)|λ}.

The power set ℘(NVn) is then related to a numerical domain. Many relational
numerical domains have been introduced in the literature [10, 17, 21, 24]. We
propose two choices in accordance with the expected trade-off between com-
plexity and accuracy. They both use the complete lattice of affine equality
systems among a set of variables. This domain is described with its lattice
operations in [21]. Given a set of variables V, we denote by KV the domain of
the affine equality systems among the elements of V.

7.2.3.2.1 Component-wise affine comparison

The first choice for abstracting a set of word tuples consists in abstracting the
affine relations between the occurrence number of λ in each tuple component,
for each λ in Σm. This way, we introduce IdRel

n as the complete lattice (Σm →
K{xi | i∈J1;nK}) defined point-wise.

We then define abstract primitives as follows:

• ε♯ maps each letter in Σm to the system composed of the only constraint
x1 = 0;
• t♯ maps each letter in Σm to the system composed of the only constraint
x1 = 0, except the letter am which is mapped to the system that contains
no constraint, where a1 = cont! and a2 = (cont?, cont!);
•

⊔

n applies the affine hull point-wise;

42

• Π
(i1,...,ip)

(f)(λ) is obtained by using Gaussian elimination to collect all the

constraints involving only the variables {xik} in the system f(λ), and then
by renaming each variable xik into the variable xk;
• ∀f ∈ IdRel

p , g ∈ IdRel
q , f •g maps each letter λ ∈ Σm to the system composed

of the constraints in f(λ) and those in g(λ), where each occurrence of a
variable matching xi in the constraints of g(λ) is replaced by the variable
xi+p;
• for each λ ∈ Σm, sync({(i1, j1), ..., (ip, jp)}, f)(λ) is obtained by inserting all

the constraints of the form xik = xjk , for k ∈ J1; pK, in the system f(λ);
• since there is no infinite ascending sequence, we define our widening operator
∇n to be

⊔

n;
• push

λ

(f) is obtained by first replacing each occurrence of the variable x2

in the constraints of the system f(λ) by the expression x2 − 1, and then
applying the abstract projection Π

(2,3)
.

7.2.3.2.2 Global affine comparison

The second choice consists in abstracting globally all constraints. Roughly
speaking, the variable xλi denotes the occurrence number of λ in the i-th
component of marker tuples. We introduce IdRel as the complete lattice KVn

of affine equality systems on the set of variables Vn. Lattice operations are
described in [21]. We describe the remaining primitives as follows:

• ε♯ is given by the system {xλ1 = 0, ∀λ ∈ Σ;

• t♯ is given by the system
{

xλ1 = 0, ∀λ ∈ Σ \ {am},

where a1 = cont! and a2 = (cont?, cont!);
• given K ∈ IdRel

p and K ′ ∈ IdRel
q , we obtain the abstract concatenation of K

and K ′, by renaming each variable xλi to xλi+p in K ′, and gathering all the
constraints of the two systems;
• sync({(i1, j1), ..., (ip, jp)}, K) corresponds to inserting all the constraints of

the form xλik = xλjk , ∀k ∈ J1; pK, λ ∈ Σ in K;
• Π

(i1,...,ip)
(K) corresponds to collecting all the constraints involving only the

variables {xλik} and then renaming each variable xλik into the variable xλk ;
• push

(i,j)
(K) is obtained by replacing first in each constraint each occurrence of

the variable x
(i,j)
2 by the expression x

(i,j)
2 −1 and then applying the abstract

projection Π
(2,3)

.

Remark 31 The global affine comparison domain has not been implemented
yet.

43

7.2.4 Examples

We now describe results obtained on our examples. All these results are ob-
tained by setting m = 2. In the description of these results, we make no
distinction between a marker and its abstraction by Φ2.

Example 32 In the ftp-server example , the analyzer proves that the name of
a channel opened by the restriction (ν address) can only be communicated to
the variable email or to the variable address, and that the name of a channel
opened by the restriction (ν request) can only be communicated to the vari-
able request, to the variable data or to the variable rep. More specifically, it
discovers that each time an agent email ![rep] is spawned, there exist p,q in N
such that the agent marker is (1, 16).(1, 5)p.((2, 4).(6, 3).(2, 12))q.(2, 4).(6, 3);
the variable email is linked to the name of a channel opened by the restric-
tion (ν address) of the instance the marker of which was (1, 16).(1, 5)p; and
the variable rep is linked to the name of a channel opened by the restriction
(ν request) of the instance the marker of which was (1, 16).(1, 5)p. This is
enough to prove that both variables email and data are linked to names of
channels opened by the same instance of the client resource and so the answer
to a query can only be sent back to the correct client.

Example 33 In the token-ring example, the analyzer discovers that in each
instance of an agent mon![left, right], the variable left is either bound to the
name of a channel opened by an instance of the (ν right) restriction or to the
name of a channel opened by an instance of the (ν left0) restriction, and the
variable right is always bound to the name of a channel opened by an instance
of the (ν right) restriction. More specifically, in the case where the variable
left is bound to the name of a channel opened by an instance of the (ν right)
restriction, it discovers that there exists n ∈ N such that the instance marker
of mon![left, right] is (1, 6)(1, 3)n+1; the variable left is linked to the name
of a channel opened by the restriction (ν right) of the instance the marker
of which was (1, 6)(1, 3)n; and the variable right is linked to the name of
a channel opened by the restriction (ν right) of the instance the marker of
which was (1, 6)(1, 3)n+1. This is enough to prove that each process can only
be linked to either the next one or to the first one.

Remark 34 Our confinement analysis is not simply an abstraction of our
non-uniform analysis since two distinct markers may be recognized by the same
automaton while containing the same occurrence number of each pattern (i.e
having the same Parikh vector [27]). The equality of the Parikh vectors implies
the equality of the markers if they are recognized by an automaton that contains
only one acyclic path between an initial and a final state, without embedded
cycle, and such that the set of the Parikh vectors of the cycles of this automaton
are linearly independent. Nevertheless, we may use a reduced product of both
our confinement analysis and our non-uniform control flow analysis to solve

44

this problem.

Remark 35 The uniform analysis is not complete with respect to the non-
uniform one, this means, that computing the non-uniform analysis and then
abstracting the result in order to ignore marker information can give more
accurate results than directly computing the result of the uniform analysis.
This is illustrated in example 36.

Example 36 We consider the following mobile system:

(ν a)(ν b)(ν x)
(∗x?1[z]((ν t)z!2[t]t!3[z])
| ∗ repli?4[]x!5[a]
| ∗ repli?6[]x!7[b]
| ∗ a?8[i]i?9[j]trace!10[j]
)

This system is composed of four resources. The second and the third ones allow
the spawning of an unbounded number of agents either of the form x!5[a] or
of the form x!7[b]. The first resource can be replicated by an agent either of
the form x!5[a] or of the form x!7[b], nevertheless the behavior of the spawned
instance is deeply bound to which kind of agent has replicated the resource:

• when the resource is replicated with an agent of the form x!5[a]: a channel
is opened; its name t is sent via the channel named a, so that t can be
send to an instance of the fourth resource; this instance can then receive the
name a via the channel denoted by t ; then the instance of the first resource
can send the name a via the channel named t , so that the instance of the
fourth resource can receive the name a via the channel named t and send it
through the channel named trace; then an intruder can get the name a, by
spying the channel named trace;

• when the resource is replicated with an agent of the form x!7[b]: a channel is
opened, its name t is sent via the channel named b, but cannot be received,
so the instance is stuck, and no intruder can get the name b.

The non-uniform analysis captures the fact that the name b cannot be spied
by an intruder, while the uniform does not. Roughly speaking, the main reason
is that the non-uniform analysis relates the names communicated to an agent
with the history of the replications which have led to the creation of this agent,
while the uniform analysis abstracts this information away.

45

8 Occurrence counting analysis

We now propose to count the occurrence number of agents during computa-
tion sequences. We first abstract away any information about markers and
environments. This way, a configuration is just seen as a multi-set of syntac-
tic agents. In order to capture many more properties, we relate occurrence
number of agents to the number of performed transitions. In this section, we
are not interested in channels and markers, so we will denote a configuration
(C,U, F) by its set of threads C.

Our abstraction requires an abstract domain to describe natural number fam-
ilies. In the first subsection, we introduce a generic analysis, independently of
this domain. In the next subsection, we propose a well-suited abstract domain.

8.1 Generic analysis

We denote by P the set of syntactic components of S and choose a set T of
variables used to count performed transitions. Since the number of transition
labels is quadratic, we may want to quotient this set into equivalence classes,
in order to deal with fewer variables. The set (Lused ∪ {0})2 is related to T by
an onto map ψ. We propose three natural choices for T and ψ in accordance
with the expected trade-off between accuracy and efficiency:

(1) we can use one extra variable by assigning
T = {0} and ∀i, j ∈ Lused ∪ {0}, ψ(i, j) = 0,

(2) we can use a linear number of extra variables by assigning
T = {(0, j) | j ∈ Lused ∪ {0}} and ∀i, j ∈ Lused ∪ {0}, ψ(i, j) = (0, j),

(3) we can use a quadratic number of extra variables by assigning
T = (Lused ∪ {0})2 and ∀i, j ∈ Lused ∪ {0}, ψ(i, j) = (i, j).

Let V be the set P ∪ T . We introduce an abstraction ΠNV which maps each
concrete configuration (u, C) in Σ∗ × C(S) to a family of natural numbers
indexed by the set V , as follows:

(ΠNV (u, C))v =











Card({(P, id, E) ∈ C | P = v}) if v ∈ P
∑

λ∈ψ−1(v)
|u|λ if v ∈ T .

Proposition 37 Let (u1, C1) and (u2, C2) be two configurations such that C1∩
C2 = ∅, then for any v ∈ V , we have ΠNV (u1.u2, C1∪C2)v = (ΠNV (u1, C1))v +
(ΠNV (u2, C2))v.

We then consider ℘(NV), the complete lattice of sets of natural number families
indexed by V . The power set ℘(NV) is related to our concrete domain ℘(Σ∗×

46

C(S)) via a concretization function γNV , where ∀A♯, γNV (A♯) is defined as
follows:

{

(u, C) ∈ Σ∗ × C(S)
∣

∣

∣ ΠNV (u, C) ∈ A♯
}

.

We then introduce a generic pre-order (NV ,⊑NV
) to represent sets of natural

number families indexed by V . It is related to ℘(NV) via a monotonic con-
cretization γNV

. Furthermore, we introduce several generic primitives: a repre-
sentation ⊥NV

of the empty set, an abstract union ∪NV
, a widening operator

∇NV
, an abstract counterpart + to the addition, an abstract counterpart −

to the subtraction, an abstract synchronization syncNV
. We also require the

abstraction of some elementary family: an abstract element 0NV
to represent

the singleton containing the 0 family which associates 0 to each element in V ,
and ∀v ∈ V , an abstract element 1NV

(v) to represent the singleton containing
the family δv which associates 1 to the element v and 0 to any other elements.

These primitives should satisfy the following properties:

(1) γNV
(⊥NV

) = ∅,
(2) ∀a ∈ NV , ⊥NV

⊑NV
a,

(3) ∀A ∈ ℘finite(NV), ∪NV
(A) ∈ NV and ∀a ∈ A, a ⊑NV

∪NV
(A),

(4) ∇NV
satisfies Def. 24.(7),

(5) ∀a♯, b♯ ∈ NV , (a♯ + b♯) ∈ NV and
{(av + bv)v∈V | a ∈ γNV

(a♯), b ∈ γNV
(b♯)} ⊆ γNV

(a♯ + b♯),
(6) ∀a♯, b♯ ∈ NV , (a♯ − b♯) ∈ NV and
{(av−bv)v∈V | a ∈ γNV

(a♯), b ∈ γNV
(b♯), ∀v ∈ V, av > bv} ⊆ γNV

(a♯−b♯),
(7) ∀a♯ ∈ NV , I ∈ ℘(L), syncNV

(I, a♯) ∈ NV and
{a | a ∈ γNV

(a♯), ∀i ∈ I, ai > 1} ⊆ γNV
(syncNV

(I, a♯)),
(8) 0NV

∈ NV and (0)i∈V ∈ γNV
(0NV

),
(9) ∀v ∈ V, 1NV

(v) ∈ NV and (δvi)i∈V ∈ γNV
(1NV

(v)).

Roughly speaking, + is an abstract counterpart to the component-wise addi-
tion, − is an abstract counterpart to the component-wise subtraction, syncNV

is used to extract from an abstract value the representation of the configura-
tions which simultaneously contain all the agents required by a computation
step.

We define an abstract transition system (CNV
0 , NV

) in Fig. 15. It uses an
abstract extraction function βNV

which computes an approximation of the
syntactic agents which are spawned at the beginning of the system or when
launching a continuation. Internal choice ⊕ and parallel composition | are just
abstracted by their respective abstract counterparts ∪NV

and +.

Proposition 38 ∀P ∈ P, ∀id ∈M, ∀E ∈ (fn(P)→ (νn(S)×M)), we have
Cont ∈ β(P, id, E) =⇒ (ε,Cont) ∈ (γNV ◦ γNV

)(βNV
(P)).

47

The proof of Prop. 38 is shown in appendix G.

The initial abstract configuration is obtained by applying βNV
to the initial

system. An abstract communication between two syntactic components la-
belled i and j from an abstract state C♯ first consists in computing a descrip-
tion of the set of the configurations described in C♯ in which both syntactic
components may occur simultaneously. If this set is empty, the components
are mutually exclusive and the abstract communication is disabled. Other-
wise, the result of the communication is obtained by translation: decreasing
the occurrence number of the communicating agents which are not resources,
and adding the description of both continuations. External interactions are
dealt with in the same way, but only one agent is involved. We do not bother
about the control flow, since we use a reduced product between this analysis
and one of our control flow analyses.

Theorem 39 (NV ,⊑NV
,∪NV

,⊥NV
, γNV ◦γNV

, CNV
0 , NV

,∇NV
) is an abstrac-

tion.

The proof of Thm. 39 is shown in appendix G.

8.2 Abstract domain

We only need to define an abstract domain to approximate sets of indexed
family of natural numbers in which abstract primitives can be precisely and
efficiently implemented. On the one hand, the primitive syncNV

needs to ex-
press the property that several variables may simultaneously be greater than
one, which is a relational information. On the other hand, the shape of the
abstract computation rule suggests that the domain should be closed under
addition. This problem is very similar to abstracting the occurrence number
of ambients [18,26], or even approximating the collecting semantics of a Petri
net. We reject the use of usual numerical domains. We are unlikely to design
a precise primitive syncNV

in non-relational domains. Disjunctive completion
can be used to lift a non-relational domain into a relational one: each configu-
ration is abstracted in a finite non-relational domain, and then the abstraction
of a configuration set is given by the collection of all the abstractions of its
elements. Nevertheless, disjunctive completion often leads to a lack of accu-
racy and an exponential explosion. We cannot afford the domain of linear
inequalities among a finite set of variables [10] because we deal with too many
variables.

We propose the use of a reduced product between two domains: the interval
lattice and the linear equalities lattice described in [21]. The first domain is
based on the use of the interval lattice and is used for expressing properties
of interest. This domain can represent all the properties we need to express

48

βNV
((ν n)P) = βNV

(P)

βNV
(0) = 0NV

βNV
(P ⊕Q) = βNV

(P) ∪NV
βNV

(Q)

βNV
(P | Q) = βNV

(P) + βNV
(Q)

βNV
(aP) = 1NV

(aP)

(a) Abstract extraction

CNV
0 = βNV

(S)

(b) Initial configuration

Let v♯ be an abstract configuration,
if there are i, j ∈ Lused ∪ {0},
such that syncNV

({agent(l) | l ∈ {i, j} \ {0}}, v♯) 6= ⊥NV
,

then

v♯
(i,j)
 NV

(syncNV
({agent(l) | l ∈ {i, j}\{0}}, v♯)+Act(i)+Act(j)+1NV

(ψ(i, j))),
where
• ∀l ∈ Lused \ {0}, agent(l) ∈ P ⊂ V is the syntactic agent labelled with l,

• Act(l) =



























0NV
if l = 0

βNV
(P)− 1NV

(aP)
if agent(l) = aP

and a matches y?l[y] or x!l[x]

βNV
(P) if agent(l) matches ∗y?l[y]P.

(c) Abstract transition rule

Fig. 15. Occurrence counting analysis

non-exhaustion of resources, but it cannot calculate them precisely without
being refined. The second domain is based on the use of linear equalities be-
tween variables [21] and is used for expressing more complex properties, such
as mutual exclusion, which allows for more precise calculations in the first do-
main. The power of our analysis directly comes from the use of an inexpensive
algorithm, straightforwardly adapted from Linear Constraint Programming,
to calculate an approximated reduction between these two domains.

49

8.2.1 Interval domain

The complete lattice (I,⊑I ,
⊔

I ,⊥I ,⊓I ,⊤I) is the functional domain of nat-
ural number intervals, where lattice operations are defined point-wisely. The
abstract domain I is related to ℘(NV) via the monotonic map γI defined by:

γI(f) = {u ∈ NV | ∀i ∈ V, ui ∈ f(i)}.

A family (∇n
I) of widening operators on I is defined as follows:

[f∇n
Ig](x) = f(x)∇ng(x)

where Ja; bK∇nJc; dK =







Jmin{a; c}; +∞|[if d > max{b;n}

Jmin{a; c}; max{b; d}K otherwise.

We can easily define abstract primitives in I as follows:

• (f +I g) = [x→ f(x) + g(x)],
• (f −I g) = [x→ (f(x)− g(x)) ∩ J0; +∞J],

• syncI(I, f) =



x→







f(x) ∩ J1; +∞J if x ∈ I

f(x) otherwise



,

• 0I = [x→ J0; 0K],

• 1I(v) =











x→ J1; 1K if x = v

x→ J0; 0K otherwise



.

8.2.2 Linear equalities domain

The complete lattice (K,⊑K,∪K,⊤K,∩K,⊥K) of linear equality systems be-
tween the finite set of variables V is described with its lattice operations
in [21]. This domain uses Gaussian elimination in order to normalize systems.
It is related to the domain ℘(NV) via the monotonic function γK which maps
each system to the set of its solutions. Moreover, since there is no infinite
ascending chain [21], we can choose ∪K as a widening operator. To define the
addition +K and the subtraction −K of two systems, we compute a particular
solution of each system O1 and O2, and a linear direction

−→
H1 and

−→
H2. Then

we use the following equalities:

(O1 +
−→
H1) +K (O2 +

−→
H2) = (O1 +O2) + (

−→
H1 ∪K

−→
H2),

(O1 +
−→
H1)−K (O2 +

−→
H2) = (O1 −O2) + (

−→
H1 ∪K

−→
H2).

Such a decomposition can be extracted from the normal form in linear time,
so the cost of affine addition and subtraction is cubic.

50

Other primitives are defined as follows:

• syncK(I,K) = K,
• 0K = {x = 0, ∀x ∈ V ,

• 1K(v) =











x = 1 if x = v

x = 0 otherwise.

Roughly speaking, synchronization cannot be directly checked in K. So we
define it as the identity. Linear constraints will therefore be used to prove that
synchronization interval constraints are incompatible, by reduction. Other
primitive definitions are straightforward.

8.2.3 Approximated reduced product

Our numerical domain is the product (I × K). It is partially ordered by the
pair-wise order ⊑I × ⊑K. It is related to ℘(NV) by the concretization function
γNV

where γNV
(i, s) is defined as γI(i)∩γK(s). Generic primitives are expressed

as follows:

• ⊥NV
, ∪NV

, ∇NV
, +, ⊑NV

, 0NV
, 1NV

are defined pair-wisely,
• syncNV

(A, (i, s)) = ρ(i′, s),

where







i′(x) = i(x) ∩ J1; +∞|[∀x ∈ A

i′(x) = i(x) ∀x ∈ P \ A,

and ρ satisfies ∀a ∈ I × K, γNV
(a) ⊑NV

γNV
(ρ(a)).

The definition of syncNV
uses a reduction operator ρ which satisfies the fol-

lowing property:

∀a ∈ I × K, γNV
(a) ⊑NV

γNV
(ρ(a)).

Roughly speaking, the operator ρ is a reduction, it simplifies constraints with-
out losing any solution. We now present a reduction ρ between I and K. It
consists in taking into account linear constraints in order to narrow interval
ranges. For instance, the system of constraints {x + y = 12, x ∈ J3; 15K, y ∈
J4; 19K can be reduced to the system {x+y = 12, x ∈ J3; 8K, y ∈ J4; 9K. Linear
constraints are likely to be combined, via Gaussian elimination, in order to
give new linear constraints which will allow for further reductions. Therefore,
generating the whole set of such combinations is likely to require an exponen-
tial time of execution.

We propose a two-step polynomial algorithm for computing an approximate
solution to this problem. The first step aims at narrowing infinite intervals into
finite ones. It uses Gaussian elimination to obtain a positive representation of
systems of linear equalities, that is to say, an equivalent system of equations

51

such that if a variable occurs with a strictly negative coefficient in an equation,
then this variable occurs with a negative coefficient in each equation. Positive
representations contain only a few undefined forms 7 , which allows narrowing
most of the infinite intervals into finite ones with a O(|V |3) worst-case. The
second step is inspired by [5]: it consists in obtaining a triangular system of
constraints of the form a1.x1 + ... + an.xn ∈ I where I is an interval. This
system is then used to propagate unidirectionally intervals from non-diagonal
to diagonal variables. The result is a good reduction with a O(|V |4) worst-
case. In the case that the algorithm discovers an unsatisfiable constrain, the
result of the reduction is set to ⊥NV

.

8.2.3.1 Solving undefined forms Let Vinf be a subset of V and K a
finite system of linear constraints on the variables V . We denote by K the
system of equations:

{

∑

v∈V

avi .v = bi, ∀i ∈ J1;nK .

We first define a positive form with respect to Vinf as follows:

Definition 40 K is in positive form with respect to Vinf if and only if ∀v ∈
V, ∃i1, i2 ∈ J1;nK such that avi1 < 0 < avi2 =⇒ v 6∈ Vinf .

This way, the variables which may occur in the matrix describing K with both
a positive and a negative coefficient are known to be bounded 8 . Such a form
can be computed by using the Gaussian elimination with a O(|V |3) worst-
case time cost. A positive form contains only few undefined forms. For each
constraint in which all variables with an infinite range occur with the same
sign, we can narrow the range of variables that occurs in this constraint into
finite intervals. A dynamic resolution of such a system leads to a reduction
step in O(|V |2).

8.2.3.2 Narrowing finite intervals The second step is inspired by [5]:
it consists in obtaining a triangular system of constraints of the form a1.x1 +
... + an.xn ∈ I where I is an interval. This system is then used to propagate
unidirectionally intervals from non-diagonal to diagonal variables. The result
is a good reduction with a O(|V |4) worst-case time cost.

We use three kinds of reductions:

7 An undefined form is a subtraction between two unbounded intervals
8 Vinf denotes the set of the variables which are not proved to be bounded.

52

(1) Gaussian elimination:







x+ y + z = 1

x+ y + t = 2
=⇒







x+ y + z = 1

t− z = 1,

(2) interval propagation:



























x+ y + z = 3

x ∈ J0; 5K

y ∈ J0; 6K

z ∈ J0; 8K

=⇒



























x+ y + z = 3

x ∈ J0; 3K

y ∈ J0; 6K

z ∈ J0; 8K,

(3) redundancy introduction:







x+ y − z = 3

x ∈ J1; 2|[
=⇒















x+ y − z = 3

y − z ∈ J1; 2K

x ∈ J1; 2K.

We first use Gaussian elimination to get a normal form of the linear constraint
system, we then use interval propagation to narrow the range of the interval
of the pivot of each constraint. Then, we forget about the pivot using redun-
dancy introduction. We then get a new system involving only variables which
were not a pivot of a constraint in the previous one. We then proceed recur-
sively with it until constraints contain some variables. We then consider all
the constraints we have computed which form a triangular system. We prop-
agate the information we have collected on the interval ranges backward, by
applying interval propagation from non-diagonal variables to diagonal ones,
starting from the last constraint and ending with the first one.

8.2.4 Examples

We now describe some examples of mobile systems analyzed with our pro-
totype. For the sake of brevity and simplicity, we do not present linear con-
straints. They are not of interest when considering the result as they are used
internally to improve the interval information. Interval constraints are tagged
with the actions of syntactic agents.

Example 41 We give in Fig. 16 the result of occurrence analysis of the ftp-
server. This result ensures that no more than three syntactic instances of the
syntactic agent deal ![data] can simultaneously occur. So we can conclude that
no more than three sessions can be active at the same time. This constraint is
proved using the linear constraint which proves that the sum of the number of
available ports port![] and activated sessions deal ![data] is always equal to
three.

53

Example 42 We give in Fig. 17 the occurrence analysis result for the token-
ring. This result ensures that only one syntactic instance of the agent crit![]
may occur at any time. So only one process can proceed its critical section at
the same time.

Remark 43 The analysis cannot succeed in proving that the occurrence num-
ber of the syntactic agent mon![left, left0] is less than or equal to 1 without
counting the number of performed transitions. On the other hand, only a linear
number of extra variables are required to prove this property.

9 Complexity and benchmarks

9.1 About the complexity of our analyses

We briefly describe the complexity in the worst case of our analyses in Figs. 18
and 19. We denote by n the number of syntactic components in the initial sys-
tem. The first line denotes the cost to scan all the possible labels of transition
steps. The second line denotes the maximum number of stages in one abstract
iteration. The third line denotes the cost to perform an abstract transition,
it includes both abstract operation cost and information propagation. The
worst-case time complexity of an analysis is then the product of those three
partial worst-case time complexities.

In the third column of Fig. 18, m is a parameter of our analysis which denotes
analysis precision. We have m ∈ {1; 2} and in the case when m = 1 each tran-
sition label is abstracted by its second component, while the two components
are kept when m = 2. In Fig. 19, i is also a parameter of our analysis such
that the number of variables is in O(ni). It is equal to 0 when no occurrence
analysis is done; it is equal to 1 when only syntactic agents are counted; it is
also equal to 1 when we also count the number of sent messages; it is equal to
2 when we count performed transitions.

To obtain the worst-case time complexity of the product of two analyzes, we
add pair-wise the complexities due to transition label scanning, the maximum
number of iterations, and the cost of an abstract transition and then make
the product of these three complexities. So, for instance, the analysis obtained
as the product between our non-uniform global analysis with m = 2 and our
occurrence counting analysis with i = 2, has a O(n2 × n7 × n10) worst-case
time cost.

54

((ν make)(ν server)(ν port)
((∗make?1[](ν address)(ν request)

(
(∗address ?J0;+∞J[]server!J0;+∞J[address, request])
|
address !J0;+∞J[]
|
make!J0;1K[]

))
|
(∗server?1[email, data](ν deal)

(
port?[]J0;+∞J

(
deal !J0;3K[data]
|
deal ?J0;3K[rep](email !J0;+∞J[rep] | port!J0;3K[])

)
⊕
email !J0;+∞K[]

))
| port!J0;1K[]
| port!J0;1K[]
| port!J0;1K[]
| make!J0;1K[])
)

Fig. 16. The ftp-server occurrence analysis

((ν make)(ν mon)(ν left0)
(
((∗make?1[left](ν right)(mon!J0;+∞J[left, right] | make!J0;+∞J[right]))
| (∗make?1[left](mon!J0;1K[left, left0]))
| make!J0;1K[left0])
|
((∗mon?1[prev, next]

(∗prev ?J0;+∞J[](ν crit)(crit ?J0;1K[]next!J0;1K[]
| crit !J0;1K[])))

| left0!J0;1K[])))

Fig. 17. The token-ring occurrence analysis

55

0-CFA confinement non-uniform non-uniform

comp.-wise global

m ∈ {1; 2} m ∈ {1; 2}

label scan O(n2) O(n2) O(n2) O(n2)

iteration height O(n3) O(n3) O(n2×m+3) O(n2×m+3)

transition complexity O(n4) O(n4) O(n2×m+4) O(n3×m+4)

total cost O(n9) O(n9) O(n4×m+9) O(n5×m+9)

Fig. 18. Control flow analysis complexity

occurrence counting analysis

i ∈ {0; 1; 2}

scan O(n2)

iteration height O((ni)2)

transition complexity O((ni)4)

total cost O(n6×i+2)

Fig. 19. Occurrence counting analysis complexity

ftp-server 0-CFA non-uniform non-uniform

comp.-wise comp.-wise

n = 16 m = 1 m = 2

i = 0, |V | = 0 0.03s 0.22s 0.21s

i = 1, |V | = n 0.44s 0.71s 0.71s

i = 1, |V | = 2× n 1.40s 2.16s 2.13s

i = 2, |V | = n2 + n 1.42s 2.17s 2.15s

Fig. 20. The ftp-server analysis time

9.2 Analysis time

We report in Figs. 20 and 21 CPU-time used in analyzing our examples on
a Pentium III, 500 MHz CPU with 128 Mb RAM. We write the time in
boldface when the analysis has succeeded in proving all the properties we were
interested in.

56

Token-ring 0-CFA non-uniform non-uniform

comp.-wise comp.-wise

n = 12 m = 1 m = 2

i = 0, |V | = 0 0.03s 0.15s 0.14s

i = 1, |V | = n 0.24s 0.43s 0.44s

i = 1, |V | = 2× n 0.68s 0.86s 0.88s

i = 2, |V | = n2 + n 0.79s 1.01s 1.04s

Fig. 21. The token ring analysis time

10 Conclusion

We have proposed a parametric framework for automatically inferring the
properties of mobile systems. We have first introduced a powerful non-standard
semantics which explicitly encodes the link between agents and the channels
they have opened. This non-standard semantics handles the full π-calculus
and allows us to describe the behavior of a system part, abstracting away the
behavior of its context. We have proved both the soundness and the complete-
ness of this abstraction. This means that our semantics takes into account the
behavior of any context specified in the π-calculus and that each behavior
described by our semantics can effectively be obtained by choosing an appro-
priate context written in the π-calculus.

We have then proposed a generic decidable approximation of this non-standard
semantics. As an example, we proposed to focus on the properties which rely
on both control flow and agent occurrence number. Our control flow analysis
has successfully detected and proved some complex integrity properties: we
have proved that in the case of an ftp-server used by an unbounded number
of clients, the server always returns each query to the correct client and that,
in the case of a token ring, each process of the ring can only pass the token to
the next or to the first process of the ring. We can also capture information
about causality, since our analysis captures comparison between the history
of the replications that have led to the creation of agents. The analysis of the
agent occurrence number has successfully detected and proved non-exhaustion
of resources and mutual exclusion: in the case of the ftp-server, the analysis
has discovered that the server can only run three simultaneous sessions, while
in the case of the token ring, the analysis has proved that only one process of
the ring can be in its critical section at a given time.

In this framework, we only capture properties about configurations. We plan
to use our analyses to provide partitioning criteria, so that we can capture
decidable approximations of system traces. This way we will be able to check

57

behavioral properties, in which channel instances are distinguished. Because
of the approximation, we will only consider the properties such that the set of
the traces that satisfies these properties are closed under inclusion. Moreover,
our framework can very likely apply to other formalisms as well as to real
languages. It may be a great challenge to infer the same kind of properties
when agent dynamic creation is also controlled by complex data properties.

Acknowledgements

We deeply thank anonymous referees for their significant comments on early
versions of this paper. We wish also to thank Patrick and Radhia Cousot,
and Arnaud Venet, for their insightful comments and discussions. We are also
very grateful to Bruno Blanchet, Francesco Logozzo, Antoine Miné, David
Monniaux, Xavier Rival, Eben Upton and Yves Verhoeven who helped us in
correcting previous versions of this work.

References

[1] C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Control flow analysis for
the π-calculus. In Proc. CONCUR’98, LNCS. Springer-Verlag, 1998.

[2] C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Static analysis of processes
for no read-up and no write-down. In Proc. FoSSaCS’99, LNCS. Springer-
Verlag, 1999.

[3] C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Static analysis for the
π-calculus with applications to security. Information and Computation, 165,
2000.

[4] L. Cardelli, G. Ghelli, and A. D. Gordon. Secrecy and group creation. In
Proc. CONCUR’00, LNCS. Springer-Verlag, 2000.

[5] C. K. Chiu and J. H. M. Lee. Interval linear constraint solving using
the preconditioned interval Gauss-Seidel method. In Proc. ICLP’95, Logic
Programming. The MIT Press, 1995.

[6] P. Cousot. Semantic foundations of program analysis. In Program Flow
Analysis: Theory and Applications, chapter 10. Prentice-Hall, Inc., 1981.

[7] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Proc. POPL’77. ACM Press, 1977.

[8] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4), 1992.

58

[9] P. Cousot and R. Cousot. Comparing the Galois connection and widening-
narrowing approaches to abstract interpretation. In Proc. PLILP’92, LNCS.
Springer-Verlag, 1992.

[10] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proc. POPL’78. ACM Press, 1978.

[11] N. G. de Bruijn. Lambda-calculus notation with nameless dummies: a tool
for automatic formula manipulation with application to the Church-Rosser
theorem. Indagationes Mathematicae, 34(5), 1972.

[12] N. Dershowitz and J.-. Jouannaud. Rewrite systems. In Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (B). Elsevier
Science Publishers, 1990.

[13] D. Dolev and A. C. Yao. On the security of public key protocols (extended
abstract). In Proc. FOCS’81. IEEE Press, 1981.

[14] J. Feret. Conception de π-sa : un analyseur statique générique pour le π-calcul.
Graduate thesis, École Polytechnique, september 1999. Electronically available
at http://www.di.ens.fr/~feret/dea/dea.ps.

[15] J. Feret. Confidentiality analysis of mobile systems. In Proc. SAS’00, LNCS.
Springer-Verlag, 2000.

[16] J. Feret. Occurrence counting analysis for the π-calculus. In Proc. GETCO’00,
volume 39.2 of ENTCS. Elsevier Science Publishers, 2001.

[17] P. Granger. Static analysis of linear congruence equalities among variables of a
program. In Proc. TAPSOFT’91, LNCS. Springer-Verlag, 1991.

[18] R. R. Hansen, J. G. Jensen, F. Nielson, and H. Riis Nielson. Abstract
interpretation of mobile ambients. In Proc. SAS’99, LNCS. Springer-Verlag,
1999.

[19] M. Hennessy and J. Riely. Resource access control in systems of mobile agents.
In Proc. HLCL’98, volume 16.3 of ENTCS. Elsevier Science Publishers, 1998.

[20] A. Igarashi and N. Kobayashi. A generic type system for the π-calculus. In
Proc. POPL’01. ACM, 2001.

[21] M. Karr. Affine relationships among variables of a program. Acta Informatica,
1976.

[22] R. Milner. The polyadic π-calculus: a tutorial. In Proceedings of the
International Summer School on Logic and Algebra of Specification. Springer-
Verlag, 1991.

[23] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes.
Information and Computation, 1992.

[24] A. Miné. The octagon abstract domain. In Proc. AST’01 in WCRE’01. IEEE
Press, 2001.

59

[25] F. Nielson and H. Seidl. Control-flow analysis in cubic time. In Proc. ESOP’01,
LNCS. Springer-Verlag, 2001.

[26] H. Riis Nielson and F. Nielson. Shape analysis for mobile ambients. In
Proc. POPL’00. ACM Press, 2000.

[27] R. J. Parikh. On context-free languages. Journal of the ACM, 13, 1966.

[28] S. K. Rajamani and J. Rehof. A behavioral module system for the π-calculus.
In Proc. SAS’01, LNCS. Springer-Verlag, 2001.

[29] D. N. Turner. The Polymorphic π-Calculus: Theory and Implementation. PhD
thesis, Edinburgh University, 1995.

[30] A. Venet. Abstract interpretation of the π-calculus. In Proc. LOMAPS’97,
LNCS. Springer-Verlag, 1997.

[31] A. Venet. Automatic determination of communication topologies in mobile
systems. In Proc. SAS’98, LNCS. Springer-Verlag, 1998.

A Correspondence between the standard and the naive semantics

In this section we give the proof of Thm. 8, which formalizes the relation
between the standard and the naive semantics.

Theorem 8 We have S = Π(Cn
0 (S)), and for any non-standard configurations

C and for any word u ∈ (L2 ∪ {ε;⊕})∗ such that Cn
0 (S)

u
−→ n

∗ C, we have:

(1) C
ε
−→ n C

′ =⇒ Π(C) ≡ Π(C ′);

(2) ∀λ ∈ L2 ∪ {⊕}, C
λ
−→ n C

′ =⇒ Π(C)
λ
−→ Π(C ′);

(3) ∀λ ∈ L2 ∪ {⊕}, Π(C)
λ
−→ P =⇒ ∃D, ∃E,







C
ε
−→ n

∗ D
λ
−→ n E

Π(E) ≡ P.

PROOF. We have Cn
0 (S) = (S, ε, ∅), then Π(Cn

0 (S)) = S. Let C be a non-
standard configuration and u a word in (L2∪{ε;⊕})∗ such that Cn

0 (S)
u
−→n

∗ C,

(1) let C ′ be a non-standard configuration such that C
ε
−→n C

′, we want to
prove that Π(C) ≡ Π(C ′) by case analysis on C

ε
−→n C

′:
(a) in the case that C

ε
−→ n C

′ consists in decomposing a thread into
two concurrent threads, we have Π(C) ≡ Π(C ′) thanks to the asso-
ciativity and commutativity congruence rules;

(b) in the case that C
ε
−→n C

′ consists in removing a thread the syntactic
component of which is the empty agent, we have Π(C) ≡ Π(C ′)
thanks to the “end of an agent” congruence rule;

60

(c) in the case that C
ε
−→ n C

′ consists in opening a channel, we have
Π(C) ≡ Π(C ′) thanks to the extrusion rule, the swapping rule, and
the consistency of the marker allocation scheme (Cf. Prop. 4).

(2) let C ′ be a non-standard configuration such that C
λ
−→ n C

′, we have

Π(C)
λ
−→ Π(C ′): in the case that C only contains the threads involved

in the non-standard computation step, the property is true by definition
of the two relations and thanks to the fact that a standard computa-
tion step can be performed inside name restriction; then we use the fact
that a standard computation step can be performed both within parallel
composition and within name restriction to prove it in the general case.

(3) let P be a standard configuration such that Π(C)
λ
−→ P . The binary

relation
ε
−→ n is nœtherian and locally confluent. So, following [12], we

can take a non-standard configuration D such that C
ε
−→ n

∗ D and such

that for any configuration E, D
ε

6−→n E. In accordance with Thm. 8.(1),

we have Π(C) ≡ Π(D), then since
λ
−→ is compatible with ≡, we get

that Π(D)
λ
−→ P . Besides, we can deduce from the fact that D cannot

be reduced by a computation step labelled with ε, that the syntactic
component of every thread of D is either of the form P ⊕ Q or of the

form aP . So the computation step Π(D)
λ
−→ P can be lifted in the non-

standard semantics, so that we can choose a non-standard configuration

E such that D
λ
−→n E and Π(E) ≡ P . 2

B Correspondence between the standard and the intermediate se-
mantics

In this section we give the proof of Thm. 11, which formalizes the relation
between the standard and the intermediate semantics.

Proposition 9 For any non-standard configuration C, we have C ⇓
⋃

t∈C
β i(t).

PROOF. Since the relation β i separately acts on each thread, it is enough to
prove the property in the case that C is a singleton {(P, id, E)}. This is done
by induction on the syntax of P :

• in the case that P = 0,
we have {(0, id, E)}

ε
−→n ∅ and β i(0, id, E) = ∅,

so {(0, id, E)} ⇓ β i(0, id, E);
• in the case that P = (ν n)Q, we have {(P, id, E)}

ε
−→ n {(Q, id, E[n 7→

(n, id)])},
and by induction {(Q, id, E[n 7→ (n, id)])} ⇓ β i(Q, id, E[n 7→ (n, id)]),

61

since β i(P, id, E) = β i(Q, id, E[n 7→ (n, id)]),
we obtain {(P, id, E)} ⇓ β i(P, id, E);
• in the case that P = (P1 | P2),

we have {(P1 | P2, id, E)}
ε
−→n {(P1, id, E|fn(P1)); (P2, id, E|fn(P2))},

and by induction ∀i ∈ {1; 2}, {(Pi, id, E|fn(Pi))} ⇓ β
i(Pi, id, E|fn(Pi)),

since 9 β i(P1 | P2, id, E) = β i(P1, id, E|fn(P1)) ∪ β i(P2, id, E|fn(P2)),
we obtain {(P1 | P2, id, E)} ⇓ β i(P1 | P2, id, E);
• otherwise we have β i(P, id, E) = {(P, id, E|fn(P))},

and {(P, id, Efn(P))} ⇓ {(P, id, E|fn(P))},
so {(P, id, E)} ⇓ β i(P, id, E). 2

Theorem 11 We have S ≡ Π(Ci
0(S)), and for all non-standard configurations

C and for all word u ∈ (L2 ∪ {ε;⊕})∗ such that Ci
0(S)

u
−→ i

∗ C, we have:

(1) ∀λ ∈ L2 ∪ {⊕}, C
λ
−→ i C

′ =⇒ Π(C)
λ
−→ Π(C ′);

(2) ∀λ ∈ L2 ∪ {⊕}, Π(C)
λ
−→ P =⇒ ∃D,







C
λ
−→ i D

Π(D) ≡ P.

PROOF. The proof of these properties mainly relies on Thm. 8 and the fact

that
λ
−→ i is defined as the composition of

λ
−→ n and ⇓: in accordance with

Thm. 8, we know that S = Π(Cn
0 (S)), then by definition of Ci

0(S), we have
Cn

0 (S)
ε
−→ n

∗ Ci
0(S), and so we can deduce from Thm. 8.(1) that S ≡ Π(Ci

0(S).
Then let us take a non-standard configuration C and word u ∈ (L2 ∪ {ε;⊕})∗

such that Ci
0(S)

u
−→ i

∗ C,

(1) let C ′ be a non-standard configuration such that C
λ
−→ i C

′, there exists

another non-standard configuration D such that C
λ
−→ n D

ε
−→ n

∗ C ′, we

obtain from Thm. 8.(2) that Π(C)
λ
−→ Π(D) and from Thm. 8.(1) that

Π(D) ≡ Π(C ′), so Π(C)
λ
−→ Π(C ′);

(2) let P be a standard configuration such that Π(C)
λ
−→ P , following

Thm. 8.(3), there exists two non-standard configurations D and E, such

that C
ε
−→n

∗ D, D
λ
−→n E and Π(E) ≡ P , moreover, since Ci

0(S)
u
−→ i

∗ C,

we know that for any non-standard configuration D′, we have C
ε

6−→n D
′,

this means that D = C, so we have C
λ
−→ n E and Π(E) ≡ P , then we

introduce the non-standard configuration F such that E ⇓ F , we know

from Thm. 8.(1) that Π(E) ≡ Π(F), and by definition of
λ
−→ i that

C
λ
−→ i F , so we can conclude that P ≡ Π(F) and C

λ
−→ i F . 2

9 We use the property that βi(R, id, E) = βi(R, id, E|fn(R)) which can be easily
proved for all agents R by induction on the syntax of R.

62

C Correspondence between the standard and the efficient seman-
tics

In this section we give the proof of Thm. 13, which formalizes the relation
between the standard and the efficient semantics.

Proposition 12 For any non standard configuration C, we have:

{b | C =⇒ b} =
{

⋃

Contt | ∀t ∈ C, Contt ∈ β(t)
}

.

PROOF. Since the β relation separately acts on each thread, it is enough to
prove the property in the case that C is a singleton {(P, id, E)}. This is done
by induction on the syntax of P :

• in the case that P = 0, only the garbage collection rule applies to the
thread (P, id, E) and no rule applies on the empty set, so we conclude that
{b | {(0, id, E)} =⇒ b} = {∅} = β(0, id, E);
• in the case that P = (ν n)Q, only the name restriction rule can apply:

we have {(P, id, E)}
ε
−→ n {(Q, id, E[n 7→ (n, id)])}, {b | {Q, id, E[n 7→

(n, id)]} =⇒ b} = β(Q, id, E[n 7→ (n, id)]) (by the induction hypothesis),
and β(P, id, E) = β(Q, id, E[n 7→ (n, id)]),
so we obtain {b | {(P, id, E)} =⇒ b} = β(P, id, E);
• in the case that P = (P1 | P2), only the rule which decomposes the thread

can apply: we have {(P1 | P2, id, E)}
ε
−→n{(P1, id, E|fn(P1)); (P2, id, E|fn(P2))},

so, since 99K separately acts on each thread, we obtain {b | {(P, id, E)} =⇒
b} = {b1 ∪ b2 | ∀i ∈ {1; 2}, {(Pi, id, E)} =⇒ bi}; moreover by induction
we know that for i in the set {1; 2}, we have {bi | {(Pi, id, E|fn(Pi))} =⇒
b} = β(Pi, id, E|fn(Pi)), then by definition of β(P1 | P2, id, E), we obtain 10

{b | {(P1 | P2, id, E)} =⇒ b} = β(P1 | P2, id, E);
• in the case that P = (P1⊕P2), only the two choice rules can apply: we have

either {(P1 ⊕ P2, id, E)}
⊕
−→n {(P1, id, E|fn(P1))} or {(P1 ⊕ P2, id, E)}

⊕
−→n

{(P2, id, E|fn(P2))}, so {b | {(P1⊕P2, id, E)}=⇒ b} = ∪i∈{1;2}{b | {(Pi, id, E)}
=⇒ b}; moreover by induction we know that for i in the set {1; 2}, we
have that {bi | {(Pi, id, E|fn(Pi))} =⇒ b} = β(Pi, id, E|fn(Pi)), so since10

β(P1⊕P2, id, E) = β(P1, id, E|fn(P1))∪β(P2, id, E|fn(P2)), we obtain {b | {(P1⊕
P2, id, E)} =⇒ b} = β(P1 ⊕ P2, id, E);
• otherwise we have β(P, id, E) = {{(P, id, E|fn(P))}},

and ∀b, {(P, id, Efn(P))} 699K b, so {b | {(P, id, E)} =⇒ b} = β(P, id, E).

Theorem 13 For any initial non-standard configuration C0 ∈ C
e
0(S), there

10 We use the property that β(R, id, E) = β(R, id, E|fn(R)) which can be easily proved
for all agents R by induction on the syntax of R.

63

exists k ∈ N such that S
⊕k

−→∗ Π(C0) and for all non-standard configurations
C and for all word u ∈ (L2)∗ such that C0

u
−→ e

∗ C, we have:

(1) ∀λ ∈ L2, C
λ
−→ e C

′ =⇒ ∃k ∈ N, ∃P, Π(C)
λ
−→ P

⊕k

−→∗ Π(C ′);

(2) ∀λ ∈ L2, Π(C)
λ
−→ P =⇒ ∃D,



















C
λ
−→ e D

and







∃k > 0, P
⊕k

−→+ Π(D)

or P ≡ Π(D).

PROOF. Let C0 ∈ Ce
0(S) be an initial configuration, since Ce

0(S) = β(S, ε, ∅),
we obtain that Cn

0 (S) 99K∗ C0, then by definition of 99K and thanks to

Thm. 8.(1) and Thm. 8.(2), there exists k ∈ N such that Π(Cn
0 (S))

⊕k

−→∗ Π(C0),

since S = Π(Cn
0 (S)) we get that S

⊕k

−→∗ Π(C0). Then let us take a non-standard
configuration C and a word u ∈ (L2)∗ such that C0

u
−→ e

∗ C,

(1) let C ′ be a non-standard configuration such that C
λ
−→e C

′, by definition

of
λ
−→ e , there exists another non-standard configuration D such that

we have C
λ
−→ n D 99K

∗ C ′; moreover, we obtain from Thm. 8.(2) that

Π(C)
λ
−→ Π(D) and we deduce from Thm. 8.(1) and Thm. 8.(2) that

there exists k ∈ N, such that Π(D)
⊕k

−→∗ Π(C ′);

(2) let P be a standard configuration such that Π(C)
λ
−→ P , following

Thm. 8.(3), there exist two non-standard configurations D and E which

satisfy C
ε
−→ n

∗ D, D
λ
−→ n E and Π(E) ≡ P ; since Ci

0(S)
u
−→ e

∗ C, we
know that for any non-standard configuration D′, we have C 699K D′, this

means that D = C and λ 6= ⊕, so we have C
λ
−→n E and Π(E) ≡ P , then

we introduce the non-standard configuration F such that E =⇒ F , by

definition of
λ
−→e , we have C

λ
−→e F ; moreover we have either E

ε
−→n

∗ F

and thanks to Thm. 8.(1) Π(E) ≡ Π(F), or E 99K∗ E ′ ⊕
−→ n E

′′ 99K∗ F ,
and thanks to Thm. 8.(1) and Thm. 8.(2), there exists k > 0 such that

Π(E)
⊕+

−→∗ Π(F). 2

D Correspondence between the semantics of closed and open sys-
tems

In this section we give the proof of Thms. 22 and 23, which formalize the
relation between the semantics of closed and open systems.

We first recall Def. 21:

Definition 21 Computation sequence projection is then defined as follows:

64

Let τ = C0
λ1−→ e ...

λn−→ e Cn be a non-standard computation sequence, with
C0 ∈ Ce

0(S). We define the projection of τ , Πτ (SI,ΦM,ΦN)(τ) as the non-
standard computation sequence:

(A0, U0, F0)
Πλ(λa1

)

...
Πλ(λap)

(Ap, Up, Fp)

of the open system SI, where

• a1, ..., ap is the strictly ascending sequence of the elements of the set {i ∈
J1;nK | λi ∈ L2 \ (L \ LI)

2};
• the initial configuration (A0, U0, F0) is the following triple:

(ΠΦM,ΦN

C (C0), en, {tn | n ∈ N});

• for k ∈ J1; pK, the configuration (Ak, Uk, Fk) is then defined as follows:
· Ak = ΠΦM,ΦN

C (Cak
),

· Uk =











Uk−1 if fst(λak
) ∈ LI,

Uk−1 ∪ {Π
ΦM,ΦN

N (E(xr)) | r ∈ J1;nK} otherwise,

where, in the last case, t = (x!j [x1, ..., xn]P, id, E) denotes the unique
thread in Cak−1

\ Cak
which matches this notation;

· Fk =











Fk−1 if snd(λak
) ∈ LI or if

λak−→ e is not a resource replication,

Fk−1 \ {ΦM(snd(λak
), id) | (P, id, E) ∈ Cak−1 \ Cak

} otherwise.

Then we introduce some lemma to help proving the correspondence.

The following lemma shows that the extraction function β and the configura-
tion projection commute:

Lemma 44 Let (P, id, E) be a thread such that P is a sub-term of SI, then
we have:

β(P,ΠΦM

M (id), [x 7→ ΠΦM,ΦN

N (E(x))]) = ΠΦM,ΦN

C (β(P, id, E)).

PROOF. This lemma can easily by proved by induction on the syntax of P .
We use the fact that each sub-term of a sub-term of SI is also a sub-term of
SI. 2

The following lemma establishes the fact that communications between two
threads of the context leave the threads of the system SI unchanged:

Lemma 45 Let τ = C0
λ1−→ e ...

λn−→ e Cn be a non-standard computation
sequence, with C0 ∈ Ce

0(S); we denote by (A0, U0, F0)...(Ap, Up, Fp) the compu-

tation sequence Πτ (SI,ΦM,ΦN)(τ), then we have ΠΦM,ΦN

C (Cn) = Ap.

65

PROOF. We prove Lem. 45 by induction over the integer n− ap.

(1) in the case that n = ap, we have ΠΦM,ΦN

C (Cn) = Ap by Def. 21;
(2) we now suppose that there exists m0 ∈ N such that Lem. 45 is satisfied

provided that n−ap < m0, we now prove it in the case that n−ap = m0:

we know from the induction hypothesis that ΠΦM,ΦN

C (Cn−1) = Ap, then
we have λn ∈ (L\LI)

2, so we can conclude that both the set Cn−1\Cn and
the set Cn \Cn−1 only contain threads the label of which is in L\LI, thus
with respect with Def. 21, we obtain that ΠΦM,ΦN

C (Cn) = ΠΦM,ΦN

C (Cn−1),
since ΠΦM,ΦN

C (Cn−1) = Ap, we conclude that ΠΦM,ΦN

C (Cn) = Ap. 2

The following lemma establishes some soundness conditions:

Lemma 46 Let τ = C0
λ1−→ e ...

λn−→ e Cn be a non-standard computation
sequence, with C0 ∈ Ce

0(S). We consider the following computation sequence:

Πτ (SI,ΦM,ΦN)(τ) = (A0, U0, F0)...(Aap
, Uap

, Fap
).

Then, ∀(P, id, E) ∈ Cn with lab(P) 6∈ LI:

(1) ∀x ∈ fn(P), we have ΦN (E(x)) ∈ Up;
(2) ΦM(lab(P), id) ∈ Fp.

PROOF. These two properties are easily proved by induction on n.

(1) (a) in the case that n = 0, we have p = 0; let (P, id, E) be a thread in
C0 with lab(P) 6∈ LI; we have C0 ∈ Ce

0(S), let x be a free name in
P ; since lab(P) 6∈ LI, we have x 6∈ NI; then E(x) = ΠΦM,ΦN

N (x, ε) =
ΦN (x, ε) ∈ en = U0;

(b) we suppose that there exists n0 ∈ N such that Prop. 46.(1) is satisfied
for any n smaller than n0. We now prove this property for n = n0+1:
let (P, id, E) in Cn0+1 with lab(P) 6∈ LI, and x be a free name in P ;
we denote (y, idy) = E(x);
• in the case that there exists j smaller than n0 such that (P, id, E)

in Cj: by the induction hypothesis, there exists o smaller than
p such that ΦN (E(x)) ∈ Uo ⊆ Up;
• in the case that y 6∈ NI, we have ΦN (E(x)) ∈ en = U0 ⊆ Up;
• otherwise we necessarily have λn0+1 ∈ ((L\LI)×LI), and there

exists a thread t = (z!j [z1, ..., zn]P, idt, Et) ∈ Cn0
\ Cn0+1 such

that E(x) ∈ {Et(zl) | l ∈ J1;nK}, so by definition of Up, we get
that ΦN (E(x)) ∈ Up.

(2) (a) in the case that n = 0, we have p = 0 and Fp = {tn | n ∈ N},
so ΦM({(lab(P), id) | (P, id, E) ∈ C0, lab(P) 6∈ LI}) ⊆ Fp;

66

(b) we suppose that there exists n0 ∈ N such that Prop. 46.(2) is satisfied
for any n smaller than n0. We now prove this property for n = n0+1:
let (P, id, E) in Cn0+1 with lab(P) 6∈ LI;
• in the case that (P, id, E) ∈ Cn0

and λn0+1 ∈ (L \ LI)
2: we have

ΦM(lab(P), id) ∈ Fp, by the induction hypothesis;
• in the case that (P, id, E) ∈ Cn0

and λn0+1 6∈ (L\LI)
2: we know

by the induction hypothesis that ΦM(lab(P), id) ∈ Fp−1, then
the marker ΦM(lab(P), id) is also in Fp, otherwise we would have
(P, id, E) ∈ Cn0

\ Cn0+1, which is absurd;
• in the case that (P, id, E) 6∈ Cn0

, we have ΦM(lab(P), id) ∈
Fp, otherwise there would exist an integer i < p such that
ΦM(lab(P), id) ∈ Fi \ Fi+1, and so there would exist an inte-
ger j < n0 + 1 such that (P, id, E) ∈ Cj \ Cj+1 which is in
contradiction with the fact that (P, id, E) ∈ Cn0+1 thanks to
Prop. 4.

So in any case, we have ΦM(lab(P), id) ∈ Fp. 2

Theorem 22 (Soundness) Let τ = C0...Cn be a non-standard computation
sequence of the following closed system:

(ν c1)...(ν ck)(SI(ci1, ..., cin) | Sc(cj1, ...cjl)),

with C0 ∈ Ce
0(S). Then Πτ (SI,ΦM,ΦN)(τ) = (A0, U0, F0)...(Ap, Up, Fp) is a

non-standard computation sequence of the open system SI and (A0, U0, F0) ∈
Co

0(S).

PROOF. Soundness is ensured by construction: we prove Thm. 22 by induc-
tion on the length of the computation sequences:

(1) We first prove that (A0, U0, F0) ∈ Co
0(S): we have C0 ∈ Ce

0(S); so C0 ∈
β(S, ε, ∅); so by definition of β, we have C0 ∈ {A∪B | A ∈ β(SI, ε, [cik 7→
(cik , ε)]), B ∈ β(Sc, ε, [cjk 7→ (cjk , ε)])}; then we decompose C0 into A∪B
with A ∈ β(SI, ε, [cik 7→ (cik , ε)]) and with B ∈ β(Sc, ε, [cjk 7→ (cjk, ε)]).

Moreover, we have A0 = ΠΦM,ΦN

C (C0) = ΠΦM,ΦN

C (A) ∪ ΠΦM,ΦN

C (B); since
ΠΦM,ΦN

C (B) = ∅, we have A0 = ΠΦM,ΦN

C (A). Thanks to Lem. 44, since
A ∈ β(SI, ε, [cik 7→ (cik , ε)]), we obtain A0 ∈ β(SI,Π

ΦM

M (id), [cik 7→
ΦN (cik , ε)]); so, since ΦN : (N ×M → en), we obtain the fact that
A0 ∈

⋃

{β(SI, ε, E) | E ∈ fn(P) → en}; then since U0 = en and F0 =
{tn | n ∈ N}, we obtain, by definition of Co

0 , that (A0, U0, F0) ∈ Co
0(S).

(2) We now assume that Thm. 22 is satisfied for any non-standard compu-
tation sequence τ containing at most n computation steps, and we prove
that it is also satisfied for any non-standard computation sequence τ of

containing n + 1 computation steps: let τ = C0...Cn
λ
−→ e Cn+1 be a

non-standard computation sequence of length n + 1; by the induction

67

hypothesis Πτ (SI,ΦM,ΦN)(C0...Cn) is a non-standard computation se-
quence of the open system SI, which we can denote:

(A0, U0, F0)...(Aap
, Uap

, Fap
)

then we discuss several cases depending of λ = (i, j):
(a) in the case that λ ∈ (L \ LI)

2: by definition of Πτ (SI,ΦM,ΦN),
Πτ (SI,ΦM,ΦN)(τ) = Πτ (SI,ΦM,ΦN)((C0, U0, F0)...(Cn, Un, Fn)); so
Πτ (SI,ΦM,ΦN)(τ) is a non-standard computation sequence of the
open system SI;

(b) in the case that λ ∈ L2
I and

λ
−→e is a communication rule: there exist

two threads t? = (y?i[y]P, id?, E?) and t! = (x!j [x], id!, E!) in Cn which
satisfy that E?(y) = E!(x) and λ = (i, j), and two continuations
Cont? ∈ β(P, id?, E?[yi 7→ xi]) and Cont! ∈ β(Q, id!, E!) such that
Cn+1 = (Cn \ {t?; t!}) ∪ Cont? ∪ Cont!; we have:



















































(Πλ(t?),Πλ(t!)) ∈ (Ap)
2 (thanks to Lem. 45 and since (i, j) ∈ L2

I),

ΠΦM,ΦN

N (E?(y)) = ΠΦM,ΦN

N (E!(x)) (since E?(y) = E!(x)),

ΠΦM,ΦN

t (Cont?) ∈ β(P,ΠΦM

M (id?), E
′
?) (thanks to Lem. 44),

where E ′
? = [x 7→ ΠΦM,ΦN

N (E?[yk 7→ E!(xk)](x))]

ΠΦM,ΦN

t (Cont!) ∈ β(Q,ΠΦM

M (id!), [x 7→ ΠΦM,ΦN

N (E!(x))]),

(thanks to Lem. 44);

so (Ap, Up, Fp)
λ
(Ap\{Π

ΦM,ΦN

t (t?); Π
ΦM,ΦN

t (t!)}∪ΠΦM,ΦN

t (Cont?)∪

ΠΦM,ΦN

t (Cont!), Up, Fp); then since Πλ(λ) = λ, we can conclude that

(Ap, Up, Fp)
Πλ(λ)
(ΠΦM,ΦN

C (Cn+1), Up, Fp);

(c) in the case that λ ∈ L2
I and

λ
−→e is a replication rule: there exist two

threads t? = (∗y?i[y]P, id?, E?) and t! = (x!j [x], id!, E!) in Cn which
satisfy that E?(y) = E!(x) and λ = (i, j), and two continuations
Cont? ∈ β(P,N((i, j), id?, id!), E?[yi 7→ xi]) and Cont! ∈ β(Q, id!, E!)
such that Cn+1 = (Cn \ {t!}) ∪ Cont? ∪ Cont!; since (i, j) ∈ L2

I , we
have ΠΦM

M (N((i, j), id?, id!)) = N((i, j),ΠΦM

M (id?),Π
ΦM

M (id!)); then:































































(Πλ(t?),Πλ(t!)) ∈ (Ap)
2 (thanks to Lem. 45 and since (i, j) ∈ L2

I),

ΠΦM,ΦN

N (E?(y)) = ΠΦM,ΦN

N (E!(x)) (since E?(y) = E!(x)),

ΠΦM,ΦN

t (Cont?) ∈ β(P, id∗, E∗) (thanks to Lem. 44),

where id∗ = N((i, j),ΠΦM

M (id?),Π
ΦM

M (id!))

and E∗ = [x 7→ ΠΦM,ΦN

N (E?[yk 7→ E!(xk)](x))],

ΠΦM,ΦN

t (Cont!) ∈ β(Q,ΠΦM

M (id!), [x 7→ ΠΦM,ΦN

N (E!(x))])

(thanks to Lem. 44);

68

so we have (Ap, Up, Fp)
λ
(Ap \ {Π

ΦM,ΦN

t (t!)} ∪ ΠΦM,ΦN

t (Cont?) ∪

ΠΦM,ΦN

t (Cont!), Up, Fp); then since Πλ(λ) = λ, we can conclude that

(Ap, Up, Fp)
Πλ(λ)
(ΠΦM,ΦN

C (Cn+1), Up, Fp);

(d) in the case that i ∈ LI, j 6∈ LI and
λ
−→ e is a communication rule:

there exist two threads t? = (y?i[y]P, id?, E?) and t! = (x!j [x], id!, E!)
in Cn which satisfy that E?(y) = E!(x) and λ = (i, j), and two
continuations Cont? ∈ β(P, id?, E?[yi 7→ xi]) and Cont! ∈ β(Q, id!, E!)
such that Cn+1 = (Cn \ {t?; t!}) ∪ Cont? ∪ Cont!; we have:



















































Πλ(t?) ∈ Ap (thanks to Lem. 45 and since i ∈ LI),

ΠΦM,ΦN

N (E?(y)) = ΠΦM,ΦN

N (E!(x)) ∈ Up (since E?(y) = E!(x),

and thanks to Lem. 46.(1)),

ΠΦM,ΦN

t (Cont?) ∈ β(P,ΠΦM

M (id?), E
′
?) (thanks to Lem. 44),

where E ′
? = [x 7→ ΠΦM,ΦN

N (E?[yk 7→ E!(xk)](x))]

{ΠΦM,ΦN

N (E!(xk))} ⊆ Up (thanks to Lem. 46.(1));

so (Ap, Up, Fp)
(i,0)
(Ap \ {Π

ΦM,ΦN

t (t?)} ∪ ΠΦM,ΦN

t (Cont?), Up, Fp);

since Πλ(λ) = (i, 0), (Ap, Up, Fp)
Πλ(λ)
(ΠΦM,ΦN

C (Cn+1), Up, Fp);

(e) in the case that i ∈ LI, j 6∈ LI and
λ
−→ e is a replication rule: there

exist two threads t? = (∗y?i[y]P, id?, E?) and t! = (x!j [x], id!, E!) in
Cn which satisfy that E?(y) = E!(x) and λ = (i, j), and two con-
tinuations Cont? ∈ β(P,N((i, j), id?, id!), E?[yi 7→ xi]) and Cont! ∈
β(Q, id!, E!) such that Cn+1 = (Cn \ {t!}) ∪ Cont? ∪ Cont!; we have:











































































Πλ(t?) ∈ Ap (thanks to Lem. 45 and since i ∈ LI),

ΠΦM,ΦN

N (E?(y)) = ΠΦM,ΦN

N (E!(x)) ∈ Up (since E?(y) = E!(x)

and thanks to Lem. 46.(1)),

ΠΦM,ΦN

t (Cont?) ∈ β(P, id∗, E∗), (thanks to Lem. 44),

where id∗ = N((i, 0),ΠΦM

M (id?),ΦM(j, id!))

and E∗ = [x 7→ ΠΦM,ΦN

N (E?[yk 7→ E!(xk)](x))],

{ΠΦM,ΦN

N (E!(xk))} ⊆ Up (thanks to Lem. 46.(1)),

ΦM(j, id!) ∈ Fp (thanks to the Lem. 46.(2));

so (Ap, Up, Fp)
(i,0)
(Ap∪ΠΦM,ΦN

t (Cont?), Up, Fp \ {ΦM(j, id!)}); then

since we gave Πλ(λ) = (i, 0), we can conclude that (Ap, Up, Fp)
Πλ(λ)
#

(ΠΦM,ΦN

C (Cn+1), Up, Fp \ {ΦM(j, id!)});

(f) in the case that i 6∈ LI, j ∈ LI and
λ
−→ e is a communication rule:

69

there exist two threads t? = (y?i[y]P, id?, E?) and t! = (x!j [x], id!, E!)
in Cn which satisfy that E?(y) = E!(x) and λ = (i, j), and two
continuations Cont? ∈ β(P, id?, E?[yi 7→ xi]) and Cont! ∈ β(Q, id!, E!)
such that Cn+1 = (Cn \ {t?; t!}) ∪ Cont? ∪ Cont!; we have:







































Πλ(t!) ∈ Ap (thanks to Lem. 45 and since j ∈ LI),

ΠΦM,ΦN

N (E!(y)) = ΠΦM,ΦN

N (E?(x)) ∈ Up (since E?(y) = E!(x)

and thanks to Lem. 46.(1)),

ΠΦM,ΦN

t (Cont!) ∈ β(Q,ΠΦM

M (id!), [x 7→ ΠΦM,ΦN

N (E!(x))),

(thanks to Lem. 44);

so (Ap, Up, Fp)
(0,j)
(Ap \ {Π

ΦM,ΦN

t (t!)} ∪ΠΦM,ΦN

t (Cont!), Up ∪

{ΠΦM,ΦN

N (E!(xk))}, Fp); since Πλ(λ) = (0, j), we can conclude that:

(Ap, Up, Fp)
Πλ(λ)
(ΠΦM,ΦN

C (Cn+1), Up ∪ {Π
ΦM,ΦN

N (E!(xk))}, Fp);

(g) in the case that i 6∈ LI, j ∈ LI and
λ
−→ e is a replication rule: there

exist two threads t? = (∗y?i[y]P, id?, E?) and t! = (x!j [x], id!, E!) in
Cn which satisfy that E?(y) = E!(x) and λ = (i, j), and two con-
tinuations Cont? ∈ β(P,N((i, j), id?, id!), E?[yi 7→ xi]) and Cont! ∈
β(Q, id!, E!) such that Cn+1 = (Cn \{t?; t!})∪Cont?∪Cont!; we have:







































Πλ(t!) ∈ Ap (thanks to Lem. 45 and since j ∈ LI),

ΠΦM,ΦN

N (E!(y)) = ΠΦM,ΦN

N (E?(x)) ∈ Up, (since E?(y) = E!(x)

and thanks to Lem. 46.(1)),

ΠΦM,ΦN

t (Cont!) ∈ β(Q,ΠΦM

M (id!), [x 7→ ΠΦM,ΦN

N (E!(x))]),

(thanks to Lem. 44);

so (Ap, Up, Fp)
(0,j)
(Ap \ {Π

ΦM,ΦN

t (t!)} ∪ΠΦM,ΦN

t (Cont!), Up ∪

{ΠΦM,ΦN

N (E!(xk))}, Fp); since Πλ(λ) = (0, j), we get (Ap, Up, Fp)
Πλ(λ)
#

(Ap+1, Up ∪ {Π
ΦM,ΦN

N (E!(xk))}, Fp). 2

Lemma 47 Let S∗ be a closed system of the following form:

(ν c)(SI(ci1 , ..., cip) | Sc(cj1, ..., cjq)),

we denote by LI the set of the label occurring in SI. Let τ = C0 −→ e
∗ Cn be

a non-standard computation sequence, with C0 ∈ Ce
0(S) and ΦM : L ×M →

{tn | n ∈ N} and ΦN : N ×M→ en be two one-to-one maps, then:

70

(1) for any marker id occurring in a state of the computation sequence τ such
that id matches N((i, j), id?, id!), we have:

• i ∈ LI =⇒







either id? = ε,

or id? matches N((i′, j′), id’?, id’!) where i′ ∈ LI;

• j ∈ LI =⇒







either id! = ε,

or id! matches N((i′, j′), id’?, id’!) where i′ ∈ LI;

(2) let id1 and id2 be two markers occurring in a state of the computation
sequence τ such that ΠΦM

M (id1) = ΠΦM

M (id2), then id1 = id2;
(3) let c1 and c2 be two names in N ×M occurring in a state of the compu-

tation sequence τ such that ΠΦM,ΦN

N (c1) = ΠΦM,ΦN

N (c2), then c1 = c2.

PROOF.

(1) Prop. (1) can be proved using both the fact that:
(a) if the label i of a thread t is in the set LI, then either its marker is

ε, or there exists a marker i′ such that the syntactic agent labelled
with i′ contains the sub-term labelled with i, and that the marker of
the thread t is necessarily of the form N((i′, j), id?, id!) where i′ ∈ LI,

(b) a marker of the form N((i, j), id?, id!) can be created only when a
thread the label of which is i and the marker of which is id? interacts
with a thread the label of which is j and the marker of which is id!;

(2) Prop. (2) can be proved by induction over the height of the markers; this
induction only uses Prop. (1) and the fact that the subtree of a marker
occurring in a state of τ necessarily occurs in a previous state of τ ;

(3) Prop. (3) follows from Prop. (2) and the fact that whenever a channel
name has been opened by a restriction in SI, its marker is also the marker
of a former thread the label of which is in LI. 2

Theorem 23 (Completeness) Let τ ′ be the non-standard computation se-
quence of an open system SI, that we denote by:

(C0, U0, F0)
(i1,j1)
...

(in,jn)
(Cn, Un, Fn),

where (C0, U0, F0) ∈ Co
0(SI).

Then there exists:

• a closed system S∗ = (ν c)(SI(ci1 , ..., cin) | Sc(cj1, ...cjl)),
• two one-to-one functions ΦN and ΦM,
• a non-standard computation sequence τ of the system S∗,

such that Πτ (SI,ΦM,ΦN)(τ) = τ ′.

We will prove the following stronger result:

71

Proposition 48 Let τ ′ be the non-standard computation sequence of an open
system SI, defined as follows:

(A0, U0, F0)
(i1,j1)
...

(in,jn)
(An, Un, Fn),

where (A0, U0, F0) ∈ Co
0(SI). Let LI ⊆ L be the subset of the labels occurring

in SI and NI ⊆ N be the subset of the names occurring in name restrictions
of SI.

Then there exists:

• a closed system of the form:

S∗ = (ν unsafe)(ν x1)...(ν xp)

(unsafe![x1] |...| unsafe![xp] | SI(xi1 , ..., xin) | Sc(unsafe))

where
Sc =(ν new)

(new | repli
| spy0 |...| spyn
| spoil0 | ... | spoiln
| new![]
)

and
· new := ∗new?[]((ν channel)(unsafe![channel] | new![]))
· repli := ∗unsafe?[x](unsafe![x] | unsafe![x])
· spyi := ∗unsafe?[c]c?[y1, ..., yi](unsafe![y1] | ... | unsafe![yi])
· spoili := ∗unsafe?[c]unsafe?[x1]...unsafe?[xi]c![x1, ..., xi]

• a non-standard computation sequence τ of the closed system S∗,
• two into maps ΦN and ΦM, such that:

· ΦN :











(y, idy)

∣

∣

∣

∣

∣

∣

∣

y 6∈ NI, ∃(P, id, E) ∈
⋃

Ci, lab(P) ∈ LI,

∃x ∈ fn(P), E(x) = (y, idy)











→ en;

· ΦM :











id

∣

∣

∣

∣

∣

∣

∣

∃(P,N((i, 0), id?, id!), E) ∈
⋃

Ci,

lab(P) ∈ LI











→ {tn |n ∈ N}.

such that:

(1) Πτ (SI,ΦM,ΦN)(τ) = τ ′ 11 ;

11 we make abusively no distinction neither between ΦN and any one-to-one exten-
sion of it defined over the set N×M, nor between ΦM and any one-to-one extension
of it defined over the set M

72

(2) for any unsafe name (x, idx) ∈ Un, that occurs in a state of τ ′, there
exists a thread in the last state of τ of the form (unsafe![y], id, E) with
ΠΦM,ΦN

N (E(y)) = (x, idx).

PROOF. We prove Prop. 48 by induction on the length of the computation
sequence τ ′:

(1) in the case that τ ′ is of the form (A0, U0, F0) ∈ Co
0(SI), there exists E ∈

fn(SI) → en such that A0 ∈ β(SI, ε, E); we also have U0 = en and
F0 = {tn | n ∈ N};
we take ΦM : ∅ → {tn | n ∈ N}; we denote by e1,...,eu the elements
of the set {E(x) | x ∈ fn(SI)}, we take ΦN : {cik | k ∈ J1; uK} → en,
such that for any k ∈ J1; uK, we have ΦN (cik) = ei; thanks to Lem. 44,
we have β(SI, ε, E) = ΠΦM,ΦN

C (β(S∗, ε,Φ
−1
N ◦ E)); so we can choose C0 ∈

β(S∗, ε,Φ
−1
N ◦ E) such that A0 = ΠΦM,ΦN

C (C0);
• we have (A0, U0, F0) = Πτ (SI,ΦM,ΦN)(C0);
• for any unsafe name (x, idx) ∈ U0 occurring in A0, there exists by con-

struction a thread of the form (unsafe![y], id, E) with ΠΦM,ΦN

N (E(y)) =
(x, idx);

(2) in the case that τ ′ is of the form (A0, U0, F0)...(Ap−1, Up−1, Fp−1)
λ
#

(Ap, Up, Fp); we assume by the induction hypothesis that there exist:
• a non-standard computation sequence τ = C0...Cn of the closed system
S∗ such that C0 ∈ Ce

0(S∗),
• two into maps ΦN and ΦM, such that:

· ΦN :



























(y, idy)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y 6∈ NI, ∃(P, id, E) ∈
⋃

Ci,

lab(P) ∈ LI,

∃x ∈ fn(P), E(x) = (y, idy)



























→ en,

· ΦM :











id

∣

∣

∣

∣

∣

∣

∣

∃(P,N((i, 0), id?, id!), E) ∈
⋃

Ci,

lab(P) ∈ LI











→ {tn |n ∈ N};

such that:
• Πτ (SI,ΦM,ΦN)(τ) = (A0, U0, F0)...(Ap−1, Up−1, Fp−1);
• for any unsafe name (x, idx) ∈ Un that occurs in a state of τ ′, there

exists a thread in the last state of τ of the form (unsafe![y], id, E) with
ΠΦM,ΦN

N (E(y)) = (x, idx).
We proceed by case analysis in accordance with the kind of the next
computation step:

(a) in the case that (Ap−1, Up−1, Fp−1)
λ
(Ap, Up, Fp) is a communi-

cation rule: there exist two threads t? = (y?i[y]P, id?, E?) and t! =
(x!j [x]Q, id!, E!) with E?(y) = E!(x), two continuations Cont? ∈
β(P, id?, E?[yi 7→ E!(xi)]) and Cont! ∈ β(Q, id!, E!) such that Ap =

(Ap−1 \ {t?; t!}) ∪ Cont? ∪ Cont!; moreover, we have ΠΦM,ΦN

C (Cn) =

73

Ap−1, so by definition of ΠΦM,ΦN

C the state Cn contains two threads
t′? = (y?i[y]P, id′?, E

′
?) and t′! = (x!j [x]Q, id′!, E

′
!) with ΠΦM

M (id′?) = id?,
ΠΦM

M (id′!) = id!, ΠΦM,ΦN

N ◦ E ′
? = E? and ΠΦM,ΦN

N ◦ E ′
! = E!; thanks

to Lem. 44, there also exist Cont′? ∈ β(P, id′?, E
′
?[yk 7→ E ′

!(xk)])
and Cont′! ∈ β(Q, id′!, E

′
!) such that ΠΦM,ΦN

C (Cont′?) = Cont? and
ΠΦM,ΦN

C (Cont′!) = Cont!;
we set Cn+1 = (Cn \ {t′?; t

′
!}) ∪ Cont′? ∪ Cont′!;

• thanks to Lem. 47.(3), since E?(y) = E!(x), we have E ′
?(y) =

E ′
!(x); so we have Cn

λ
−→e Cn+1; moreover ΠΦM,ΦN

C (Cn+1) = Ap;

so Πτ (SI,ΦM,ΦN)(C0...Cn
λ
−→ e Cn+1) = τ ′;

• the last computation step of τ ′ does not involve unsafe name

and the computation step Cn
λ
−→ e Cn+1 does not consume

any thread of the form (unsafe![y], id, E); so by the induction
hypothesis, we get that for any unsafe name (x, idx) ∈ Un oc-
curring in a state of τ ′, there exists a thread in the last state of
τ of the form (unsafe![y], id, E) with ΠΦM,ΦN

N (E(y)) = (x, idx);

(b) in the case that (Ap−1, Up−1, Fp−1)
λ
(Ap, Up, Fp) is a resource

replication; there are two threads t? = (∗y?i[y]P, id?, E?) and t! =
(x!j [x]Q, id!, E!) with E?(y) = E!(x), two continuations Cont? ∈
β(P,N((i, j), id?, id!), E?[yi 7→ E!(xi)]) and Cont! ∈ β(Q, id!, E!) such
that Ap = (Ap−1\{t!})∪Cont?∪Cont!; moreover, we have ΠΦM,ΦN

C (Cn)

= Ap−1, so by definition of ΠΦM,ΦN

C there exist two threads t′? =
(∗y?i[y]P, id′?, E

′
?) and t′! = (x!j [x]Q, id′!, E

′
!) in Cn with ΠΦM

M (id′?) =
id?, ΠΦM

M (id′!) = id!, ΠΦM,ΦN

N ◦ E ′
? = E? and ΠΦM,ΦN

N ◦ E ′
! = E!;

moreover we have ΠΦM

M (N((i, j), id′?, id
′
!)) = N((i, j), id?, id!); thanks

to Lem. 44, there also exist two continuations Cont′! ∈ β(Q, id′!, E
′
!)

and Cont′? ∈ β(P,N((i, j), id′?, id
′
!), E

′
?[yk 7→ E ′

!(xk)]) such that the
properties ΠΦM,ΦN

C (Cont′?) = Cont? and ΠΦM,ΦN

C (Cont′!) = Cont! are
satisfied;
we set Cn+1 = (Cn \ {t′!}) ∪ Cont′? ∪ Cont′!:
• thanks to Lem. 47.(3), since E?(y) = E!(x), we have E ′

?(y) =

E ′
!(x); so we have Cn

λ
−→e Cn+1; moreover ΠΦM,ΦN

C (Cn+1) = Ap;

so Πτ (SI,ΦM,ΦN)(C0...Cn
λ
−→ e Cn+1) = τ ′;

• the last computation step of τ ′ does not involve unsafe name

and the computation step Cn
λ
−→ e Cn+1 does not consume

any thread of the form (unsafe![y], id, E); so by the induction
hypothesis, we get that for any unsafe name (x, idx) ∈ Un oc-
curring in a state of τ ′, there exists a thread in the last state of
τ of the form (unsafe![y], id, E) with ΠΦM,ΦN

N (E(y)) = (x, idx);

(c) in the case that (Ap−1, Up−1, Fp−1)
λ
(Ap, Up, Fp) is a spied commu-

nication: there is a thread t! = (x!j [x1, ..., xk]Q, id!, E!) with E!(x) ∈
Up−1, a continuation Cont! ∈ β(Q, id!, E!) such that Ap = (Ap−1 \
{t!})∪Cont!, and Up = Up−1∪{E!(xi) | i ∈ J1; kK}; moreover, we have

74

ΠΦM,ΦN

C (Cn) = Ap−1, so there exists a thread t′! = (x!j [x]Q, id′!, E
′
!) in

Cn with ΠΦM

M (id′!) = id! and ΠΦM,ΦN

N ◦ E ′
! = E!; thanks to Lem. 44,

there also exists Cont′! ∈ β(Q, id′!, E
′
!) such that ΠΦM,ΦN

C (Cont′!) =
Cont!; thanks to the induction hypothesis, there exists a thread tc =
(unsafe![c], idc, Ec) in Cn, such that ΠΦM,ΦN

N (Ec(c)) = E!(x); we first
use the resource repli to replicate the thread tc: we obtain a configu-
ration Cn+1 = Cn\{tc}∪{t′c; t

′′
c} where t′c matches (unsafe![c], id’c, E

′
c)

and t′′c matches (unsafe![c], id′′c , E
′′
c) with E ′

c(c) = E ′′
c (c) = Ec(c); we

then replicate the resource spyk by consuming the thread t′c, and
obtain the configuration Cn+2 = Cn+1 \ {t′c}∪{ts}, where ts matches
(c?[y1, ..., yk](unsafe![y1] | ... | unsafe![yk]), ids, Es) with Es(c)=Ec(c);
we have ΠΦM,ΦN

N (Es(c)) = ΠΦM,ΦN

N (E ′
!(x)); so thanks to Lem. 47.(3),

we deduce that Es(c) = E ′
!(x); thus we perform the communication

between the thread t′! and ts to obtain the configuration Cn+3 =
(Cn+2 \ {ts; t′!}) ∪ Cont′! ∪ {t

′
ui
| i ∈ J1; kK}, where each t′ui

matches
(unsafe![yi], id

′
i, E

′
i) with E ′

i(yi) = E ′
!(xi).

• the computation sequence Cn −→ e
∗ Cn+2 does not involve any

thread of SI; by Lem. 45, we have ΠΦM,ΦN

C (Cn+2) = Ap−1; we

conclude that ΠΦM,ΦN

C (Cn+3) = Ap; moreover Cn+2
i′,j
−→ e Cn+3

with i′ 6∈ LI; so Πτ (SI,ΦM,ΦN)(C0...Cn+2
(i′,j)
−→ e Cn+3) = τ ′.

• let (u, idu) be an unsafe name occurring in a state of τ :
· in the case that (u, idu) = E!(x), t

′′
c is a thread of Cn+3 and

matches (unsafe![y], id, E) with ΠΦM,ΦN

N (E(y)) = E!(x);
· in the case that (u, idu) = E!(xi), tui

is a thread of Cn+3 and
matches (unsafe![yi], id, E) which satisfies ΠΦM,ΦN

N (E(yi))=
ΠΦM,ΦN

N (E ′
!(xi)); so ΠΦM,ΦN

N (E(yi)) = E!(xi);
· otherwise there is necessarily a thread in Cn which matches

(unsafe![y], id, E) with ΠΦM,ΦN

N (E(y)) = (x, idx) and this
thread is still in Cn+3.

(d) in the case that (Ap−1, Up−1, Fp−1)
λ
(Ap, Up, Fp) is a spoilt commu-

nication: there is a thread t? = (y?i[y1, ..., yk]P, id?, E?) with E?(y) ∈
Up−1 (we set (u0, id0) = E?(y)), there is a channel name (ui, idi) ∈
Up−1 for each i ∈ J1; kK, and a continuation Cont? ∈ β(P, id?, E?[yi 7→
(ui, idi)]) such that Ap = (Ap−1 \ t?) ∪ Cont?, and Up = Up−1; more-

over, we have ΠΦM,ΦN

C (Cn) = Ap−1, so there exists a thread t′? =

(y?j[y]P, id′?, E
′
?) in Cn with ΠΦM

M (id′?) = id? and ΠΦM,ΦN

N ◦ E ′
? =

E?; we first deal with the names that the context sends into the
system SI for the first time: for each element (ui, idi) of the set
{(ui, idi) | i ∈ J1; kK} that does not occur in any state of τ , we create
a new unsafe name using the resource new, as the result we get a
fresh name (channel, idchani

) and, since (ui, idi) is necessarily in en,
we extend the definition of ΦN with ΦN (channel, idchani

) = (ui, idi);
we obtain a state Cn+1 and an updated into map ΦN , such that

75

there exists a thread tci = (unsafe![c], idci, Eci) in the state Cn+1

such that ΠΦM,ΦN

N (Eci(c)) = (ui, idi), for each i ∈ J0; kK; we then
use the resource repli to replicate the threads tci until we obtain
a configuration Cn+2 = (Cn+1 \ {tci | i ∈ J0; kK}) ∪ {t′ci | i ∈
J0; kK} ∪ {t′′ci | 0 ∈ J1; kK} where t′ci matches (unsafe![c], id′ci, E

′
ci
) and

t′′ci matches (unsafe![c], id′′ci , E
′′
ci
) with E ′

ci
(c) = E ′′

ci
(c) = Eci(c) such

that the threads t′ci and t′′ci are all distinct from each other; we then
replicate the resource spoilk by consuming the thread t′c0 , and ob-
tain the configuration Cn+3 = (Cn+2 \ {t′c0})∪{ts}, where ts matches
(unsafe?[x1]...unsafe?[xk]c![x], ids, Es) with Es(c) = Ec0(c); we then
use successively the threads t′ci to obtain a configuration Cn+4 =
(Cn+2 \ {t′ci | i ∈ J0; kK}) ∪ {tm}, where tm matches (x0![x], idm, Em)
with Em(xi) = E ′′

ci
(c), for each i ∈ J0; kK; moreover the thread

t′? = (y?j[y]P, id′?, E
′
?) is in Cn+4 with ΠΦM

M (id′?) = id?, ΠΦM,ΦN

N ◦E ′
? =

E?, and ΠΦM,ΦN

N (E ′′
ci
(c)) = (ui, idi), for each i ∈ J1; kK; thanks to

Lem. 44, there also exists Cont′? ∈ β(P, id′?, E
′
?[yi 7→ E ′′

ci
(c)]) such

that ΠΦM,ΦN

C (Cont′?) = Cont?; thus we perform the communication
between the thread t′? and tm to obtain the configuration Cn+5 =
Cn+4 \ {t′?; tm} ∪ Cont′?.
• the computation sequence Cn −→e

∗ Cn+4 does not involve thread
of SI, by Lem. 45, we have ΠΦM,ΦN

C (Cn+4) = Ap−1; then we

conclude that ΠΦM,ΦN

C (Cn+5) = Ap; moreover Cn+4
i,j′

−→ e Cn+5

with j′ 6∈ LI; so Πτ (SI,ΦM,ΦN)(C0...Cn+4
(i,j′)
−→ e Cn+5) = τ ′.

• let (u, idu) be an unsafe name occurring in a state of τ :
· in the case that (u, idu) = (ui, idi) with i ∈ J0; kK, t′′ci

is a thread of Cn+5 and matches (unsafe![c], id, E) with
ΠΦM,ΦN

N (E(c)) = (ui, idi);
· otherwise there is necessarily a thread in Cn which matches

(unsafe![y], id, E) with ΠΦM,ΦN

N (E(y)) = (x, idx) and this
thread is still in Cn+5.

(e) in the case that (Ap−1, Up−1, Fp−1)
λ
(Ap, Up, Fp) is a spoilt replica-

tion: there is a thread t? = (∗y?i[y1, ..., yk]P, id?, E?) with E?(y) ∈
Up−1 (we set (u0, id0) = E?(y)), there are several channel names
(ui, idi) ∈ Up−1, for i ∈ J1; kK, a marker id! ∈ Fp1 and a continua-
tion Cont? ∈ β(P,N((i, 0), id?, id!), E?[yi 7→ (ui, idi)]), such that Ap =
Ap−1 ∪ Cont!, Up = Up−1 and Fp = Fp−1 \ {id!}; moreover, we have

ΠΦM,ΦN

C (Cn) = Ap−1, so there exists a thread t′? = (∗y?j[y]P, id′?, E
′
?)

in Cn with ΠΦM

M (id′?) = id? and ΠΦM,ΦN

N ◦ E ′
? = E?; we first deal

with the names that the context sends into the system SI for the first
time: for each element (ui, idi) of the set {(ui, idi) | i ∈ J1; kK} that
does not occur in any state of τ , we create a new unsafe name using
the resource new, as the result we get a fresh name (channel, idchani

)
and, since (ui, idi) is necessarily in en, we extend the definition of

76

ΦN with ΦN (channel, idchani
) = (ui, idi); we obtain a state Cn+1 and

an updated into map ΦN , such that there exists a thread tci =
(unsafe![c], idci, Eci) in the state Cn+1 such that ΠΦM,ΦN

N (Eci(c)) =
(ui, idi), for each i ∈ J0; kK; we then use the resource repli to repli-
cate the threads tci until we obtain a configuration Cn+2 = (Cn+1 \
{tci | i ∈ J0; kK}) ∪ {t′ci | i ∈ J0; kK} ∪ {t′′ci | 0 ∈ J1; kK} where
t′ci matches (unsafe![c], id’ci, E

′
ci
) and t′′ci matches (unsafe![c], id”ci, E

′′
ci
)

with E ′
ci
(c) = E ′′

ci
(c) = Eci(c), such that the threads t′ci and t′′ci are

all distinct from each other; we then replicate the resource spoilk by
consuming the thread t′c0, and obtain the configuration Cn+3 = Cn+2\
{t′c0} ∪ {ts}, where ts matches (unsafe?[x1]...unsafe?[xk]c![x], ids, Es)
with Es(c) = Ec0(c); we then use successively the threads t′ci to ob-
tain a configuration Cn+4 = (Cn+2\{t

′
ci
| i ∈ J0; kK})∪{tm}, where tm

matches (x0!
sk [x], idm, Em) with Em(xi) = E ′′

ci
(c), for all i ∈ J0; kK; by

Prop. 4 it is the first time this syntactic component is tagged with the
marker idm; so we extend the definition of ΦM with ΦM(sk, idm) =
id!); thus we have ΠΦM

M (N((i, sk), id
′
?, idm)) = N((i, 0), id?, id!); more-

over the thread t′? = (y?j[y]P, id′?, E
′
?) is in Cn+4 with ΠΦM,ΦN

N ◦E ′
? =

E?, and ΠΦM,ΦN

N (E ′′
ci
(c)) = (ui, idi), for each i ∈ J1; kK; by Lem. 44,

there also exists Cont′? ∈ β(P,N((i, sk), id
′
?, idm), E ′

?[yi 7→ E ′′
ci
(c))])

such that ΠΦM,ΦN

C (Cont′?) = Cont?; thus we perform the commu-
nication between the thread t′? and tm to obtain the configuration
Cn+5 = Cn+4 \ {tm} ∪ Cont′?.
• the computation sequence Cn −→ e

∗ Cn+4 does not involves
thread of SI, by Lem. 45, we have ΠΦM,ΦN

C (Cn+4) = Ap−1; we

conclude that ΠΦM,ΦN

C (Cn+5) = Ap; moreover Cn+4
i,j′

−→ e Cn+5

with j′ 6∈ LI; so Πτ (SI,ΦM,ΦN)(C0...Cn+4
(i,j′)
−→ e Cn+5) = τ ′.

• let (u, idu) be an unsafe name occurring in a state of τ :
· in the case that (u, idu) = (ci, idci, for i ∈ J0; kK, t′′ci is

a thread of the state Cn+5 and matches (unsafe![c], id, E)
where ΠΦM,ΦN

N (E(c)) = (ui, idi);
· otherwise there is necessarily a thread in Cn which matches

(unsafe![y], id, E) with ΠΦM,ΦN

N (E(y)) = (x, idx) and this
thread is still in Cn+5. 2

E Abstract Interpretation framework

In this section we give the proof of Props. 27 and 28 which provide generic
tools to compose abstractions.

Proposition 27 (Product) Let (C♯1,⊑
♯
1,

⊔♯
1,⊥

♯
1, γ1, C

♯
01
, 1,∇1) and (C♯2,⊑

♯
2,

⊔♯
2,⊥

♯
2, γ2, C

♯
02
, 2,∇2) be two abstractions.

77

The following tuple (C♯,⊑♯,
⊔♯,⊥♯, γ, C♯

0, ,∇) where

• C♯ = C♯1 × C
♯
2;

• ⊑♯,
⊔♯, ⊥♯ and ∇ are defined pair-wise;

• γ :







C♯ → ℘(Σ∗ × C)

(a♯1, a
♯
2) 7→ γ1(a

♯
1) ∩ γ2(a

♯
2);

• C♯
0 = (C♯

01
, C

♯
02

);
• is defined by:

(a1, a2)
λ
 (b1, b2) if and only if a1

λ
 1 b1 and a2

λ
 2 b2

is also an abstraction.

PROOF. The tuple (C♯,⊑♯,
⊔♯,⊥♯, γ, C♯

0, ,∇) satisfies Def. 24:

• Props. (1),(2),(3),(7) are usual properties of the Cartesian product;
• Prop. (4) is satisfied, since both γ1 and γ2 are monotonic;
• Prop. (5) holds because we have both γ(C♯

0) = γ1(C
♯
01

) ∩ γ2(C
♯
02

) and ∀i ∈

{1; 2}, {ε} × Co
0(S) ⊆ γi(C

♯
0i

);
• Prop. (6) is satisfied:

let C♯ = (a1, a2) be an abstract element in C♯, (u, C) be a concrete element
which satisfies (u, C) ∈ γ(C♯), λ be a transition label in Σ and C a concrete

state such that C
λ
C, we need to construct an abstract element C

♯
∈ C♯

such that C♯ λ
 C

♯
and (u.λ, C) ∈ γ(C

♯
): in accordance with Def. 24.6, for

all i ∈ {1; 2}, we can choose bi ∈ C
♯
i , such that ai

λ
 i bi and (u.λ, C) ∈ γ(bi);

so, by definition of , we have (a1, a2)
λ
 (b1, b2) and, since γ(b1, b2) =

γ1(b1) ∩ γ2(b2), we obtain that (u.λ, C) ∈ γ(b1, b2); so (b1, b2) is a valid
candidate. 2

Proposition 28 (Reduction) Let (C♯,⊑♯,
⊔♯,⊥♯, γ, C♯

0, ,∇) be an abstrac-
tion, and ρ be a reduction operator 12 ρ : C♯ → C♯ which satisfies:

∀a♯ ∈ C♯, γ(a♯) ⊆ γ(ρ(a♯)).

The following tuple (C♯,⊑♯,
⊔♯,⊥♯, γ, C♯

0ρ
, ρ,∇) where

• C♯
0ρ

= ρ(C♯
0);

• ρ is defined by:
a ρ c if and only if there exists b ∈ C♯, such that ρ(a) b and c = ρ(b)

is also an abstraction.

12 ρ simplifies the properties obtained in the abstract domain.

78

Furthermore, ρ can also be used to simplify the final result of the abstract
iteration.

PROOF. The tuple (C♯,⊑♯,
⊔♯,⊥♯, γ, C♯

0ρ
, ρ,∇) satisfies Def. 24:

• Props. (1),(2),(3),(4),(7) hold because (C♯,⊑♯,
⊔♯,⊥♯, γ, C♯

0, ,∇) is an ab-
straction;
• Prop. (5) is satisfied because we have:
· {(ε, c0) | c0 ∈ C0(S)} ⊆ γ(C♯

0) (since (C♯,⊑♯,
⊔♯,⊥♯, γ, C♯

0, ,∇) is an
abstraction),
· γ(C♯

0) ⊆ γ(ρ(C♯
0)) (by definition of ρ),

· C♯
0ρ

= ρ(C♯
0) (by definition of C♯

0ρ
),

so {ε} × Co
0(S) ⊆ γ(C♯

0) ⊆ γ(ρ(C♯
0)) = γ(C♯

0ρ
);

• Prop. (6) is satisfied:
let a be an element of C♯, (u, C) be a concrete element which satisfies
(u, C) ∈ γ(a), λ be a transition label in Σ and C a concrete state such

that C
λ
C, we need to construct an abstract element b ∈ C♯ such that

C♯ λ
 ρ b and (u.λ, C) ∈ γ(b): we have (u, C) ∈ γ(a) ⊆ γ(ρ(a)) and C

λ
C,

so in accordance with Def. 24.6, we can choose b ∈ C♯ such that ρ(a)
λ
 b

and (u.λ, C) ∈ γ(b); then, by definition of
λ
 ρ, we have a

λ
 ρ ρ(b), and,

since γ(b) ⊆ γ(ρ(b)), we obtain that (u.λ, C) ∈ γ(ρ(b)); so ρ(b) is a valid
candidate. 2

F Control flow analysis

In this section we give the proof of Thm. 30 which establishes the soundness
of our control flow analysis.

Proposition 29 ∀P ∈ P, ∀id ∈ γ1(id
♯), ∀E ∈ (fn(P)→ (νn(S)×M)) such

that ∀m ∈ fn(P), ∀n ∈ νn(S), ∀idn ∈ M, [E(m) = (n, idn) =⇒ (id, idn) ∈
γ2(E

♯(m,n))], we have:

Σ∗ × (β(P, id, E)× {∅} × ℘({tn | n ∈ N})) ⊆ γ(β♯(P, id ♯, E♯)).

PROOF. By definition of γ and since x ∈ ∅ implies anything, we only have to
prove the following proposition Prop(P): given id ♯ ∈ Id ♯1 and E♯ ∈ ((bn(S)×
νn(S)) → Id ♯2), given a marker id ∈ M and an environment E ∈ (fn(P) →

79

(νn(S) ×M)) such that:







id ∈ γ1(id
♯)

∀m ∈ fn(P), [E(m) = (n, idm) =⇒ (id, idm) ∈ γ2(E
♯(m,n))]

then for any thread (Q, idQ, EQ) ∈
⋃

β(P, id, E), and any free name x of Q,
we have:







β♯(P, id♯, E♯) = (f, g)

EQ(x) = (y, idy)
=⇒ (idQ, idx) ∈ γ2(f(Q, x, y))

for any sub-term P ∈ P.

We prove ∀P ∈ P, Prop(P) by induction on the syntax of P : let P ∈ P be
a sub-term, id ∈ γ1(id

♯) be a marker, E ∈ (fn(P) → (νn(S) ×M)) be an
environment such that for all m free names of P , for all n ∈ νn(S), for all
marker idn ∈M, we have [E(m) = (n, idn) =⇒ (id, idn) ∈ γ2(E

♯(m,n))]:

• if sub-term P matches 0,
we have β(P, id, E) = ∅, so the property is trivial;
• if sub-term P matches aQ,

we have β(P, id, E) = {{aQ, id, E|fn(aQ)}}, let x be a free name of aQ,
we denote E(x) = (y, idx) and β♯(P, id♯, E♯) = (f, g), by assumption we
have (id, idx) ∈ γ2(E

♯(x, y)), besides we have β♯(P, id♯, E♯) = ([(P,m, n) 7→
E♯(m,n), ∀m ∈ fn(P), n ∈ νn(S)], ∅), so f(aQ, x, y) = E♯(x, y), and we
obtain (id, idx) ∈ γ2(f(aQ, x, y));
• if sub-term P matches (ν n)Q,
· we first prove that we can apply the induction hypothesis: we have id ∈
γ1(id

♯); let m be a free name of Q; in the case that m = n we have E[n 7→
(n, id)](m) = (n, id) and (id, id) ∈ γ2(E

♯[(n, n) 7→ dpush(id♯)](n, n)); oth-
erwise we denote E[n 7→ (n, id)](m) by (o, idm), since E[n 7→ (n, id)](m) =
E(m), we have E(m) = (o, idm) and by assumption we get that (id, idm) ∈
γ2(E

♯(m, o)), then since E♯[(n, n) 7→ dpush(id♯)](m, o) = E♯(m, o), we get
that (id, idm) ∈ γ2(E

♯[(n, n) 7→ dpush(id♯)](m, o)); thus in both cases, the
assertion E[n 7→ (n, id)](m) = (o, idm) implies the fact that (id, idm) ∈
γ2(E

♯[(n, n) 7→ dpush(id♯)](m, o));
· let TR = (R, idR, ER) be a thread in

⋃

β((ν n)Q, id, E),
we have β((ν n)Q, id, E) = β(Q, id, E[n 7→ (n, id)]) so TR is also a thread
in

⋃

β(Q, id, E[n 7→ (n, id)]), so by the induction hypothesis, we obtain
that for any free name x of R, we have:







β♯(Q, id♯, E♯[(n, n) 7→dpush(id♯)])=(f ′, g′)

E[n 7→(n, idR)](x)=(y, idy)
=⇒(idR, idx)∈γ2(f

′(R, x, y));

80

then since β♯(Q, id♯, E♯[(n, n) 7→ dpush(id♯)]) = β♯((ν n)Q, id♯, E♯) we can
conclude that for any free name x of R, we have:







β♯((ν n)Q, id♯, E♯) = (f ′, g′)

E[n 7→ (n, idR)](x) = (y, idy)
=⇒ (idR, idx) ∈ γ2(f

′(R, x, y)).

• if sub-term P matches Q1 | Q2 or with Q1 ⊕Q2,
· we first prove that we can apply the induction hypothesis on both Q1 and
Q2: let i be either 1 or 2: we have id ∈ γ1(id

♯); let m be a free name in
Qi, we know that m is also a free name in P so by assumption we have
[E(m) = (n, idm) =⇒ (id, idm) ∈ γ2(E

♯(m,n))];
· let T = (R, id, E) be a thread in

⋃

β(P, id, E),
we know that

⋃

β(P, id, E) = (
⋃

β(Q1, id, E)) ∪ (
⋃

β(Q2, id, E)), so T

is either a thread in
⋃

β(Q1, id, E), or a thread in
⋃

β(Q2, id, E), let us
assume by symmetry that T is a thread of

⋃

β(Q1, id, E); let x be a free
name of R, we know by the induction hypothesis that:







β♯(Q1, id
♯, E) = (f ′, g′)

E(x) = (y, idy)
=⇒ (idR, idx) ∈ γ2(f

′(R, x, y));

then, since we have β♯(P, id♯, E♯) =
⊔♯{β♯(Q1, id

♯, E♯); β♯(Q2, id
♯, E♯)}, we

get that β♯(Q1, id
♯, E) ⊑♯ β♯(P, id♯, E), so we conclude that:







β♯(P, id♯, E♯) = (f ′, g′)

E(x) = (y, idy)
=⇒ (idR, idx) ∈ γ2(f

′(R, x, y)).

2

Theorem 30 (C♯,⊑♯,
⊔♯,⊥♯, γ, C♯

0, cfa,∇) is an abstraction.

PROOF. The tuple (C♯,⊑♯,
⊔♯,⊥♯, γ, C♯

0, cfa,∇) satisfies Def. 24:

• Props. (1)(2)(3)(4)(7) follow from usual properties of both component-wise
and pair-wise extension;
• Prop. (5) is satisfied: we denote β♯(S, ε♯, [(n, ext) 7→ε♯ • t♯, ∀n ∈ fn(S)]) by

(f,g), let E be an environment in (fn(S)→ en) and C be a configuration in
β(S, ε, E), we want to prove that (ε, (C, en, {tn | n ∈ N})) ∈ γ(C♯

0):
· we have ε ∈ γ1(ε

♯); let m be a free name in S: by definition of en, there
exists i ∈ N such that E(m) = (ext, ti); since {ε} × {tn | n ∈ N} ⊆
γ
♯
2(ε

♯ • t♯), we obtain that (ε, ti) ∈ γ2([(n, ext) 7→ ε♯ • t♯](m, ext)); so by
Prop. 29, we obtain that:

Σ∗ × (β(S, ε, E)× {∅} × ℘({tn | n ∈ N})) ∈ γ((f, g)).

81

this proves that for all thread (P, idP , EP) in C, for all free name x in P

such that E(x) = (y, idx), we have (idP , idx) ∈ γ2(f(P, x, y));
· we have en = {ext} × {tn | n ∈ N}, and for all n in N we have tn ∈ γ1(t

♯),
so for all (x, id) ∈ en, we have id ∈ γ1([ext 7→ t♯](x)), which means that
id ∈ γ1(g(x));

• Prop. (6) is satisfied: let C♯ = (f, g) be an abstract configuration, (u, C)
be in the concretization γ(C♯), λ be a transition label and C be another

configuration such that C
λ
C, we must construct C

♯
such that (u.λ, C) ∈

γ(C
♯
) and C♯ λ

 C
♯
.

(1) In the case that C
λ
C is a communication transition: we denote

C = (A,U, F); there exist two syntactic components P0 and Q0, such
that P0 matches y?i[y]P and Q0 matches x!j [x]Q, such that there exists
two threads (P0, id?, E?) and (Q0, id!, E!) in A with E?(y) = E!(x), two
continuations Cont? ∈ β(P, id?, E?[yi 7→ E!(xi)]) and Cont! ∈ β(Q, id!, E!)
such that C is ((A \ {(P0, id?, E?); (Q0, id!, E!)}) ∪ Cont? ∪ Cont!, U, F);
we denote E!(x) = (c, idc), since (u, C) ∈ γ(C♯), we have (id?, idc) ∈
γ2(f(P0, y, c)) and (id!, idc) ∈ γ2(f(Q0, x, c)); then we can deduce that
(id?, idc, id!, idc) ∈ γ4(sync({2, 4}, f(P0, y, c)•f(Q0, x, c))); since γ4 is strict
we obtain that

⊔

4{sync({2, 4}, f(P0, y, u) • f(Q0, x, u) | u ∈ νn(S))} 6=

⊥♯4; so we can introduce C
♯

= (f ′, g′) such that C♯ λ
 C

♯
; we denote

C = (A,U, F), and introduce for each name u ∈ νn(S), the abstract ele-
ment A(u) = sync({2, 4}, f(P0, y, u) • f(Q0, x, u)), we also introduce two
abstract markers id♯P and id ♯Q and two abstract environments E♯

P and E♯
Q

as follows:

id ♯P =
⊔

1

{Π
(1)

(A(u)) | u ∈ νn(S)},

E
♯
P = [(m,n) 7→

⊔

2

{IP (m,n, u) | u ∈ νn(S)}, ∀m ∈ fn(P), n ∈ νn(S)]

where

IP (m,n, u) =











Π
(1,6)

sync({3, 5}, A(u) • f(Q0, xi, n)) if m = yi

Π
(1,6)

sync({1, 5}, A(u) • f(P0, m, n)) otherwise.

id ♯Q =
⊔

1

{Π
(3)

(A(u)) | u ∈ νn(S)},

E
♯
Q = [(m,n) 7→

⊔

2

{IQ(m,n, u) | u ∈ νn(S)}, ∀m ∈ fn(Q), n ∈ νn(S)]

where IQ(m,n, u) =
{

Π
(3,6)

sync({3, 5}, A(u) • f(Q0, m, n)).

We now prove that (u.λ, C) ∈ γ(C
♯
):

(a) let TR = (R, idR, ER) be a thread of A, x a free name of R and
(y, idx) such that ER(x) = (y, idx), we need to prove that (idR, idx) ∈

82

γ2(f
′(R, x, y)):

(i) if TR is a thread of A: we have (u, C) ∈ γ(C), so (idR, idx) ∈
γ2(f(R, x, y)), then (f, g) ⊑ (f ′, g′) and γ2 is monotonic, so
(idR, idx) ∈ γ2(f

′(R, x, y));
(ii) if TR is a thread of

⋃

β(P, id?, E?[yi 7→ E!(xi)]): we know that
(id?, idc, id!, idc) ∈ γ4(A(c)); this implies that id? ∈ γ1(id

♯
P); let

us take m be a free name in P , we denote E?[yi 7→ E!(xi)](m) =
(n, idn); in the case thatmmatches yi, we have (n, idn) = E!(xi);
since (Q0, id!, E!) is a thread of A and (A,U, F) ∈ γ(f, g); we
know that (id!, idn) ∈ γ2(f(Q0, xi, n)) and (id?, idc, id!, idc) ∈
γ4(A(c)), so (id?, idc, id!, idc, id!, idn) ∈ γ6(A(c) • f(Q0, xi, n)),
then since id! = id!, we conclude that (id?, idn) ∈ γ2(E

♯
P (m,n));

in the other case,m is a free name of y?i[y]P ; since (P0, id?, E?) is
a thread of A, and (A,U, F) ∈ γ(f, g), we obtain that (id?, idn) ∈
γ2(f(λ,m, n)); then since (idP , idc, idQ, idc) ∈ γ4(A(c)), we get
that (id?, idc, id!, idc, id?, idn) ∈ γ6(A(c) • f ♯can(P0, m, n)); then
since id? = id?, we conclude that (id?, idn) ∈ γ2(E

♯
P (m,n)); so in

any case, we have (id?, idn) ∈ γ2(E
♯
P (m,n)); we can then deduce

from Prop. 29 that for any free name m of TR, ER = (n, idn)
implies that (idR, idn) ∈ γ2(f

′(R,m, n));
(iii) if TR is a thread of

⋃

β(Q, id!, E!): we have (id?, idu, id!, idc) ∈
γ4(A(c)), so id! ∈ γ1(id

♯
Q); let m be a free name in Q, we

denote E!(m) = (n, idn); since (Q0, id!, E!) is a thread of A,
and (A,U, F) ∈ γ(f, g), we have (id!, idn) ∈ γ2(f(Q0, m, n));
then (id?, idc, id!, idc, id!, idn) ∈ γ6(A(c)•f(Q0, m, n)); then since
id! = id!, we conclude that (id!, idn) ∈ γ2(E

♯
Q(m,n)); then, we

can deduce from Prop. 29 that for any free name m of TR,
ER = (n, idn) implies that (idR, idn) ∈ γ2(f

′(R,m, n));
so in any case, for any name x free in TR, we have ER = (y, idy)
implies that (idR, idy) ∈ γ2(f

′(R, x, y));
(b) let (x, id) be an element in U , we have (A,U, F) ∈ γ((f, g)) so id ∈

γ1(g(x)), since g = g′ we obtain id ∈ γ1(g
′(x)).

So, in accordance with the definition of γ, we obtain that (A′, U, F) ∈

γ(C
♯
).

(2) In the case that C
λ
C is a resource replication: we denote C = (A,U, F),

there exist two syntactic components P0 and Q0, such that P0 matches
∗y?i[y]P and Q0 matches with x!j [x]Q, such that there exist two threads
(P0, id?, E?) and (Q0, id!, E!) in A with E?(y) = E!(x), two continuations
Cont? ∈ β(P,N((i, j), id?, id!), E?[yi 7→ E!(xi)]) and Cont! ∈ β(Q, id!, E!)
such that C is ((A \ {(Q0, id!, E!)}) ∪ Cont? ∪ Cont!, U, F); we denote
E!(x) = (c, idc); since (u, C) ∈ γ(C♯), we have (id?, idc) ∈ γ2(f(P0, y, c))
and (id!, idc) ∈ γ2(f(Q0, x, c)); so we can deduce that (id?, idc, id!, idc) ∈
γ4(sync({2, 4}, f(P0, y, c) • f(Q0, x, c))); since γ4 is strict we obtain that
⊔

4{sync({2, 4}, f(P0, y, u) • f(Q0, x, u)) | u ∈ νn(S)} 6= ⊥♯4; so we can

83

introduce C
♯

= (f ′, g′) such that C♯ λ
 C

♯
; we denote C = (A,U, F),

and introduce for each name u ∈ νn(S), the abstract element A(u) =
sync({2, 4}, f(P0, y, u)•f(Q0, x, u)), we also introduce two abstract mark-
ers id ♯P and id ♯Q and two abstract environments E♯

P and E♯
Q as follows:

id ♯P =
⊔

1

{Π
(1)

(push
(i,j)

(Π
(1,3,4)

(A(u)))) | u ∈ νn(S)},

E
♯
P = [(m,n) 7→

⊔

2

{IP (m,n, u) | u ∈ νn(S)}, ∀m ∈ fn(P), n ∈ νn(S)]

where

IP (m,n, u) =















push
(i,j)

(Π
(1,3,6)

sync({3, 5}, A(u) • f(Q0, xi, n))) if m = yi

push
(i,j)

(Π
(1,3,6)

sync({1, 5}, A(u) • f(P0, m, n))) otherwise.

id ♯Q =
⊔

1

{Π
(3)

(A(u)) | u ∈ νn(S)},

E
♯
Q = [(m,n) 7→

⊔

2

{IQ(m,n, u) | u ∈ νn(S)}, ∀m ∈ fn(Q), n ∈ νn(S)]

where IQ(m,n, u) =
{

Π
(3,6)

sync({3, 5}, A(u) • f(Q0, m, n)).

We now prove that (u.λ, C) ∈ γ(C
♯
):

(a) let TR = (R, idR, ER) be a thread of A, x a free name of R and
(y, idx) such that ER(x) = (y, idx), we need to prove that (idR, idx) ∈
γ2(f

′(R, x, y)):
(i) if TR is a thread of A: we have (u, C) ∈ γ(C), so (idR, idx) ∈

γ2(f(R, x, y)), then (f, g) ⊑ (f ′, g′) and γ2 is monotonic, so
(idR, idx) ∈ γ2(f

′(R, x, y));
(ii) if TR is a thread of

⋃

β(P,N((i, j), id?, id!), E?[yi 7→ E!(xi)]):
we know that (id?, idc, id!, idc) ∈ γ4(A(c)); so (id?, id!, idc) ∈
γ3(Π

(1,3,4)
A(c)) and (N((i, j), id?, id!), idc)∈γ2(push

(i,j)
(Π
(1,3,4)

(A(c))));

then we conclude that N((i, j), id?, id!) ∈ γ1(id
♯
P); let us take m

a free name in P , we denote E?[yi 7→ E!(xi)](m) = (n, idn); in
the case that m matches yi, we have (n, idn) = E!(xi), since
(Q0, id!, E!) is a thread of A and (A,U, F) ∈ γ(f, g), we know
that (id!, idn) ∈ γ2(f(Q0, xi, n)); then since (id?, idc, id!, idc) ∈
γ4(A(c)), we obtain that (id?, idc, id!, idc, id!, idn) ∈ γ6(A(c) •
f(Q0, xi, n)); this way (id?, id!, idn) ∈ γ3(Π

(1,3,6)
sync({3; 5}, A(c) •

f(Q0, xi, n))); so we can conclude that (N((i, j), id?, id!), idc) ∈
γ2(E

♯
P (m,n)); in the other case, m is a free name of ∗y?i[y]P ;

since (P0, id?, E?) is a thread ofA, and (A,U, F) ∈ γ(f, g), we get
that (id?, idn) ∈ γ2(f(P0, m, n)); then since (id?, idc, id!, idc) ∈

84

γ4(A(c)), we obtain that (id?, idc, id!, idc, id?, idn) ∈ γ6(A(c) •
f(P0, m, n))); since id? = id?, we can deduce that (id?, id!, idn) ∈
γ3(Π

(1,3,6)
(sync({1, 5}, A(c) • f(P0, m, n)))); so we can conclude

that (N((i, j), id?, id!), idc) ∈ γ2(E
♯
P (m,n)); so in any case, we

have (N((i, j), id?, id!), idn) ∈ γ2(E
♯
P (m,n)); we can then deduce

from Prop. 29 that for any free name m of TR, ER = (n, idn)
implies that (idR, idn) ∈ γ2(f

′(R,m, n));
(iii) if TR is a thread of

⋃

β(Q, id!, E!): we have (id?, idu, id!, idc) ∈
γ4(A(c)), so id! ∈ γ1(id

♯
Q); let us take m a free name in Q;

we denote E!(m) = (n, idn); since (Q0, id!, E!) is a thread of
A, and (A,U, F) ∈ γ(f, g), we have (id!, idn) ∈ γ2(f(Q0, m, n));
then (id?, idc, id!, idc, id!, idn) ∈ γ6(A(c)•f(Q0, m, n)); then since
id! = id!, we conclude that (id!, idn) ∈ γ2(E

♯
Q(m,n)); we can

then deduce from Prop. 29 that for any free name m of TR,
ER = (n, idn) implies that (idR, idn) ∈ γ2(f

′(R,m, n));
so in any case, for any name x free in TR, we have ER = (y, idy)
implies that (idR, idy) ∈ γ2(f

′(R, x, y));
(b) let (x, id) be an element in U , we have (A,U, F) ∈ γ((f, g)) so id ∈

γ1(g(x)), since g = g′ we obtain id ∈ γ1(g
′(x)).

So in accordance with the definition of γ, we obtain that (A′, U, F) ∈ C
♯
.

(3) In the case that C
λ
C is a spied communication transition: we de-

note C = (A,U, F), there exists a syntactic component Q0, such that Q0

matches x!j [x1, ..., xn]Q, such that there exists a thread (Q0, id!, E!) in A

with E!(x) ∈ U and a continuation Cont! ∈ β(Q, id!, E!) which satisfy C =
((A\{(Q0, id!, E!)})∪Cont!, U∪{E!(xi) | i ∈ J1;nK}, F); we denote E!(x) =
(c, idc); since (u, C) ∈ γ(C♯), we have (id!, idc) ∈ γ2(f(Q0, x, c)) and (idc) ∈
γ1(g(c)); then (id!, idc, idc) ∈ γ3(sync({2, 3}, f(Q0, x, c) • g(c))); since γ3

is strict, we can conclude that
⊔

3{sync({2, 3}, f(Q0, x, u) • g(u)) | u ∈

νn(S)} 6= ⊥♯3; so we can introduce C
♯

= (f ′, g′) such that C♯ λ
 C

♯
; we

denote C = (A,U, F), and introduce for each name u ∈ νn(S), the ab-
stract element A(u) = sync({2, 3}, f(Q0, x, u) • g(u)), we also introduce
an abstract marker id ♯Q and an abstract environment E♯

Q as follows:

id ♯Q =
⊔

1

{Π
(1)

(A(u)) | u ∈ νn(S)},

E
♯
Q = [(m,n) 7→

⊔

2

{IQ(m,n, u) | u ∈ νn(S)}, ∀m ∈ fn(Q), n ∈ νn(S)]

where IQ(m,n, u) =
{

Π
(1,5)

sync({1, 4}, A(u) • f(Q0, m, n)).

we now prove that (u.λ, C) ∈ γ(C
♯
):

(a) let TR = (R, idR, ER) be a thread of A, x be a free name in R,
we denote ER(x) = (y, idx), we need to prove that (idR, idx) ∈
γ2(f

′(R, x, y)):

85

(i) if TR is a thread of A: we have (u, C) ∈ γ(C), so (idR, idx) ∈
γ2(f(R, x, y)), then (f, g) ⊑ (f ′, g′) and γ2 is monotonic, so
(idR, idx) ∈ γ2(f

′(R, x, y));
(ii) if TR is a thread of

⋃

β(Q, id!, E!): since (id!, idc, idc) ∈ γ3(A(c)),
we have that id! ∈ γ1(id

♯
Q); let us take m a free name in Q; we

denote E!(m) = (n, idn); since (Q0, id!, E!) is a thread of A, and
(A,U, F) ∈ γ(f, g), we obtain that (id!, idn) ∈ γ2(f(Q0, m, n));
then (id!, idc, idc, id!, idn) ∈ γ5(A(c) • f(Q0, m, n)); then since
id! = id1, we conclude that (id!, idn) ∈ γ2(E

♯
Q(m,n)); we can

then deduce from Prop. 29 that for any free name m of TR,
ER = (n, idn) implies that (idR, idn) ∈ γ2(f

′(R,m, n));
so in any case, for any name m free in TR, the fact ER = (n, idn)
implies that (idR, idn) ∈ γ2(f

′(R,m, n));
(b) let (u, id) be an element in U ; we need to prove that id ∈ γ1(g(u)):

(i) in the case that (u, id) ∈ U , we have C ∈ γ(C♯), C♯ ⊑♯ C
♯

and

γ is monotonic, then C ∈ γ(C
♯
) and id ∈ γ1(g

′(u));
(ii) otherwise we have (u, id) = E(xk), so since C ∈ γ(C♯), we obtain

that (id!, idc, idc, id!, id) ∈ sync({(1, 4)}, A(c)• (f(Q0, xk, u))), so
id ∈ γ1(g

′(u));
so in any case, for any (u, id) ∈ U , we have id ∈ γ1(g

′(u)).

So in accordance with the definition of γ, we obtain that (A,U, F) ∈ C
♯
.

(4) In the case that C
λ
C is a spoiled communication. We denote C =

(A,U, F), there exists a syntactic component P0, such that P0 matches
y?i[y]P , such that there exists one thread (P0, id?, E?) in A with E?(y) ∈
U , some elements c1,...,cn in U and a continuation Cont∈β(P, id?, E?[yi 7→
ci]) that C = ((A\{(P0, id?, E?)})∪Cont, U, F); we denote E?(y) = (c, idc);
we have (u, C) ∈ γ(C♯), so (id?, idc) ∈ γ2(f(P0, y, c)) and (idc) ∈ γ1(g(c));
then (id?, idc, idc) ∈ γ3(sync({2, 3}, f(P0, y, c) • g(c))); since γ3 is strict we
obtain that

⊔

3{sync({2, 3}, f(P0, y, c) • g(c)) | u ∈ νn(S)} 6= ⊥♯3}); so we

can introduce C
♯
= (f ′, g′) such that C♯ λ

 C
♯
; we denote C = (A,U, F),

and introduce for each name u ∈ νn(S), the abstract element A(u) =
sync({2, 3}, f(P0, y, u) • g(u)), we also introduce an abstract marker id ♯P
and an abstract environment E♯

P as follows:

id ♯P =
⊔

1

{Π
(1)

(A(u)) | u ∈ νn(S)},

E
♯
P = [(m,n) 7→

⊔

2

{IP (m,n, u) | u ∈ νn(S)}, ∀m ∈ fn(P), n ∈ νn(S)]

where

IP (m,n, u) =











id ♯P • g(n) if m = yi

Π
(1,5)

sync({1, 4}, A(u) • f(P0, m, n)) otherwise.

We now prove that (u.λ, C) ∈ γ(C
♯
):

86

(a) let TR = (R, idR, ER) be a thread of A, x a free name of R and
(y, idx) such that ER(x) = (y, idx), we need to prove that (idR, idx) ∈
γ2(f

′(R, x, y)):
(i) if TR is a thread of A: we have (u, C) ∈ γ(C), so (idR, idx) ∈

γ2(f(R, x, y)), then (f, g) ⊑ (f ′, g′) and γ2 is monotonic, so
(idR, idx) ∈ γ2(f

′(R, x, y));
(ii) if TR is a thread of

⋃

β(P, id?, E?[yi 7→ ck]): since (id?, idc, idc) ∈
γ3(A(c)), we deduce that id? ∈ γ1(id

♯
P); let us take m be a free

name in P ; we denote E?[yi 7→ E!(xi)](m) = (n, idn); in the
case that m matches yi, we have (n, idn) = ci; since ci ∈ U and
(A,U, F) ∈ γ(f, g), we know that idn ∈ γ1(g(n)); then since
id? ∈ γ1(id

♯
P), we get that (id?, idn) ∈ γ2(id

♯
P • g(c)); then we

conclude that (id?, idn) ∈ γ2(E
♯
P (m,n)); in the other case, m is

a free name of y?i[y]P ; since (P0, id?, E?) is a thread of A, and
(A,U, F) ∈ γ(f, g), we obtain that (id?, idn) ∈ γ2(f(P0, m, n));
so, since (id?, idc, idc) ∈ γ3(A(c)), we have (id?, idc, idc, id?, idn) ∈
γ5(A(c) • (f(P0, m, n))); then since id? = id?, we conclude that
(id?, idn) ∈ γ2(E

♯
P (m,n)); so in any case, we have (id?, idn) ∈

γ2(E
♯
P (m,n)); we can then deduce from Prop. 29 that for any

free name m of TR, ER = (n, idn) implies that (idR, idn) ∈
γ2(f

′(R,m, n));
so in any case, for any name m free in TR, we have ER = (n, idn)
implies that (idR, idn) ∈ γ2(f

′(R,m, n));
(b) let (x, id) be an element in U , we have (A,U, F) ∈ γ((f, g)) so id ∈

γ1(g(x)), since g = g′ we obtain id ∈ γ1(g
′(x)).

So in accordance with the definition of γ, we obtain that (A′, U, F) ∈ C
♯
.

(5) In the case that C
λ
C is a spoiled resource replication. We denote C =

(A,U, F), there exists a syntactic component P0, such that P0 matches
∗y?i[y]P , such that there exists one thread (P0, id?, E?) in A such that
E?(y) ∈ U , some elements c1,...,cn in U , a fresh marker id! ∈ F and a
continuation Cont ∈ β(P, id?, E?[yi 7→ ci]) that C = ((C\{(P0, id?, E?)})∪
Cont, U, F \ {id!}); we denote E?(y) = (c, idc), since (u, C) ∈ γ(C♯), we
have (id?, idc) ∈ γ2(f(P0, y, c)) and (idc) ∈ γ1(g(c)), so we deduce that
(id?, idc, idc) ∈ γ3(sync({2, 3}, f(P0, y, c) • g(c))), and since γ3 is strict we
obtain that

⊔

3{sync({2, 3}, f(P0, y, c) • g(c)) | u ∈ νn(S)} 6= ⊥♯3}); so we

can introduce C
♯
= (f ′, g′) such that C♯ λ

 C
♯
; we denote C = (A,U, F),

and introduce for each name u ∈ νn(S), the abstract element A(u) =
sync({2, 3}, f(P0, y, u) • g(u)), we also introduce an abstract marker id ♯P

87

and an abstract environment E♯
P as follows:

id ♯P =
⊔

1

{Π
(1)

(push
(i,0)

((Π
(1)

(A(u))) • t♯ • ⊤♯M)) | u ∈ νn(S)},

E
♯
P = [(m,n) 7→

⊔

2

{IP (m,n, u) | u ∈ νn(S)}, ∀m ∈ fn(P), n ∈ νn(S)]

where

IP (m,n, u) =











id ♯P • g(n) if m = yi

push
(i,0)

(Π
(1,6,5)

sync({1, 4}, A(u) • f(P0, m, n) • t♯)) otherwise.

We now prove that (u.λ, C) ∈ γ(C
♯
):

(a) let TR = (R, idR, ER) be a thread of A, x a free name of R and
(y, idx) such that ER(x) = (y, idx), we need to prove that (idR, idx) ∈
γ2(f

′(R, x, y)):
(i) if TR is a thread of A: we have (u, C) ∈ γ(C), so (idR, idx) ∈

γ2(f(R, x, y)), then (f, g) ⊑ (f ′, g′) and γ2 is monotonic, so
(idR, idx) ∈ γ2(f

′(R, x, y));
(ii) if TR is a thread of

⋃

β(P,N((i, 0), id?, id!), E?[yi 7→ ck]): we know
that (id?, idc, idc) ∈ γ3(A(c)); so id? ∈ γ1(Π

(1)
(A(c)); moreover

we have id! ∈ t♯; then for all id ∈ M, we have (id?, id!, id) ∈
γ3(Π

(1)
(A(c)) • t♯ • ⊤♯M); so N((i, 0), id?, id!) ∈ γ1(id

♯
P); let us take

m be a free name in P ; we denote E?[yi 7→ E!(xi)](m) = (n, idn);
in the case that m matches yi, we have (n, idn) = ci; since ci ∈ U
and (A,U, F) ∈ γ(f, g), we know that idn ∈ γ1(g(n)); since
N((i, 0), id?, id!) ∈ γ1(id

♯
P), we get that (N((i, 0), id?, id!), idn) ∈

γ2(id
♯
P • g(c)); so (N((i, 0), id?, id!), idn) ∈ γ2(E

♯
P (m,n)); in the

other case, m is a free name of y?i[y]P ; since (P0, id?, E?) is a
thread of A, and (A,U, F) ∈ γ(f, g); we obtain that (id?, idn) ∈
γ2(f(λ,m, n)); since (id?, idc, idc) ∈ γ3(A(c)), we can deduce
that (id?, idc, idc, id?, idn) ∈ γ5(A(c) • (f(P0, m, n))); since id? =
id?, we can conclude that (N((i, 0), id?, id!), idn) ∈ γ2(E

♯
P (m,n));

so in any case, we have (N((i, 0), id?, id!), idn) ∈ γ2(E
♯
P (m,n));

we can then deduce from Prop. 29 that for any free name m of
TR, ER = (n, idn) implies that (idR, idn) ∈ γ2(f

′(R,m, n));
so in any case, for any name m free in TR, we have ER = (n, idn)
implies that (idR, idn) ∈ γ2(f

′(R,m, n));
(b) let (x, id) be an element in U , we have (A,U, F) ∈ γ((f, g)) so id ∈

γ1(g(x)), since g = g′ we obtain id ∈ γ1(g
′(x)).

So in accordance with the definition of γ, we obtain that (A′, U, F) ∈ C
♯
.

2

88

G Occurrence counting abstraction

In this section we give the proof of Thm. 39 which establishes the soundness
of our occurrence counting analysis.

Proposition 38 ∀P ∈ P, ∀id ∈M, ∀E ∈ (fn(P)→ (νn(S)×M)), we have
Cont ∈ β(P, id, E) =⇒ (ε,Cont) ∈ (γNV ◦ γNV

)(βNV
(P)).

PROOF. Prop. 38 is proved by induction on the syntax of P : let P be a
sub-term in P, id be a marker in M, E be an environment in (fn(P) →
(νn(S) ×M)) and Cont be a continuation in β(P, id, E):

• in the case that P matches 0, we have β(P, id, E) = {∅}; so Cont = ∅;
then ΠNV (ε,Cont) = (0)v∈V ; since (0)v∈V ∈ γNV

(0NV
) and βNV

(P) = (0)v∈V ,
we obtain that (ε, ∅) ∈ (γNV ◦ γNV

)(βNV
(P));

• in the case that P matches (ν n)Q, since β(P, id, E) = β(Q, id, E[n 7→
(n, id)]), we have (ε,Cont) ∈ (γNV ◦ γNV

)(βNV
(Q)) (by the induction hy-

pothesis); since βNV
(P) = βNV

(Q), we obtain that (ε,Cont) ∈ (γNV ◦
γNV

)(βNV
(P));

• in the case that P matches aQ, we have β(P, id, E) = {{(P, id, E)}}; so
Cont = {(P, id, E)}; then ΠNV (ε,Cont) = (δaQv)v∈V ; we obtain (ε,Cont) ∈
(γNV ◦ γNV

)(βNV
(aP)), since (δaQv)v∈V ∈ γNV

(1NV
(aP)) and βNV

(aP) =
1NV

(aP);
• in the case that P matches P1 | P2, we have β(P, id, E) = {A1 ∪ A2 |Ai ∈
β(Pi, id, E)}; let us take (Cont1,Cont2) ∈ (β(P1, id, E)× β(P2, id, E)) such
that Cont = Cont1 ∪ Cont2, by the induction hypothesis, we have for any
i in the set {1; 2}, (ε,Conti) ∈ (γNV ◦ γNV

)(βNV
(Pi)) (i.e. ΠNV (ε,Conti) ∈

γNV
(βNV

(Pi))); moreover since P ∈ P is labelled with distinct labels, we
have Cont1 ∩ Cont2 = ∅; by applying Prop. 37, since ΠNV (ε,Cont) =
ΠNV (ε,Cont1) + ΠNV (ε,Cont2), we obtain ΠNV (ε,Cont) ∈ γNV

(βNV
(P1) +

βNV
(P2)); since βNV

(P) = βNV
(P1)+βNV

(P2), we obtain (ε,Cont) ∈ (γNV ◦
γNV

)(βNV
(P));

• in the case that P matches P1⊕P2, we have β(P1⊕P2, id, E) = β(P1, id, E)
∪β(P2, id, E); so let us take i in the set {1; 2} such that Cont ∈ β(Pi, id, E);
by the induction hypothesis, we have Cont ∈ (γNV ◦ γNV

)(βNV
(Pi)); since

βNV
(P) = βNV

(P1) ∪NV
βNV

(P2), we get that Cont ∈ (γNV ◦ γNV
)(βNV

(P)).
2

Theorem 39 (NV ,⊑NV
,∪NV

,⊥NV
, γNV ◦γNV

, CNV
0 , NV

,∇NV
) is an abstrac-

tion.

PROOF. The tuple (NV ,⊑NV
,∪NV

,⊥NV
, γNV ◦ γNV

, CNV
0 , NV

,∇NV
) satis-

fies Def. 24:

89

• Props. (1)(2)(3)(7) are satisfied by our assumptions;
• Prop. (4) is satisfied since both γNV and γNV

are monotonic;
• Prop. (5) is satisfied: we have Cn

0 (S) = β(S, ε, ∅) and CNV

0 = βNV
(S), we

conclude by Prop. 38 that {ε} × Cn
0 (S) ⊆ CNV

0 ;
• Prop. (6) is satisfied: let v♯ be an abstract configuration, (u, C) be in the

concretization (γNV ◦ γNV
)(v♯), λ be a transition label and C be another

configuration such that C
λ
C, we must construct C

♯
such that (u.λ, C) ∈

γ(C
♯
) and C♯ λ NV

C
♯
.

(1) in the case that C
λ
C is a communication transition: there exist two

syntactic components P0 and Q0, such that P0 matches with y?i[y]P and
Q0 matches with x!j [x]Q, such that there exist two threads (P0, id?, E?)
and (Q0, id!, E!) in C with E?(y) = E!(x), two continuations Cont? ∈
β(P, id?, E?[yi 7→ E!(xi)]) and Cont! ∈ β(Q, id!, E!) such that C is ((C \
{(P0, id?, E?); (Q0, id!, E!)}) ∪ Cont? ∪ Cont!); we have (u, C) ∈ (γNV ◦
γNV

)(v♯); so ΠNV (u, C) ∈ γNV
(v♯); then since (P0, id?, E?) and (Q0, id!, E!)

are two threads of C, we have (ΠNV (u, C))P0
≥ 1 and (ΠNV (u, C))Q0

≥
1; then ΠNV (u, C) ∈ γNV

(syncNV
({i, j}, v♯)); since γNV

is strict, we can
conclude that syncNV

({i, j}, v♯) 6= ⊥NV
; so we can introduce v♯ such that

C♯ λ NV
C
♯
; we now prove that (u.λ, C) ∈ (γNV ◦γNV

)(v♯): we have C = ((C\
{(P0, id?, E?); (Q0, id!, E!)})∪Cont?∪Cont!); so ΠNV (u.λ, C) = ΠNV (u, C)−
(

(δP0

v)v∈V + (δQ0

v)v∈V
)

+ ΠNV (ε,Cont?) + ΠNV (ε,Cont!) + (δψ(λ)
v)v∈V ; then

we can deduce from Prop. 38 that ΠNV(ε,Cont?) ∈ γNV(βNV
(P)) and that

ΠNV(ε,Cont!) ∈ γNV(βNV
(Q)); besides ΠNV(u, C) ∈ γNV

(syncNV
({i, j}, v♯)),

so we conclude that ΠNV (u.λ, C) ∈ γNV
(syncNV

({i, j}, v♯) − 1NV
(P0) −

1NV
(Q0) + 1NV

(ψ(λ)) + βNV
(P) + βNV

(Q)); so (u.λ, C) ∈ (γNV ◦ γNV
)(v♯);

(2) in the case that C
λ
C is a resource replication: there exist two syn-

tactic components P0 and Q0, such that P0 matches ∗y?i[y]P and Q0

matches with x!j [x]Q, such that there exist two threads (P0, id?, E?) and
(Q0, id!, E!) in C with E?(y) = E!(x), a marker id∗ ∈M, two continuations
Cont? ∈ β(P, id∗, E?[yi 7→ E!(xi)]) and Cont! ∈ β(Q, id!, E!) such that C
is ((C \ {(Q0, id!, E!)})∪Cont?∪Cont!); we have (u, C) ∈ (γNV ◦ γNV

)(v♯);
so ΠNV (u, C) ∈ γNV

(v♯); then since (P0, id?, E?) and (Q0, id!, E!) are two
threads of C, we have (ΠNV (u, C))P0

≥ 1 and (ΠNV (u, C))Q0
≥ 1; so

we deduce that ΠNV (u, C) ∈ γNV
(syncNV

({i, j}, v♯)); since γNV
is strict,

we get that syncNV
({i, j}, v♯) 6= ⊥NV

; so we can introduce v♯ such that

C♯ λ NV
C
♯
; we now prove that (u.λ, C) ∈ (γNV ◦ γNV

)(v♯): we have C =
((C \ {(Q0, id!, E!)}) ∪ Cont? ∪ Cont!); so ΠNV (u.λ, C) = ΠNV (u, C) −
(δQ0

v)v∈V +ΠNV (ε,Cont?)+ΠNV (ε,Cont!)+(δψ(λ)
v)v∈V ; then we deduce from

Prop. 38 that ΠNV(ε,Cont?) ∈ γNV(βNV
(P)) and that ΠNV (ε,Cont!)) ∈

γNV (βNV
(Q)), we also have ΠNV (u, C) ∈ γNV

(syncNV
({i, j}, v♯)), and we

conclude that ΠNV (u.λ, C) ∈ γNV
(syncNV

({i, j}, v♯)−1NV
(Q0)+1NV

(ψ(λ))
+βNV

(P) + βNV
(Q)); so (u.λ, C) ∈ (γNV ◦ γNV

)(v♯);

90

(3) in the case that C
λ
C is a spied communication: there exists one

syntactic component Q0, such that Q0 matches x!j [x]Q, such that there
exists one thread (Q0, id!, E!) in C, a continuation Cont! ∈ β(Q, id!, E!)
such that C is ((C \ {(Q0, id!, E!)}) ∪ Cont!); we have (u, C) ∈ (γNV ◦
γNV

)(v♯); so ΠNV (u, C) ∈ γNV
(v♯); and since (Q0, id!, E!) is a thread of

C, we have (ΠNV (u, C))Q0
≥ 1; then ΠNV (u, C) ∈ γNV

(syncNV
({i}, v♯));

since γNV
is strict, we can conclude that syncNV

({i}, v♯) 6= ⊥NV
; so we

can introduce v♯ such that C♯ λ NV
C
♯
; we now prove that (u.λ, C) ∈ (γNV ◦

γNV
)(v♯): we have C = ((C \ {(Q0, id!, E!)}) ∪ Cont!); so ΠNV (u.λ, C) =

ΠNV (u, C)−(δQ0

v)v∈V +ΠNV (ε,Cont!)+(δψ(λ)
v)v∈V ; then we can deduce from

Prop. 38 that ΠNV (ε,Cont!) ∈ γNV (βNV
(Q)); we also have ΠNV (u, C) ∈

γNV
(syncNV

({i}, v♯)); so ΠNV (u.λ, C) ∈ γNV
(syncNV

({i}, v♯)− 1NV
(Q0) +

1NV
(ψ(λ))+βNV

(P)); so we can conclude that (u.λ, C) ∈ (γNV ◦γNV
)(v♯);

(4) in the case that C
λ
C is a spoiled communication: there exists one

syntactic component P0, such that P0 matches y?i[y]P such that there
exists one thread (P0, id?, E?) in C, and several tagged names c1, ..., cn ∈
N ×M, a continuation Cont? ∈ β(P, id?, E?[yi 7→ ci]) such that C is ((C \
{(P0, id?, E?)})∪Cont?); we have (u, C) ∈ (γNV ◦γNV

)(v♯); so ΠNV (u, C) ∈
γNV

(v♯); then since (P0, id?, E?) is a thread of C, we have (ΠNV (u, C))P0
≥

1; then ΠNV (u, C) ∈ γNV
(syncNV

({i}, v♯)); since γNV
is strict, we can

conclude that syncNV
({i}, v♯) 6= ⊥NV

; so we can introduce v♯ such that

C♯ λ NV
C
♯
; we now prove that (u.λ, C) ∈ (γNV ◦ γNV

)(v♯): we have C =
((C \ {(P0, id?, E?)}) ∪ Cont?); so ΠNV (u.λ, C) = ΠNV (u, C)− (δP0

v)v∈V +
ΠNV (ε,Cont?)+(δψ(λ)

v)v∈V ; we deduce from Prop. 38 that ΠNV (ε,Cont?) ∈
γNV (βNV

(P)); we have already proved ΠNV (u, C) ∈ γNV
(syncNV

({i}, v♯));
so ΠNV (u.λ, C) ∈ γNV

(syncNV
({i}, v♯)− 1NV

(P0) + 1NV
(ψ(λ)) + βNV

(P));
so we can conclude that (u.λ, C) ∈ (γNV ◦ γNV

)(v♯);

(5) in the case that C
λ
C is a spoiled resource replication: there exists one

syntactic component P0, such that P0 matches ∗y?i[y]P such that there
exists one thread (P0, id?, E?) in C, and several tagged names c1, ..., cn ∈
N ×M, a marker id∗ ∈M, and a continuation Cont? ∈ β(P, id∗, E?[yi 7→
ci]) such that C is (C ∪ Cont?); we have (u, C) ∈ (γNV ◦ γNV

)(v♯); so
ΠNV (u, C) ∈ γNV

(v♯); and since (P0, id?, E?) is a thread of C, we have
(ΠNV (u, C))P0

≥ 1; then ΠNV (u, C) ∈ γNV
(syncNV

({i}, v♯)); since γNV
is

strict, we can conclude that syncNV
({i}, v♯) 6= ⊥NV

; so we can introduce v♯

such that C♯ λ NV
C
♯
; we now prove that (u.λ, C) ∈ (γNV ◦γNV

)(v♯): we have
C = (C∪Cont?); so ΠNV (u.λ, C) = ΠNV (u, C)+ΠNV (ε,Cont?)+(δψ(λ)

v)v∈V ;
we deduce from Prop. 38 that ΠNV (ε,Cont?) ∈ γNV (βNV

(P)); we also have
ΠNV (u, C) ∈ γNV

(syncNV
({i}, v♯)); so we can conclude that ΠNV (u.λ, C) ∈

γNV
(syncNV

({i}, v♯)+1NV
(ψ(λ))+βNV

(P)); so (u.λ, C) ∈ (γNV ◦γNV
)(v♯).

2

91

